Algorithms for Programming Contests - Week 06

Prof. Dr. Javier Esparza, Vincent Fischer, Jakob Schulz, conpra@model.cit.tum.de

18. November 2025

Brute Force

Definition (Brute Force)

Systematically enumerate **all** solution candidates and test whether each candidate satisfies solution requirements.

a.k.a. Exhaustive Search or Generate and Test.

Brute Force: Example

Task:

Given a combination lock of 4 decimal digits, find the right key for the lock.

Brute Force Solution:

Test all combinations from 0000 to 9999 until the right one is found.

Pros and Cons

Pros

- Simple
- Sound and complete will find (optimum) solution if there exists one
- Used in safety critical applications because of its simplicity
- Serves as a benchmark for faster/more error-prone methods

Cons

- Inefficient
- Not feasible for large input sizes (combinatorial explosion)

Brute-forcing passwords (without any fancy business!)

Allowed	Length	Search Space	Time
0-9	5	10^{5}	<1s
	10	10 ¹⁰	20s
	15	10 ¹⁵	23 days

Brute-forcing passwords (without any fancy business!)

Allowed	Length	Search Space	Time
0-9	5	10^{5}	<1s
	10	10 ¹⁰	20s
	15	10 ¹⁵	23 days
a-zA-Z	5	52 ⁵	\sim 1s
	10	52 ¹⁰	9.1 years
	15	52 ¹⁵	3.5 billion years

Brute-forcing passwords (without any fancy business!)

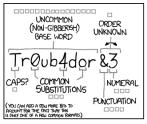
Allowed	Length	Search Space	Time
0-9	5	10^{5}	<1s
	10	10 ¹⁰	20s
	15	10 ¹⁵	23 days
a-zA-Z	5	52 ⁵	~1s
	10	52 ¹⁰	9.1 years
	15	52 ¹⁵	3.5 billion years
Printable ASCII	5	95 ⁵	15s
	10	95 ¹⁰ 95 ¹⁵	3795 years
	15	95 ¹⁵	2100 x age of universe

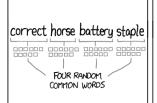
Brute-forcing passwords (without any fancy business!)

Allowed	Length	Search Space	Time
0-9	5	10^{5}	<1s
	10	10 ¹⁰	20s
	15	10 ¹⁵	23 days
a-zA-Z	5	52 ⁵	\sim 1s
	10	52 ¹⁰	9.1 years
	15	52 ¹⁵	3.5 billion years
Printable ASCII	5	95 ⁵	15s
	10	95 ¹⁰ 95 ¹⁵	3795 years
	15	95 ¹⁵	2100 x age of universe

You can see that it quickly grows out of hand!

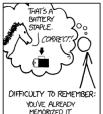
Relevant XKCD





2⁴⁴=550 YEARS AT 1000 GUESSES/SEC

DIFFICULTY TO GUESS: HARD



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Dealing with large search spaces

- Reorder search space: start with the most promising ones!
 e.g. it makes sense for a password cracker to search for passwords like 1234 or password first.
- Reduce search space

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers $i \in [2, n-1]$ and check if i divides n.

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers $i \in [2, n-1]$ and check if i divides n.

But we can use our domain knowledge and search only upto $\lceil \sqrt{n} \rceil$

- 32-bit number has up to 10 decimal digits.
 - \implies square root has up to 5.
 - $\implies 10^5$ tests instead of 10^{10} tests

Find non-trivial divisor of n

Brute force approach: Enumerate all numbers $i \in [2, n-1]$ and check if i divides n.

But we can use our domain knowledge and search only upto $\lceil \sqrt{n} \rceil$

- 32-bit number has up to 10 decimal digits.
 - \implies square root has up to 5.
 - $\implies 10^5$ tests instead of 10^{10} tests
- 64-bit number has up to 20 decimal digits.
 - \implies square root has up to 10.
 - $\implies 10^{10}$ tests instead of 10^{20} .

Queens Problem

Queens Problem

Place 8 queens on a chess board such that they cannot threaten each other.

