
Algorithms for Programming Contests - Week 06

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

18. November 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Brute Force

Definition (Brute Force)

Systematically enumerate all solution candidates and test whether each
candidate satisfies solution requirements.

a.k.a. Exhaustive Search or Generate and Test.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Brute Force: Example

Task:

Given a combination lock of 4 decimal digits, find the right key for the
lock.

Brute Force Solution:

Test all combinations from 0000 to 9999 until the right one is found.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Pros and Cons

Pros

• Simple

• Sound and complete - will find (optimum) solution if there exists one

• Used in safety critical applications because of its simplicity

• Serves as a benchmark for faster/more error-prone methods

Cons

• Inefficient

• Not feasible for large input sizes (combinatorial explosion)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Combinatorial Explosion

Brute-forcing passwords (without any fancy business!)

Allowed Length Search Space Time
0-9 5 105 <1s

10 1010 20s
15 1015 23 days

a-zA-Z 5 525 ∼1s
10 5210 9.1 years
15 5215 3.5 billion years

Printable ASCII 5 955 15s
10 9510 3795 years
15 9515 2100 x age of universe

You can see that it quickly grows out of hand!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Combinatorial Explosion

Brute-forcing passwords (without any fancy business!)

Allowed Length Search Space Time
0-9 5 105 <1s

10 1010 20s
15 1015 23 days

a-zA-Z 5 525 ∼1s
10 5210 9.1 years
15 5215 3.5 billion years

Printable ASCII 5 955 15s
10 9510 3795 years
15 9515 2100 x age of universe

You can see that it quickly grows out of hand!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Combinatorial Explosion

Brute-forcing passwords (without any fancy business!)

Allowed Length Search Space Time
0-9 5 105 <1s

10 1010 20s
15 1015 23 days

a-zA-Z 5 525 ∼1s
10 5210 9.1 years
15 5215 3.5 billion years

Printable ASCII 5 955 15s
10 9510 3795 years
15 9515 2100 x age of universe

You can see that it quickly grows out of hand!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Combinatorial Explosion

Brute-forcing passwords (without any fancy business!)

Allowed Length Search Space Time
0-9 5 105 <1s

10 1010 20s
15 1015 23 days

a-zA-Z 5 525 ∼1s
10 5210 9.1 years
15 5215 3.5 billion years

Printable ASCII 5 955 15s
10 9510 3795 years
15 9515 2100 x age of universe

You can see that it quickly grows out of hand!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Relevant XKCD

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Dealing with large search spaces

• Reorder search space: start with the most promising ones!
e.g. it makes sense for a password cracker to search for passwords
like 1234 or password first.

• Reduce search space

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers i ∈ [2, n − 1] and check if i
divides n.

But we can use our domain knowledge and search only upto ⌈
√
n⌉

• 32-bit number has up to 10 decimal digits.
=⇒ square root has up to 5.
=⇒ 105 tests instead of 1010 tests

• 64-bit number has up to 20 decimal digits.
=⇒ square root has up to 10.
=⇒ 1010 tests instead of 1020.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers i ∈ [2, n − 1] and check if i
divides n.

But we can use our domain knowledge and search only upto ⌈
√
n⌉

• 32-bit number has up to 10 decimal digits.
=⇒ square root has up to 5.
=⇒ 105 tests instead of 1010 tests

• 64-bit number has up to 20 decimal digits.
=⇒ square root has up to 10.
=⇒ 1010 tests instead of 1020.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers i ∈ [2, n − 1] and check if i
divides n.

But we can use our domain knowledge and search only upto ⌈
√
n⌉

• 32-bit number has up to 10 decimal digits.
=⇒ square root has up to 5.
=⇒ 105 tests instead of 1010 tests

• 64-bit number has up to 20 decimal digits.
=⇒ square root has up to 10.
=⇒ 1010 tests instead of 1020.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.
• Even better: choose 8 tiles to place queens on:

(
64
8

)
≈ 4.4 · 109

configurations.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.
• Even better: choose 8 tiles to place queens on:

(
64
8

)
≈ 4.4 · 109

configurations.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.
• Even better: choose 8 tiles to place queens on:

(
64
8

)
≈ 4.4 · 109

configurations.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.

