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Brute Force

Definition (Brute Force)

Systematically enumerate all solution candidates and test whether each
candidate satisfies solution requirements.

a.k.a. Exhaustive Search or Generate and Test.
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Brute Force: Example

Task:

Given a combination lock of 4 decimal digits, find the right key for the
lock.

Brute Force Solution:

Test all combinations from 0000 to 9999 until the right one is found.
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Pros and Cons

Pros

• Simple

• Sound and complete - will find (optimum) solution if there exists one

• Used in safety critical applications because of its simplicity

• Serves as a benchmark for faster/more error-prone methods

Cons

• Inefficient

• Not feasible for large input sizes (combinatorial explosion)
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Combinatorial Explosion

Brute-forcing passwords (without any fancy business!)

Allowed Length Search Space Time
0-9 5 105 <1s

10 1010 20s
15 1015 23 days

a-zA-Z 5 525 ∼1s
10 5210 9.1 years
15 5215 3.5 billion years

Printable ASCII 5 955 15s
10 9510 3795 years
15 9515 2100 x age of universe

You can see that it quickly grows out of hand!
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Relevant XKCD
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Dealing with large search spaces

• Reorder search space: start with the most promising ones!
e.g. it makes sense for a password cracker to search for passwords
like 1234 or password first.

• Reduce search space
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Example: Reduce Search Space

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers i ∈ [2, n − 1] and check if i
divides n.

But we can use our domain knowledge and search only upto ⌈
√
n⌉

• 32-bit number has up to 10 decimal digits.
=⇒ square root has up to 5.
=⇒ 105 tests instead of 1010 tests

• 64-bit number has up to 20 decimal digits.
=⇒ square root has up to 10.
=⇒ 1010 tests instead of 1020.
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Example: Reduce Search Space

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each
other.

• Very naive: Each tile can have queen 1, queen 2, . . ., queen 8 or no
queen: 964 ≈ 1.2 · 1061 configurations.

• Naive: Each tile can have a queen or not: 264 ≈ 1.8 · 1019
configurations.

• Better: place eight queens, one after another:
64 · 63 · . . . · 57 = 64!

56! ≈ 1.8 · 1014 configurations.
• Even better: choose 8 tiles to place queens on:

(
64
8

)
≈ 4.4 · 109

configurations.
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Problems in Practice

In practice, things are not obvious:

1 How can we represent candidates without unnecessarily increasing
the search space?

2 How can we (efficiently) enumerate candidates?

3 How large is the search space anyway???
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Representing Candidates

• If order of something is irrelevant: do not consider reorderings!!!

• Use mathematical structure that can easily be enumerated, e.g.
• Tuples (sorted, bounded, with bounds on sum, . . .)
• Sets/Multisets (containing/excluding elements, with bounds on size,

. . .)
• Permutations (with fied/arbitrary number of cycles, cycles of certain

length (e.g. fixed points), . . .)
• Partitions (into fixed/arbitrary number of classes, where certain

elements belong to same class, . . .)
• (Equivalence) Relations
• . . .

• . . .or use more difficult structure, and think about enumeration later:

• Graphs (directed, weighted, . . .)
• Trees (rooted, . . .)
• . . .
• Combinations of all of the above
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Representing Candidates

All of the ”easily enumerable” structures from last slide can be
represented as constrained tuples!

• Sets/Multisets: ordered tuples

• Permutations: tuples with pairwise different elements

• Partitions (+ equivalence relations): see next slides :)

• Relations: Sets of Pairs
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Representing candidates

Example: Sets

• Consider sets of elements in [n]

• Idea: use tuple (x1, . . . , xk) to represent {x1, . . . , xk}

• But: unnecessarily increases search space: (1, 4, 5), (5, 1, 4) and
(1, 4, 5, 5) all represent {1, 4, 5}

• Solution: only consider tuples (x1, . . . , xk) where x1 < . . . < xk
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Representing candidates

Example: Sets

Definition

Let X be a set, and k ∈ N. Define
(
X
k

)
:= {Y ⊆ X | |Y | = k}.