• Very naive: Each tile can have queen 1, queen 2, ..., queen 8 or no queen: $9^{64}\approx 1.2\cdot 10^{61}$ configurations.

Queens Problem

- Very naive: Each tile can have queen 1, queen 2, ..., queen 8 or no queen: $9^{64} \approx 1.2 \cdot 10^{61}$ configurations.
- Naive: Each tile can have a queen or not: $2^{64} \approx 1.8 \cdot 10^{19}$ configurations.

Queens Problem

- Very naive: Each tile can have queen 1, queen 2, ..., queen 8 or no queen: $9^{64} \approx 1.2 \cdot 10^{61}$ configurations.
- Naive: Each tile can have a queen or not: $2^{64} \approx 1.8 \cdot 10^{19}$ configurations.
- Better: place eight queens, one after another: $64 \cdot 63 \cdot \ldots \cdot 57 = \frac{64!}{56!} \approx 1.8 \cdot 10^{14}$ configurations.

Queens Problem

- Very naive: Each tile can have queen 1, queen 2, ..., queen 8 or no queen: $9^{64} \approx 1.2 \cdot 10^{61}$ configurations.
- Naive: Each tile can have a queen or not: $2^{64} \approx 1.8 \cdot 10^{19}$ configurations.
- Better: place eight queens, one after another: $64 \cdot 63 \cdot \ldots \cdot 57 = \frac{64!}{56!} \approx 1.8 \cdot 10^{14}$ configurations.
- Even better: choose 8 tiles to place queens on: $\binom{64}{8} \approx 4.4 \cdot 10^9$ configurations.

Problems in Practice

In practice, things are not obvious:

- How can we represent candidates without unnecessarily increasing the search space?
- 2 How can we (efficiently) enumerate candidates?

Problems in Practice

In practice, things are not obvious:

- How can we represent candidates without unnecessarily increasing the search space?
- 2 How can we (efficiently) enumerate candidates?
- **3** How large is the search space anyway???

Representing Candidates

- If order of something is irrelevant: do not consider reorderings!!!
- Use mathematical structure that can easily be enumerated, e.g.
 - Tuples (sorted, bounded, with bounds on sum, ...)
 - Sets/Multisets (containing/excluding elements, with bounds on size, ...)
 - Permutations (with fied/arbitrary number of cycles, cycles of certain length (e.g. fixed points), ...)
 - Partitions (into fixed/arbitrary number of classes, where certain elements belong to same class, ...)
 - (Equivalence) Relations
 - . . .
- ...or use more difficult structure, and think about enumeration later:
 - Graphs (directed, weighted, ...)
 - Trees (rooted, ...)
 - . . .
 - Combinations of all of the above

Representing Candidates

All of the "easily enumerable" structures from last slide can be represented as constrained tuples!

- Sets/Multisets: ordered tuples
- Permutations: tuples with pairwise different elements
- Partitions (+ equivalence relations): see next slides :)
- Relations: Sets of Pairs

Brute Force and Backtracking
 ☐ Representing candidates

Example: Sets

- Consider sets of elements in [n]
- Idea: use tuple (x_1, \ldots, x_k) to represent $\{x_1, \ldots, x_k\}$

Example: Sets

- Consider sets of elements in [n]
- Idea: use tuple (x_1, \ldots, x_k) to represent $\{x_1, \ldots, x_k\}$
- But: unnecessarily increases search space: (1,4,5), (5,1,4) and (1,4,5,5) all represent $\{1,4,5\}$

Example: Sets

- Consider sets of elements in [n]
- Idea: use tuple (x_1, \ldots, x_k) to represent $\{x_1, \ldots, x_k\}$
- But: unnecessarily increases search space: (1,4,5), (5,1,4) and (1,4,5,5) all represent $\{1,4,5\}$
- Solution: only consider tuples (x_1, \ldots, x_k) where $x_1 < \ldots < x_k$

Example: Sets

Definition

Let X be a set, and $k \in \mathbb{N}$. Define $\binom{X}{k} := \{Y \subseteq X \mid |Y| = k\}$.