• Even better: choose 8 tiles to place queens on:
(
64
8

)
≈ 4.4 · 109

configurations.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.
• Even better: choose 8 tiles to place queens on:

(
64
8

)
≈ 4.4 · 109

configurations.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Problems in Practice

In practice, things are not obvious:

1 How can we represent candidates without unnecessarily increasing
the search space?

2 How can we (efficiently) enumerate candidates?

3 How large is the search space anyway???

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Problems in Practice

In practice, things are not obvious:

1 How can we represent candidates without unnecessarily increasing
the search space?

2 How can we (efficiently) enumerate candidates?

3 How large is the search space anyway???

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Representing Candidates

• If order of something is irrelevant: do not consider reorderings!!!

• Use mathematical structure that can easily be enumerated, e.g.
• Tuples (sorted, bounded, with bounds on sum, . . .)
• Sets/Multisets (containing/excluding elements, with bounds on size,

. . .)
• Permutations (with fied/arbitrary number of cycles, cycles of certain

length (e.g. fixed points), . . .)
• Partitions (into fixed/arbitrary number of classes, where certain

elements belong to same class, . . .)
• (Equivalence) Relations
• . . .

• . . .or use more difficult structure, and think about enumeration later:

• Graphs (directed, weighted, . . .)
• Trees (rooted, . . .)
• . . .
• Combinations of all of the above

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Representing Candidates

All of the ”easily enumerable” structures from last slide can be
represented as constrained tuples!

• Sets/Multisets: ordered tuples

• Permutations: tuples with pairwise different elements

• Partitions (+ equivalence relations): see next slides :)

• Relations: Sets of Pairs

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Sets

• Consider sets of elements in [n]

• Idea: use tuple (x1, . . . , xk) to represent {x1, . . . , xk}

• But: unnecessarily increases search space: (1, 4, 5), (5, 1, 4) and
(1, 4, 5, 5) all represent {1, 4, 5}

• Solution: only consider tuples (x1, . . . , xk) where x1 < . . . < xk

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Sets

• Consider sets of elements in [n]

• Idea: use tuple (x1, . . . , xk) to represent {x1, . . . , xk}
• But: unnecessarily increases search space: (1, 4, 5), (5, 1, 4) and

(1, 4, 5, 5) all represent {1, 4, 5}

• Solution: only consider tuples (x1, . . . , xk) where x1 < . . . < xk

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Sets

• Consider sets of elements in [n]

• Idea: use tuple (x1, . . . , xk) to represent {x1, . . . , xk}
• But: unnecessarily increases search space: (1, 4, 5), (5, 1, 4) and

(1, 4, 5, 5) all represent {1, 4, 5}
• Solution: only consider tuples (x1, . . . , xk) where x1 < . . . < xk

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Sets

Definition

Let X be a set, and k ∈ N. Define
(
X
k

)
:= {Y ⊆ X | |Y | = k}.

Lemma

Let (X , <) be a totally ordered set. Then

{(x1, . . . , xk) ∈ X k | x1 < . . . < xk} →
(
X

k

)
,

(x1, . . . , xk) 7→ {x1, . . . , xk}

is a bijection.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }

{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }

{{1, 3} }

{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }

{{1, 3}, {4} }

{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }{{1, 3}, {4} }

{{1, 3}, {4}, {2, 5} }

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Representing candidates

Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Candidates

For enumerating constrained tuples in lexicographic order: wonderful
answer on StackOverflow!

Definition

Let S ⊆ [n]k be a set of tuples.

• A tuple (x1, . . . , xl) with l ≤ k is called valid prefix in S if there exist
xl+1, . . . , xk s.t. (x1, . . . , xl , xl+1, . . . , xk) ∈ S .

• Let x = (x1, . . . , xk) ∈ S . We say x can be incremented at i ∈ [k] to
v ∈ [n] if

1 xi < v and
2 (x1, . . . , xi−1, v) is a viable prefix.

• x ∈ S is called incrementable at i ∈ [k] if there exists a v ∈ [n] s.t. x
can be incremented at i to v .

• x ∈ S is called incrementable if there exists an i ∈ [k] s.t. x is
incrementable at i .

https://stackoverflow.com/a/30898130/4322240
https://stackoverflow.com/a/30898130/4322240

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Candidates

Algorithm 1 Enumerating S ⊆ [n]k in lex. order

x ← lex. smallest element of S
Output x
while x is incrementable do

Let i ∈ [k] be highest index at which x is incrementable
Let v ∈ [n] be the smallest element to which x can be incremented

at i
x ′ ← (x1, . . . , xi−1, v)
Let s = (si+1, . . . , sk) be the lex. smallest suffix s.t. (x ′, s) ∈ S
x ← (x ′, s)
Output x

end while

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• If k > n, no such tuples exist.