Lemma

Let (X , <) be a totally ordered set. Then

{(x1, . . . , xk) ∈ X k | x1 < . . . < xk} →
(
X

k

)
,

(x1, . . . , xk) 7→ {x1, . . . , xk}

is a bijection.
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Example: Partitions

• Consider partitions of [n]

• Idea: use tuple (x1, . . . , xn), where each xi indicates which
equivalence class i belongs to

(1, 3, 1, 2, 3, 4, 4, 4)7→

{ }

{{1, 3} }{{1, 3}, {4} }{{1, 3}, {4}, {2, 5} }{{1, 3}, {4}, {2, 5}, {6, 7, 8}}{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• But: again, search space increased unnecessarily: (1, 3, 1), (1, 2, 1)
and (2, 1, 2) all represent {{1, 3}, {2}}

• Solution: only consider lexicographically smallest tuple (details:
later. . .)
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Enumerating Candidates

For enumerating constrained tuples in lexicographic order: wonderful
answer on StackOverflow!

Definition

Let S ⊆ [n]k be a set of tuples.

• A tuple (x1, . . . , xl) with l ≤ k is called valid prefix in S if there exist
xl+1, . . . , xk s.t. (x1, . . . , xl , xl+1, . . . , xk) ∈ S .

• Let x = (x1, . . . , xk) ∈ S . We say x can be incremented at i ∈ [k] to
v ∈ [n] if

1 xi < v and
2 (x1, . . . , xi−1, v) is a viable prefix.

• x ∈ S is called incrementable at i ∈ [k] if there exists a v ∈ [n] s.t. x
can be incremented at i to v .

• x ∈ S is called incrementable if there exists an i ∈ [k] s.t. x is
incrementable at i .

https://stackoverflow.com/a/30898130/4322240
https://stackoverflow.com/a/30898130/4322240
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Enumerating Candidates

Algorithm 1 Enumerating S ⊆ [n]k in lex. order

x ← lex. smallest element of S
Output x
while x is incrementable do

Let i ∈ [k] be highest index at which x is incrementable
Let v ∈ [n] be the smallest element to which x can be incremented

at i
x ′ ← (x1, . . . , xi−1, v)
Let s = (si+1, . . . , sk) be the lex. smallest suffix s.t. (x ′, s) ∈ S
x ← (x ′, s)
Output x

end while
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Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• If k > n, no such tuples exist.

• If k = 0, the empty tuple () is the only one, corresponding to the
empty set ∅.

• In the following, 1 ≤ k ≤ n.
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Example: Enumerating Sets

Enumerating S := {(x1, . . . , xk) ∈ [n]k | x1 < . . . < xk} in lex. order:

• Smallest tuple: (1, 2, . . . , k).

• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|
• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)
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• Smallest tuple: (1, 2, . . . , k).
• A prefix (x1, . . . , xl) with l ≤ k is valid iff x1 < . . . < xl and...

• ∃xl+1, . . . , xk : xl < xl+1 < . . . < xk ≤ n
• resp. {(xl+1, . . . , xk) ∈ [xl + 1, n]k−l | xl+1 < . . . < xn} ̸= ∅
• resp.

(
[xl+1,n]
k−l

)
̸= ∅ (see Lemma!)

• resp. k − l ≤ |[xl + 1, n]|

• resp. k − l ≤ n − xl

(intuitive!)

• Hence, (x1, . . . , xk) ∈ S can be incremented at i to v iff v > xi and
k − i ≤ n − v

• Note: here, if x can be incremented at i to v ′, and xi < v < v ′, x
can also be incremented at i to v

• Hence, (x1, . . . , xk) is incrementable at i iff k − i ≤ n− (xi + 1), and
in that case, xi + 1 is the smallest v to which x can be incremented
at i

• For a valid prefix x ′ = (x1, . . . , xl), the lex. smallest suffix s s.t.
(x ′, s) ∈ S is (xl + 1, xl + 2, . . . , xl + k − l)
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Enumerating Sets: Remarks

• For small k , one can alternatively use nested loops.
• Most programmers draw the line at k ≤ 3.

• Many itertools packages support sorted tuple enumeration.



Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Enumerating candidates

Example: Enumerating Partitions

Reminder:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}

• Want to consider only lex. smallest sequence

• Can be obtained from above example by going over equivalence
classes in order in which they appear in the tuple, and assign
identifiers increasingly:

(1, 3, 1, 2, 3, 4, 4, 4)7→

{{1, 3}, {4}, {2, 5}, {6, 7, 8}}7→

( , , , , , , , )
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Example: Enumerating Partitions

(1, 2, 1, 3, 2, 4, 4, 4)

Note:

• Every valid tuple starts with 1

• There must not be any ”gaps”, i.e. whenever some xi appears, there
must be some j < i where xj + 1 ≥ xi

• These two conditions are also sufficient for a tuple to be a valid!
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Example: Enumerating Partitions

Enumerating
S := set of all partition tuples of [n] as obtained in last slides:

• Smallest tuple: (1, 1, . . . , 1)

• (x1, . . . , xk) ∈ S is incrementable at i > 1 iff ∃j < i : xj = xi
• Equivalently: iff xi ≤ maxj<i xj
• Hence: maintain vector (maxj<i xj)i to decide this in O(1)
• x ∈ S is never incrementable at i = 1

• For a valid prefix x ′, the lex. smallest suffix s.t. (x ′, s) ∈ S is
(1, 1, . . . , 1)
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Enumerating Partitions: Remarks

• Implementation can generate next partition in amortized constant
time if maximum vector is maintained

• Itertools packages usually do not support this enumeration
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Enumerating Permutations

Enumerating all permutations π ∈ Sn := {π : [n]→ [n] | π bijective} in
lex. order can be done similarly.

A succinct description of the increment step:

1 Find largest index k : a[k] < a[k + 1]
If k does not exist then this is the last permutation

2 Find largest index l : a[k] < a[l ]

3 Swap values a[k] and a[l ]

4 Reverse sequence from a[k + 1] up to the final element a[n].

Each increment operation takes O(n) time.
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Enumerating Tuples: Remarks

• When tuples need not be incremented in lex. order, slightly faster
enumeration algorithms might exist.

• E.g. Steinhaus-Johnson-Trotter algorithm for permutations
• E.g. Gray Code for [n]k

• However, keep in mind that in most cases, these only give a very
slight constant-factor improvement when using them in a brute-force
algorithm – except if enumeration is in-place and checking a
candidate is sublinear.

• More relevant: as number of permutations, partitions, etc. is very
large, usually it does not make sense to construct and iterate over an
array with all of them. Instead, generate next tuple on the fly.

https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
https://en.wikipedia.org/wiki/Gray_code
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Enumerating complex objects

When enumerating more complex objects, e.g. graphs/trees up to
isomorphism:

• Usually very difficult!

• Sometimes redundant enumeration can be faster than making sure
no object is enumerated twice

• Still, even simple heuristics can decrease search space drastically!
• E.g. only (redundantly) enumerate all graphs with certain degree

sequences
• E.g. enumerate rooted trees instead of trees
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Estimating size of search space

Let n, k ∈ N. Define

n! :=
n∏

i=1

i

nk :=
k−1∏
i=0

(n − i) =
n!

(n − k)!(
n

k

)
:=

1

k!
nk =

n!

k!(n − k)!{
n

k

}
:= Sn,k := number of partitions of [n] into k (non-empty) classes

(”Stirling numbers of 2nd kind”)

Bn := number of partitions of [n] (”Bell numbers”)

Cn :=
1

n + 1

(
2n

n

)
(”Catalan numbers”)
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Estimating size of search space

Let X and Y be sets. Define

X k := {(x1, . . . , xk) ∈ X k | |{x1, . . . , xk}| = k},(
X

k

)
:= {Y ⊆ X | |Y | = k},

”power set” P(X ) := P(X ) := 2X := {Y ⊆ X},
Y X := {f : X → Y }

”symmetric group” SX := {f : X → X | f bijective}
”integer partitions” Pn,k := {(x1, . . . , xk) ∈ Nk

+ | x1 + · · ·+ xk = n,

x1 ≤ · · · ≤ xk}
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Estimating size of search space

Let X ,Y be (finite) sets. Then∣∣X k
∣∣ = |X |k∣∣∣∣(Xk

)∣∣∣∣ = (
|X |
k

)
∣∣2X ∣∣ = 2|X |∣∣Y X

∣∣ = |Y ||X |

|SX | = |X |!
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More combinatorial identities

Here: 0 ∈ N. Let n, k ∈ N. Then(
n + k − 1

k − 1

)
=

∣∣{(x1, . . . , xk) ∈ Nk | x1 + · · ·+ xk = n}
∣∣

n∑
k=0

{
n

k

}
= Bn

Moreover, basically every combinatorial coefficient has a recursive
formula making its computation feasible.
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Identities with Binomial Coefficient

n∑
k=0

(
n

k

)
= 2n

n∑
i=k

(
i

k

)
=

(
n + 1

k + 1

)
n∑

k=0

k ·
(
n

k

)
= n · 2n−1

n∑
k=0

(
n

k

)2

=

(
2n

n

)
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Identities with Binomial Coefficient

Note: the identity
∑n

i=k

(
i
k

)
=

(
n+1
k+1

)
implies:

Corollary

Let R be any ring. For every polynomial p ∈ R[x ], there exists a
polynomial q ∈ R[x ] s.t. for all n ∈ N

n∑
i=0

p(i) = q(n)

Example

• For p(i) = i : q(n) = n(n+1)
2

• For p(i) = i2: q(n) = n(n+1)(2n+1)
6

• For p(i) = i3: q(n) =
(

n(n+1)
2

)2
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Catalan numbers

The Catalan numbers Cn = 1
n+1

(
2n
n

)
appear in many applications (see

OEIS A000108):

• Number of well-formed words in {(, )}2n

• Number of ways to evaluate a product of n + 1 numbers by using
the law of associativity. Equivalently: number of syntax tree shapes
with n inner binary nodes.