Lemma

Let (X, <) be a totally ordered set. Then

$$\{(x_1,\ldots,x_k)\in X^k\mid x_1<\ldots< x_k\} o {X\choose k},$$
 $(x_1,\ldots,x_k)\mapsto \{x_1,\ldots,x_k\}$

is a bijection.

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

```
(1,3,1,2,3,4,4,4)
\downarrow
```

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

```
(1,3,1,\frac{2}{2},3,4,4,4)
\downarrow
\{\{1,3\},\{4\}
```

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

```
(1, 3, 1, 2, 3, 4, 4, 4)
\downarrow
\{\{1, 3\}, \{4\}, \{2, 5\}\}
```

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

• But: again, search space increased unnecessarily: (1,3,1), (1,2,1) and (2,1,2) all represent $\{\{1,3\},\{2\}\}$

- Consider partitions of [n]
- Idea: use tuple (x_1, \ldots, x_n) , where each x_i indicates which equivalence class i belongs to

$$\begin{array}{c} (1,3,1,2,3,4,4,4) \\ \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \end{array}$$

- But: again, search space increased unnecessarily: (1,3,1), (1,2,1) and (2,1,2) all represent $\{\{1,3\},\{2\}\}$
- Solution: only consider lexicographically smallest tuple (details: later...)

Enumerating Candidates

For enumerating constrained tuples in lexicographic order: wonderful answer on StackOverflow!

Definition

Let $S \subseteq [n]^k$ be a set of tuples.

- A tuple $(x_1, ..., x_l)$ with $l \le k$ is called *valid prefix* in S if there exist $x_{l+1}, ..., x_k$ s.t. $(x_1, ..., x_l, x_{l+1}, ..., x_k) \in S$.
- Let $x = (x_1, \dots, x_k) \in S$. We say x can be incremented at $i \in [k]$ to $v \in [n]$ if
 - 1 $x_i < v$ and
 - (x_1,\ldots,x_{i-1},v) is a viable prefix.
- $x \in S$ is called *incrementable at* $i \in [k]$ if there exists a $v \in [n]$ s.t. x can be incremented at i to v.
- $x \in S$ is called *incrementable* if there exists an $i \in [k]$ s.t. x is incrementable at i.

Enumerating Candidates

Output *x* **end while**

```
x \leftarrow \text{lex. smallest element of } S
Output x

while x is incrementable do

Let i \in [k] be highest index at which x is incrementable

Let v \in [n] be the smallest element to which x can be incremented at i

x' \leftarrow (x_1, \dots, x_{i-1}, v)

Let s = (s_{i+1}, \dots, s_k) be the lex. smallest suffix s.t. (x', s) \in S

x \leftarrow (x', s)
```

Algorithm 1 Enumerating $S \subseteq [n]^k$ in lex. order

- If k > n, no such tuples exist.
- If k=0, the empty tuple () is the only one, corresponding to the empty set \emptyset .
- In the following, $1 \le k \le n$.

Enumerating $S := \{(x_1, \dots, x_k) \in [n]^k \mid x_1 < \dots < x_k\}$ in lex. order:

• Smallest tuple: $(1, 2, \ldots, k)$.

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \dots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \dots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \dots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \dots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$
 - resp. $k l \le n x_l$

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$
 - resp. $k l \le n x_l$ (intuitive!)

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$
 - resp. $k l \le n x_l$ (intuitive!)
- Hence, $(x_1, \ldots, x_k) \in S$ can be incremented at i to v iff $v > x_i$ and $k i \le n v$

- Smallest tuple: (1, 2, ..., k).
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$
 - resp. $k l \le n x_l$ (intuitive!)
- Hence, $(x_1, \ldots, x_k) \in S$ can be incremented at i to v iff $v > x_i$ and k i < n v
- Note: here, if x can be incremented at i to v', and x_i < v < v', x can also be incremented at i to v