• If k = 0, the empty tuple () is the only one, corresponding to the
empty set ∅.

• In the following, 1 ≤ k ≤ n.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).

• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n

• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅

• resp.
(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|

• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl (intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl (intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl (intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl (intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl (intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Sets: Remarks

• For small k , one can alternatively use nested loops.
• Most programmers draw the line at k ≤ 3.

• Many itertools packages support sorted tuple enumeration.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(, , , , , , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, , 1, , , , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, , 1, , , , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, , 2, , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, , 2, , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, 3, 2, , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, 3, 2, , ,)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, 3, 2, 4, 4, 4)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

(1, 2, 1, 3, 2, 4, 4, 4)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

(1, 2, 1, 3, 2, 4, 4, 4)

Note:

• Every valid tuple starts with 1

• There must not be any ”gaps”, i.e. whenever some xi appears, there
must be some j < i where xj + 1 ≥ xi

• These two conditions are also sufficient for a tuple to be a valid!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Enumerating
S := set of all partition tuples of [n] as obtained in last slides:

• Smallest tuple: (1, 1, . . . , 1)

• (x1, . . . , xk) ∈ S is incrementable at i > 1 iff ∃j < i : xj = xi
• Equivalently: iff xi ≤ maxj<i xj
• Hence: maintain vector (maxj<i xj)i to decide this in O(1)
• x ∈ S is never incrementable at i = 1

• For a valid prefix x ′, the lex. smallest suffix s.t. (x ′, s) ∈ S is
(1, 1, . . . , 1)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Partitions: Remarks

• Implementation can generate next partition in amortized constant
time if maximum vector is maintained

• Itertools packages usually do not support this enumeration

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Permutations

Enumerating all permutations π ∈ Sn := {π : [n]→ [n] | π bijective} in
lex. order can be done similarly.

A succinct description of the increment step:

1 Find largest index k : a[k] < a[k + 1]
If k does not exist then this is the last permutation

2 Find largest index l : a[k] < a[l]

3 Swap values a[k] and a[l]

4 Reverse sequence from a[k + 1] up to the final element a[n].

Each increment operation takes O(n) time.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating Tuples: Remarks

• When tuples need not be incremented in lex. order, slightly faster
enumeration algorithms might exist.

• E.g. Steinhaus-Johnson-Trotter algorithm for permutations
• E.g. Gray Code for [n]k

• However, keep in mind that in most cases, these only give a very
slight constant-factor improvement when using them in a brute-force
algorithm – except if enumeration is in-place and checking a
candidate is sublinear.

• More relevant: as number of permutations, partitions, etc. is very
large, usually it does not make sense to construct and iterate over an
array with all of them. Instead, generate next tuple on the fly.

https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
https://en.wikipedia.org/wiki/Gray_code

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Enumerating complex objects

When enumerating more complex objects, e.g. graphs/trees up to
isomorphism:

• Usually very difficult!

• Sometimes redundant enumeration can be faster than making sure
no object is enumerated twice

• Still, even simple heuristics can decrease search space drastically!
• E.g. only (redundantly) enumerate all graphs with certain degree

sequences
• E.g. enumerate rooted trees instead of trees

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Estimating size of search space

Let n, k ∈ N. Define

n! :=
n∏

i=1

i

nk :=
k−1∏
i=0

(n − i) =
n!

(n − k)!(
n

k

)
:=

1

k!
nk =

n!

k!(n − k)!{
n

k

}
:= Sn,k := number of partitions of [n] into k (non-empty) classes

(”Stirling numbers of 2nd kind”)

Bn := number of partitions of [n] (”Bell numbers”)

Cn :=
1

n + 1

(
2n

n

)
(”Catalan numbers”)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Estimating size of search space

Let X and Y be sets. Define

X k := {(x1, . . . , xk) ∈ X k | |{x1, . . . , xk}| = k},(
X

k

)
:= {Y ⊆ X | |Y | = k},

”power set” P(X) := P(X) := 2X := {Y ⊆ X},
Y X := {f : X → Y }

”symmetric group” SX := {f : X → X | f bijective}
”integer partitions” Pn,k := {(x1, . . . , xk) ∈ Nk

+ | x1 + · · ·+ xk = n,

x1 ≤ · · · ≤ xk}

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Estimating size of search space

Let X ,Y be (finite) sets. Then∣∣X k
∣∣ = |X |k∣∣∣∣(Xk

)∣∣∣∣ = (
|X |
k

)
∣∣2X ∣∣ = 2|X |∣∣Y X

∣∣ = |Y ||X |

|SX | = |X |!