• Number of ways to triangulate a convex polygon with n + 2 vertices
using non-crossing lines

https://oeis.org/A000108


Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds and Approximations

In practice:

• Exact size not needed to determine whether program terminates in
some time frame (also: unknown coefficients!).

• Instead, use bounds and approximations.

• Advantage: much easier to obtain results.
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Bounds

In order to bound
∑

i∈I f (i), there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition
I =

⊎m
k=1 Ik :

m∑
k=1

|Ik | ·min
i∈Ik

f (i) ≤
∑
i∈I

f (i) ≤
m∑

k=1

|Ik | ·max
i∈Ik

f (i)

• Special case m = 1: if c ≤ f (i) ≤ d for each i ∈ I , then
c |I | ≤

∑
i∈I f (i) ≤ d |I |

• Special case m = 2: if f (i) ≥ 0 for all i ∈ I1 and f (i) ≥ c for all
i ∈ I2: c |I2| ≤

∑
i∈I f (i)

2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx
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2 For I = [n], if f can be extended to a monotonically increasing
function f : [0, n + 1]→ R:

• For each i ∈ [n], have
∫ i

i−1
f (x)dx ≤ f (i) ≤

∫ i+1

i
f (x)dx

• Hence: ∫ n

0

f (x)dx ≤
n∑

i=1

f (i) ≤
∫ n+1

1

f (x)dx
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Example: Estimating
∑n

i=1 i
k

Example: we want to bound
∑n

i=1 i
k . For simplicity, assume n is even.

1 ik ≥
(
n
2

)k
on [ n2 + 1, n], and on [n], 0 ≤ ik ≤ nk .

Hence:

(n
2

)k+1

=
(n
2

)k

· n
2
≤

n∑
i=1

ik ≤ nk · n = nk+1

2 With the obvious extension to f : R→ R, x 7→ xk :∫ n

0

xkdx ≤
n∑

i=1

ik ≤
∫ n+1

1

xkdx

i.e.

1

k + 1
nk+1 ≤

n∑
i=1

ik ≤ 1

k + 1
(n + 1)k+1 − 1

k + 1
<

1

k + 1
(n + 1)k+1
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Example: Estimating n!

Example: we want to estimate n!. Since log is monotonic, we can use our
tricks on log(n!) =

∑n
i=1 log(i) to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:

≥
(
n
2

) n
2

≤ nn

• Integral estimation:

e ·
(n
e

)n

≤ n! ≤ e2

4
·
(
n + 1

e

)n+1
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Injection bounds

Other simple and easy to remember bounds can be obtained be
identifying an injection f : X → Y (which implies |X | ≤ |Y |):

• Every subset with k elements is a subset:
(
n
k

)
≤ 2n

• For every subset ∅ ≠ I ⊊ X with I < X \ I (where < is some total
order on 2X ), {I ,X \ I} is a partition: 1

2 · (2
n − 2) ≤ Sn,2 ≤ Bn

• For every partition P of X , one can totally order each class, and
leave elements from different classes incomparable. Hence: Bn ≤
number of partial orders on [n]

• Let Gn be the number of undirected graphs with n nodes up to
isomorphism. Then, for each vector (c1, . . . , ck) with c1 ≤ . . . ≤ ck
and

∑k
i=1 ci = n, we get a unique graph by putting k cliques next to

each other, where the i-th clique has size ci . Hence,
Gn ≥ p(n) :=

∑n
k=1 |Pn,k |.
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Remarks

All combinatorial coefficients have well-known bounds. Sometimes,
researching tighter bounds can be useful.

• E.g. Berend, Tassa (2010):(
n

e log n

)n

< Bn <

(
0.792n

log(n + 1)

)
• E.g. Mazumdar, Choudhury (2018):

e
√
2n·ζ(3) < p(n) < e

2nπ√
6n

where p(n) :=
∑n

k=1 |Pn,k | and ζ(3) =
∑∞

n=1
1
n3

However, because of their complexity, often simpler bounds or
approximations are better.



Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Approximations

Definition

Let f , g : N→ N s.t. they eventually stay positive, i.e.
∃n0 : ∀n ≥ n0 : f (n), g(n) > 0. We define

f ∼ g :⇐⇒ lim
n→∞

f (n)

g(n)
= 1,

implicitly also requiring that the limit has to exist.

Note that f ∼ g is a strictly stronger statement than f ∈ Θ(g).
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Some approximations

Theorem (Stirling’s formula)

n! ∼
√
2πn

(n
e

)n

Corollary

Cn ∼
4n√

π · n3/2
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Some approximations

Other approximations:

n∑
i=1

ik ∼ 1

k + 1
nk+1

p(n) ∼ 1

4n
√
3
eπ
√

2n
3

Bn ∼
1√
n

(
n

W (n)

)n+ 1
2

e
n

W (n)−n−1

where W is the Lambert W function.

https://en.wikipedia.org/wiki/Lambert_W_function
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Bounds and Approximations: Final Remarks

Which one to use?

• Try to keep it simple!

• Use bounds whenever possible.

• Use approximations only if they make life easier.
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Knight’s Tour
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Backtracking

Solving Knight’s Tour

Naive Solution

Generate all tours (permutations of [64]) and check whether the Knight
can travel along such a path.

64! ≈ 1089 — impossible!

What other methods can you think of?
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Backtracking

• Applicable when there exist
- Partial candidate solutions
- Fast way of semi-checking if the partial candidate cannot be

completed

• Consider search space as a tree
Internal nodes represent partial solutions

• Dismiss subtree – prune/backtrack – if partial solution can’t be
completed

Example: CNF SAT

Given a boolean formula φ(x1, . . . , xn), is there a variable assignment
such that φ is satisfied?
We may represent the space of all variable assignments as a tree.
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Backtracking Pseudocode

Given a problem which admits partial solutions:

• valid(s): Is partial solution s worth completing?

• completed(c): Is c a complete solution?

• next(c): Set of extensions of c by one step.

Algorithm 2 Backtracking

function backtrack(c)
if !valid(c) then

return false
if completed(c) then

output(c)
return true

for all c’ in next(c) do
if backtrack(c’) then

return true
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Given a problem which admits partial solutions:

• valid(s): Is partial solution s worth completing?

• completed(c): Is c a complete solution?

• next(c): Set of extensions of c by one step.

Algorithm 3 Backtracking

function backtrack(c)
if !valid(c) then

return false
if completed(c) then

output(c)
return true

for all c’ in next(c) do
if backtrack(c’) then

return true
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Constraint Satisfaction Problem

Constraint Satisfaction Problem: Find assignment X → R over
variables X such that some constraints C are satisfied.

Many discrete optimization/search problems can be specified as CSPs.

• SAT

• Puzzles (Crossword, Sudoku, Kakuro, Battleships, . . .)

• Graph Coloring

• Combinatorial Optimization (e.g. Knapsack)

Remark: Usually, CSPs are NP-complete.
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CSP: Backtracking: Sudoku

Goal: Find y = (y1, y2, . . . , y81) in {1, . . . , 9}81 satisfying C = sudoku
constraints.

In order to use backtracking, we need valid(c), completed(c) and next(c)
where c is a partial solution.

Given partial solution, c = (y1, y2, . . . , yk), k ≤ 81:

• valid(c): iterate over each row/column/block and check that the
partial assignment does not put any number twice in one of them

• completed(c): return ”k = 81”

• next(c) = {(y1, y2, . . . yk , 1), (y1, y2, . . . yk , 2), . . . (y1, y2, . . . yk , 9)}
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CSP: Backtracking

More generally: Goal: Find y = (y1, . . . , yn) ∈ Rn (where R is some finite
set) satisfying a set of constraints C.

Assume each constraint is of the form C : Rn → {false, true}, and can be
partially evaluated w.r.t. a partial assignment c ∈ R I for I ⊆ [n].

Given partial solution, c = (y1, y2, . . . , yk), k ≤ n:

• valid(c): for each C ∈ C, check whether c already violates C , i.e.
whether the partial evaluation C (c) is already trivially false. If so
(for any C ), return false. Otherwise, return true.

• completed(c): return ”k = n”.

• next(c) = {(y1, y2, . . . yk , v) | v ∈ R}



Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Backtracking

Backtracking: Tips

• The order in which you complete your solution candidates matters.

• The better the order, the more branches of the tree can be cut off.
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