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with $l \leq k$ is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \ldots, x_k : x_l < x_{l+1} < \ldots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$
 - resp. $k l \le n x_l$ (intuitive!)
- Hence, $(x_1, \ldots, x_k) \in S$ can be incremented at i to v iff $v > x_i$ and $k i \le n v$
- Note: here, if x can be incremented at i to v', and $x_i < v < v'$, x can also be incremented at i to v
- Hence, (x_1, \ldots, x_k) is incrementable at i iff $k i \le n (x_i + 1)$, and in that case, $x_i + 1$ is the smallest v to which x can be incremented at i

- Smallest tuple: $(1, 2, \ldots, k)$.
- A prefix (x_1, \ldots, x_l) with l < k is valid iff $x_1 < \ldots < x_l$ and...
 - $\exists x_{l+1}, \dots, x_k : x_l < x_{l+1} < \dots < x_k \le n$
 - resp. $\{(x_{l+1}, \ldots, x_k) \in [x_l + 1, n]^{k-l} \mid x_{l+1} < \ldots < x_n\} \neq \emptyset$
 - resp. $\binom{[x_l+1,n]}{k-l} \neq \emptyset$ (see Lemma!)
 - resp. $k l \le |[x_l + 1, n]|$ • resp. $k - l \le n - x_l$ (intuitive!)
- Hence, $(x_1, \ldots, x_k) \in S$ can be incremented at i to v iff $v > x_i$ and k i < n v
- Note: here, if x can be incremented at i to v', and $x_i < v < v'$, x can also be incremented at i to v
- Hence, (x_1, \ldots, x_k) is incrementable at i iff $k i \le n (x_i + 1)$, and in that case, $x_i + 1$ is the smallest v to which x can be incremented at i
- For a valid prefix $x' = (x_1, ..., x_l)$, the lex. smallest suffix s s.t. $(x', s) \in S$ is $(x_l + 1, x_l + 2, ..., x_l + k l)$

Enumerating Sets: Remarks

- For small k, one can alternatively use nested loops.
 - Most programmers draw the line at $k \leq 3$.
- Many itertools packages support sorted tuple enumeration.

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \downarrow \\ (,,,,,,,,,,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \} \downarrow \\ (1, ,1, , , , ,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \downarrow \\ (1, ,1, , , , ,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1, 3, 1, 2, 3, 4, 4, 4)$$

$$\downarrow$$

$$\{\{1, 3\}, \{4\}, \{2, 5\}, \{6, 7, 8\}\}$$

$$\downarrow$$

$$(1, 2, 1, 2, ,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \downarrow \\ (1,2,1,,2,,,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \} \downarrow \\ (1,2,1,3,2,,,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\} \} \downarrow \\ (1,2,1,3,2,,,,)$$

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}\}$$

$$\downarrow$$

$$(1,2,1,3,2,4,4,4)$$

$$(1,3,1,2,3,4,4,4) \downarrow \\ \{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

- Want to consider only lex. smallest sequence
- Can be obtained from above example by going over equivalence classes in order in which they appear in the tuple, and assign identifiers increasingly:

$$(1,3,1,2,3,4,4,4)$$

$$\downarrow$$

$$\{\{1,3\},\{4\},\{2,5\},\{6,7,8\}\}$$

$$\downarrow$$

$$(1,2,1,3,2,4,4,4)$$

Note:

- Every valid tuple starts with 1
- There must not be any "gaps", i.e. whenever some x_i appears, there must be some j < i where $x_i + 1 \ge x_i$
- These two conditions are also sufficient for a tuple to be a valid!

Enumerating

S := set of all partition tuples of [n] as obtained in last slides:

- Smallest tuple: (1,1,...,1)
- $(x_1, \ldots, x_k) \in S$ is incrementable at i > 1 iff $\exists j < i : x_j = x_i$
 - Equivalently: iff $x_i \leq \max_{j < i} x_j$
 - Hence: maintain vector $(\max_{j < i} x_j)_i$ to decide this in $\mathcal{O}(1)$
 - $x \in S$ is never incrementable at i = 1
- For a valid prefix x', the lex. smallest suffix s.t. $(x',s) \in S$ is $(1,1,\ldots,1)$

Enumerating Partitions: Remarks

- Implementation can generate next partition in amortized constant time if maximum vector is maintained
- Itertools packages usually do not support this enumeration

Enumerating Permutations

Enumerating all permutations $\pi \in S_n := \{\pi : [n] \to [n] \mid \pi \text{ bijective} \}$ in lex. order can be done similarly.