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

More combinatorial identities

Here: 0 ∈ N. Let n, k ∈ N. Then(
n + k − 1

k − 1

)
=

∣∣{(x1, . . . , xk) ∈ Nk | x1 + · · ·+ xk = n}
∣∣

n∑
k=0

{
n

k

}
= Bn

Moreover, basically every combinatorial coefficient has a recursive
formula making its computation feasible.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Identities with Binomial Coefficient

n∑
k=0

(
n

k

)
= 2n

n∑
i=k

(
i

k

)
=

(
n + 1

k + 1

)
n∑

k=0

k ·
(
n

k

)
= n · 2n−1

n∑
k=0

(
n

k

)2

=

(
2n

n

)

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Identities with Binomial Coefficient

Note: the identity
∑n

i=k

(
i
k

)
=

(
n+1
k+1

)
implies:

Corollary

Let R be any ring. For every polynomial p ∈ R[x], there exists a
polynomial q ∈ R[x] s.t. for all n ∈ N

n∑
i=0

p(i) = q(n)

Example

• For p(i) = i : q(n) = n(n+1)
2

• For p(i) = i2: q(n) = n(n+1)(2n+1)
6

• For p(i) = i3: q(n) =
(

n(n+1)
2

)2

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Catalan numbers

The Catalan numbers Cn = 1
n+1

(
2n
n

)
appear in many applications (see

OEIS A000108):

• Number of well-formed words in {(,)}2n

• Number of ways to evaluate a product of n + 1 numbers by using
the law of associativity. Equivalently: number of syntax tree shapes
with n inner binary nodes.

• Number of ways to triangulate a convex polygon with n + 2 vertices
using non-crossing lines

https://oeis.org/A000108

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds and Approximations

In practice:

• Exact size not needed to determine whether program terminates in
some time frame (also: unknown coefficients!).

• Instead, use bounds and approximations.

• Advantage: much easier to obtain results.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [n2 + 1, n], and on [n], 0 ≤ ik ≤ nk .

Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [n2 + 1, n], and on [n], 0 ≤ ik ≤ nk .

Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [n2 + 1, n], and on [n], 0 ≤ ik ≤ nk . Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [n2 + 1, n], and on [n], 0 ≤ ik ≤ nk . Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [n2 + 1, n], and on [n], 0 ≤ ik ≤ nk . Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2 ≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2 ≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):

• Every subset with k elements is a subset:
(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):
• Every subset with k elements is a subset:

(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):
• Every subset with k elements is a subset:

(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):
• Every subset with k elements is a subset:

(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):
• Every subset with k elements is a subset:

(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Remarks

All combinatorial coefficients have well-known bounds. Sometimes,
researching tighter bounds can be useful.

• E.g. Berend, Tassa (2010):(
n

e log n

)n

< Bn <

(
0.792n

log(n + 1)

)
• E.g. Mazumdar, Choudhury (2018):

e
√
2n·ζ(3) < p(n) < e

2nπ√
6n

where p(n) :=
∑n

k=1 |Pn,k | and ζ(3) =
∑∞

n=1
1
n3

However, because of their complexity, often simpler bounds or
approximations are better.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Approximations

Definition

Let f , g : N→ N s.t. they eventually stay positive, i.e.
∃n0 : ∀n ≥ n0 : f (n), g(n) > 0. We define

f ∼ g :⇐⇒ lim
n→∞

f (n)

g(n)
= 1,

implicitly also requiring that the limit has to exist.

Note that f ∼ g is a strictly stronger statement than f ∈ Θ(g).

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Some approximations

Theorem (Stirling’s formula)

n! ∼
√
2πn

(n
e

)n

Corollary

Cn ∼
4n√

π · n3/2

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Some approximations

Other approximations:

n∑
i=1

ik ∼ 1

k + 1
nk+1

p(n) ∼ 1

4n
√
3
eπ
√

2n
3

Bn ∼
1√
n

(
n

W (n)

)n+ 1
2

e
n

W (n)−n−1

where W is the Lambert W function.

https://en.wikipedia.org/wiki/Lambert_W_function

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds and Approximations: Final Remarks

Which one to use?