A succinct description of the increment step:

- **1** Find largest index k: a[k] < a[k+1]If k does not exist then this is the last permutation
- ② Find largest index I: a[k] < a[I]
- **3** Swap values a[k] and a[l]
- **4** Reverse sequence from a[k+1] up to the final element a[n].

Each increment operation takes $\mathcal{O}(n)$ time.

Enumerating Tuples: Remarks

- When tuples need not be incremented in lex. order, slightly faster enumeration algorithms might exist.
 - E.g. Steinhaus-Johnson-Trotter algorithm for permutations
 - E.g. Gray Code for $[n]^k$
- However, keep in mind that in most cases, these only give a very slight constant-factor improvement when using them in a brute-force algorithm – except if enumeration is in-place and checking a candidate is sublinear.
- More relevant: as number of permutations, partitions, etc. is very large, usually it does not make sense to construct and iterate over an array with all of them. Instead, generate next tuple on the fly.

Enumerating complex objects

When enumerating more complex objects, e.g. graphs/trees up to isomorphism:

- Usually very difficult!
- Sometimes redundant enumeration can be faster than making sure no object is enumerated twice
- Still, even simple heuristics can decrease search space drastically!
 - E.g. only (redundantly) enumerate all graphs with certain degree sequences
 - E.g. enumerate rooted trees instead of trees

Estimating size of search space

Let $n, k \in \mathbb{N}$. Define

$$n! := \prod_{i=1}^{n} i$$

$$n^{\underline{k}} := \prod_{i=0}^{k-1} (n-i) = \frac{n!}{(n-k)!}$$

$$\binom{n}{k} := \frac{1}{k!} n^{\underline{k}} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{k} := S_{n,k} := \text{number of partitions of } [n] \text{ into } k \text{ (non-empty) classes}$$

$$\binom{n}{k} := \text{number of partitions of } [n] \text{ ("Bell numbers")}$$

$$C_n := \frac{1}{n+1} \binom{2n}{n} \text{ ("Catalan numbers")}$$

Estimating size of search space

Let X and Y be sets. Define

$$X^{\underline{k}} := \{(x_1,\ldots,x_k) \in X^k \mid |\{x_1,\ldots,x_k\}| = k\},$$

$$\binom{X}{k} := \{Y \subseteq X \mid |Y| = k\},$$
 "power set" $\mathfrak{P}(X) := \mathcal{P}(X) := 2^X := \{Y \subseteq X\},$
$$Y^X := \{f : X \to Y\}$$
 "symmetric group" $S_X := \{f : X \to X \mid f \text{ bijective}\}$ "integer partitions" $P_{n,k} := \{(x_1,\ldots,x_k) \in \mathbb{N}_+^k \mid x_1+\cdots+x_k = n,$
$$x_1 \leq \cdots \leq x_k\}$$

Estimating size of search space

Let X, Y be (finite) sets. Then

$$|X^{\underline{k}}| = |X|^{\underline{k}}$$

$$|\binom{X}{k}| = \binom{|X|}{k}$$

$$|2^{X}| = 2^{|X|}$$

$$|Y^{X}| = |Y|^{|X|}$$

$$|S_{X}| = |X|!$$

More combinatorial identities

Here: $0 \in \mathbb{N}$. Let $n, k \in \mathbb{N}$. Then

$$\binom{n+k-1}{k-1} = \left| \{ (x_1, \dots, x_k) \in \mathbb{N}^k \mid x_1 + \dots + x_k = n \} \right|$$
$$\sum_{k=0}^n \binom{n}{k} = B_n$$

Moreover, basically every combinatorial coefficient has a recursive formula making its computation feasible.

Identities with Binomial Coefficient

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

$$\sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}$$

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Identities with Binomial Coefficient

Note: the identity $\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1}$ implies:

Corollary

Let R be any ring. For every polynomial $p \in R[x]$, there exists a polynomial $q \in R[x]$ s.t. for all $n \in \mathbb{N}$

$$\sum_{i=0}^n p(i) = q(n)$$

Example

- For p(i) = i: $q(n) = \frac{n(n+1)}{2}$
- For $p(i) = i^2$: $q(n) = \frac{n(n+1)(2n+1)}{6}$
- For $p(i) = i^3$: $q(n) = \left(\frac{n(n+1)}{2}\right)^2$

Catalan numbers

The Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$ appear in many applications (see OEIS A000108):

- Number of well-formed words in $\{(,)\}^{2n}$
- Number of ways to evaluate a product of n + 1 numbers by using the law of associativity. Equivalently: number of syntax tree shapes with n inner binary nodes.
- Number of ways to triangulate a convex polygon with n + 2 vertices using non-crossing lines

Bounds and Approximations

In practice:

- Exact size not needed to determine whether program terminates in some time frame (also: unknown coefficients!).
- Instead, use bounds and approximations.
- Advantage: much easier to obtain results.

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

Brute Force and Backtracking

Estimating size of search space

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

① Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

① Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

• Special case m=1: if $c \le f(i) \le d$ for each $i \in I$, then $c |I| \le \sum_{i \in I} f(i) \le d |I|$

Estimating size of search space

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

① Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

- Special case m=1: if $c \le f(i) \le d$ for each $i \in I$, then $c \mid I \mid \le \sum_{i \in I} f(i) \le d \mid I \mid$
- Special case m=2: if $f(i)\geq 0$ for all $i\in I_1$ and $f(i)\geq c$ for all $i\in I_2$: $c\mid I_2\mid\leq \sum_{i\in I}f(i)$

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

1 Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

- Special case m=1: if $c \le f(i) \le d$ for each $i \in I$, then $c|I| \le \sum_{i \in I} f(i) \le d|I|$
- Special case m=2: if $f(i)\geq 0$ for all $i\in I_1$ and $f(i)\geq c$ for all $i\in I_2$: $c\mid I_2\mid \leq \sum_{i\in I}f(i)$
- **②** For I = [n], if f can be extended to a monotonically increasing function $f: [0, n+1] \to \mathbb{R}$:

Estimating size of search space

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

① Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

- Special case m=1: if $c \le f(i) \le d$ for each $i \in I$, then $c |I| \le \sum_{i \in I} f(i) \le d |I|$
- Special case m=2: if $f(i)\geq 0$ for all $i\in I_1$ and $f(i)\geq c$ for all $i\in I_2$: $c\mid I_2\mid \leq \sum_{i\in I}f(i)$
- **②** For I = [n], if f can be extended to a monotonically increasing function $f: [0, n+1] \to \mathbb{R}$:
 - For each $i \in [n]$, have $\int_{i-1}^{i} f(x) dx \le f(i) \le \int_{i}^{i+1} f(x) dx$

Bounds

In order to bound $\sum_{i \in I} f(i)$, there are two main approaches:

• Partition I and bound f on each class, i.e. with partition $I = \biguplus_{k=1}^{m} I_k$:

$$\sum_{k=1}^{m} |I_k| \cdot \min_{i \in I_k} f(i) \le \sum_{i \in I} f(i) \le \sum_{k=1}^{m} |I_k| \cdot \max_{i \in I_k} f(i)$$

- Special case m=1: if $c \le f(i) \le d$ for each $i \in I$, then $c \mid I \mid \le \sum_{i \in I} f(i) \le d \mid I \mid$
- Special case m=2: if $f(i)\geq 0$ for all $i\in I_1$ and $f(i)\geq c$ for all $i\in I_2$: $c\mid I_2\mid\leq \sum_{i\in I}f(i)$
- **②** For I = [n], if f can be extended to a monotonically increasing function $f: [0, n+1] \to \mathbb{R}$:
 - For each $i \in [n]$, have $\int_{i-1}^{i} f(x) dx \le f(i) \le \int_{i}^{i+1} f(x) dx$
 - Hence:

$$\int_0^n f(x) \mathrm{d}x \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \mathrm{d}x$$

Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Estimating size of search space

Example: Estimating $\sum_{i=1}^{n} i^{k^i}$

Example: we want to bound $\sum_{i=1}^{n} i^{k}$. For simplicity, assume n is even.