• Try to keep it simple!

• Use bounds whenever possible.

• Use approximations only if they make life easier.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Knight’s Tour

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Solving Knight’s Tour

Naive Solution

Generate all tours (permutations of [64]) and check whether the Knight
can travel along such a path.

64! ≈ 1089 — impossible!

What other methods can you think of?

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Solving Knight’s Tour

Naive Solution

Generate all tours (permutations of [64]) and check whether the Knight
can travel along such a path.

64! ≈ 1089 — impossible!

What other methods can you think of?

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Backtracking

• Applicable when there exist
- Partial candidate solutions
- Fast way of semi-checking if the partial candidate cannot be

completed

• Consider search space as a tree
Internal nodes represent partial solutions

• Dismiss subtree – prune/backtrack – if partial solution can’t be
completed

Example: CNF SAT

Given a boolean formula φ(x1, . . . , xn), is there a variable assignment
such that φ is satisfied?
We may represent the space of all variable assignments as a tree.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Backtracking Pseudocode

Given a problem which admits partial solutions:

• valid(s): Is partial solution s worth completing?

• completed(c): Is c a complete solution?

• next(c): Set of extensions of c by one step.

Algorithm 2 Backtracking

function backtrack(c)
if !valid(c) then

return false
if completed(c) then

output(c)
return true

for all c’ in next(c) do
if backtrack(c’) then

return true

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Backtracking Pseudocode

Given a problem which admits partial solutions:

• valid(s): Is partial solution s worth completing?

• completed(c): Is c a complete solution?

• next(c): Set of extensions of c by one step.

Algorithm 3 Backtracking

function backtrack(c)
if !valid(c) then

return false
if completed(c) then

output(c)
return true

for all c’ in next(c) do
if backtrack(c’) then

return true

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Constraint Satisfaction Problem

Constraint Satisfaction Problem: Find assignment X → R over
variables X such that some constraints C are satisfied.

Many discrete optimization/search problems can be specified as CSPs.

• SAT

• Puzzles (Crossword, Sudoku, Kakuro, Battleships, . . .)

• Graph Coloring

• Combinatorial Optimization (e.g. Knapsack)

Remark: Usually, CSPs are NP-complete.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

CSP: Backtracking: Sudoku

Goal: Find y = (y1, y2, . . . , y81) in {1, . . . , 9}81 satisfying C = sudoku
constraints.

In order to use backtracking, we need valid(c), completed(c) and next(c)
where c is a partial solution.

Given partial solution, c = (y1, y2, . . . , yk), k ≤ 81:

• valid(c): iterate over each row/column/block and check that the
partial assignment does not put any number twice in one of them

• completed(c): return ”k = 81”

• next(c) = {(y1, y2, . . . yk , 1), (y1, y2, . . . yk , 2), . . . (y1, y2, . . . yk , 9)}

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

CSP: Backtracking: Sudoku

Goal: Find y = (y1, y2, . . . , y81) in {1, . . . , 9}81 satisfying C = sudoku
constraints.

In order to use backtracking, we need valid(c), completed(c) and next(c)
where c is a partial solution.

Given partial solution, c = (y1, y2, . . . , yk), k ≤ 81:

• valid(c): iterate over each row/column/block and check that the
partial assignment does not put any number twice in one of them

• completed(c): return ”k = 81”

• next(c) = {(y1, y2, . . . yk , 1), (y1, y2, . . . yk , 2), . . . (y1, y2, . . . yk , 9)}

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

CSP: Backtracking

More generally: Goal: Find y = (y1, . . . , yn) ∈ Rn (where R is some finite
set) satisfying a set of constraints C.

Assume each constraint is of the form C : Rn → {false, true}, and can be
partially evaluated w.r.t. a partial assignment c ∈ R I for I ⊆ [n].

Given partial solution, c = (y1, y2, . . . , yk), k ≤ n:

• valid(c): for each C ∈ C, check whether c already violates C , i.e.
whether the partial evaluation C (c) is already trivially false. If so
(for any C), return false. Otherwise, return true.

• completed(c): return ”k = n”.

• next(c) = {(y1, y2, . . . yk , v) | v ∈ R}

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Backtracking: Tips

• The order in which you complete your solution candidates matters.

• The better the order, the more branches of the tree can be cut off.

	Brute Force and Backtracking
	Representing candidates
	Enumerating candidates
	Estimating size of search space
	Backtracking