Example: Estimating $\sum_{i=1}^{n} i^k$

Example: we want to bound $\sum_{i=1}^{n} i^{k}$. For simplicity, assume n is even.

 $\bullet \ i^k \geq \left(\tfrac{n}{2} \right)^k \ \text{on} \ [\tfrac{n}{2} + 1, n] \text{, and on } [n] \text{, } 0 \leq i^k \leq n^k.$

Example: Estimating $\sum_{i=1}^{n} i^{k}$

Example: we want to bound $\sum_{i=1}^{n} i^{k}$. For simplicity, assume n is even.

 \bullet $i^k \ge \left(\frac{n}{2}\right)^k$ on $\left[\frac{n}{2}+1,n\right]$, and on [n], $0 \le i^k \le n^k$. Hence:

$$\left(\frac{n}{2}\right)^{k+1} = \left(\frac{n}{2}\right)^k \cdot \frac{n}{2} \le \sum_{i=1}^n i^k \le n^k \cdot n = n^{k+1}$$

Example: Estimating $\sum_{i=1}^{n} i^k$

Example: we want to bound $\sum_{i=1}^{n} i^{k}$. For simplicity, assume n is even.

• $i^k \ge \left(\frac{n}{2}\right)^k$ on $\left[\frac{n}{2}+1,n\right]$, and on [n], $0 \le i^k \le n^k$. Hence:

$$\left(\frac{n}{2}\right)^{k+1} = \left(\frac{n}{2}\right)^k \cdot \frac{n}{2} \le \sum_{i=1}^n i^k \le n^k \cdot n = n^{k+1}$$

2 With the obvious extension to $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^k$:

$$\int_0^n x^k \mathrm{d}x \le \sum_{i=1}^n i^k \le \int_1^{n+1} x^k \mathrm{d}x$$

Example: Estimating $\sum_{i=1}^{n} i^k$

Example: we want to bound $\sum_{i=1}^{n} i^{k}$. For simplicity, assume n is even.

• $i^k \ge \left(\frac{n}{2}\right)^k$ on $\left[\frac{n}{2}+1,n\right]$, and on [n], $0 \le i^k \le n^k$. Hence:

$$\left(\frac{n}{2}\right)^{k+1} = \left(\frac{n}{2}\right)^k \cdot \frac{n}{2} \le \sum_{i=1}^n i^k \le n^k \cdot n = n^{k+1}$$

2 With the obvious extension to $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^k$:

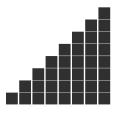
$$\int_0^n x^k \mathrm{d}x \le \sum_{i=1}^n i^k \le \int_1^{n+1} x^k \mathrm{d}x$$

i.e.

$$\frac{1}{k+1}n^{k+1} \le \sum_{i=1}^{n} i^{k} \le \frac{1}{k+1}(n+1)^{k+1} - \frac{1}{k+1} < \frac{1}{k+1}(n+1)^{k+1}$$

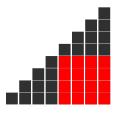
Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:



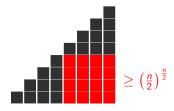
Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:



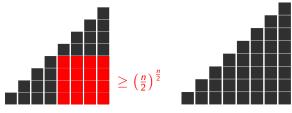
Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

Partition bound imprecise, but easy to remember:



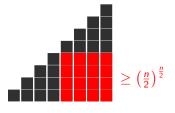
Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

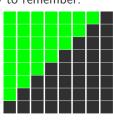
• Partition bound imprecise, but easy to remember:



Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

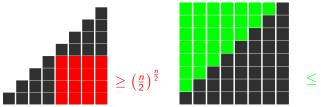
• Partition bound imprecise, but easy to remember:





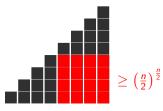
Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

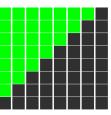
Partition bound imprecise, but easy to remember:



Example: we want to estimate n!. Since log is monotonic, we can use our tricks on $\log(n!) = \sum_{i=1}^{n} \log(i)$ to obtain bounds for n!. Skipping details:

• Partition bound imprecise, but easy to remember:





< n'

• Integral estimation:

$$e \cdot \left(\frac{n}{e}\right)^n \le n! \le \frac{e^2}{4} \cdot \left(\frac{n+1}{e}\right)^{n+1}$$

Brute Force and Backtracking

Estimating size of search space

Injection bounds

Brute Force and Backtracking
Estimating size of search space

Injection bounds

Other simple and easy to remember bounds can be obtained be identifying an injection $f: X \to Y$ (which implies $|X| \le |Y|$):

• Every subset with k elements is a subset: $\binom{n}{k} \leq 2^n$

Injection bounds

- Every subset with k elements is a subset: $\binom{n}{k} \leq 2^n$
- For every subset $\emptyset \neq I \subsetneq X$ with $I < X \setminus I$ (where < is some total order on 2^X), $\{I, X \setminus I\}$ is a partition: $\frac{1}{2} \cdot (2^n 2) \leq S_{n,2} \leq B_n$

Injection bounds

- Every subset with k elements is a subset: $\binom{n}{k} \leq 2^n$
- For every subset $\emptyset \neq I \subsetneq X$ with $I < X \setminus I$ (where < is some total order on 2^X), $\{I, X \setminus I\}$ is a partition: $\frac{1}{2} \cdot (2^n 2) \leq S_{n,2} \leq B_n$
- For every partition P of X, one can totally order each class, and leave elements from different classes incomparable. Hence: $B_n \le$ number of partial orders on [n]

Injection bounds

- Every subset with k elements is a subset: $\binom{n}{k} \leq 2^n$
- For every subset $\emptyset \neq I \subsetneq X$ with $I < X \setminus I$ (where < is some total order on 2^X), $\{I, X \setminus I\}$ is a partition: $\frac{1}{2} \cdot (2^n 2) \leq S_{n,2} \leq B_n$
- For every partition P of X, one can totally order each class, and leave elements from different classes incomparable. Hence: $B_n \leq$ number of partial orders on [n]
- Let G_n be the number of undirected graphs with n nodes up to isomorphism. Then, for each vector (c_1, \ldots, c_k) with $c_1 \leq \ldots \leq c_k$ and $\sum_{i=1}^k c_i = n$, we get a unique graph by putting k cliques next to each other, where the i-th clique has size c_i . Hence, $G_n \geq p(n) := \sum_{k=1}^n |P_{n,k}|$.

Remarks

All combinatorial coefficients have well-known bounds. Sometimes, researching tighter bounds can be useful.

• E.g. Berend, Tassa (2010):

$$\left(\frac{n}{e\log n}\right)^n < B_n < \left(\frac{0.792n}{\log(n+1)}\right)$$

• E.g. Mazumdar, Choudhury (2018):

$$e^{\sqrt{2n}\cdot\zeta(3)} < p(n) < e^{\frac{2n\pi}{\sqrt{6n}}}$$

where
$$p(n) := \sum_{k=1}^{n} |P_{n,k}|$$
 and $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$

However, because of their complexity, often simpler bounds or approximations are better.

Approximations

Definition

Let $f,g:\mathbb{N}\to\mathbb{N}$ s.t. they eventually stay positive, i.e.

 $\exists n_0 : \forall n \geq n_0 : f(n), g(n) > 0$. We define

$$f \sim g : \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1,$$

implicitly also requiring that the limit has to exist.

Note that $f \sim g$ is a strictly stronger statement than $f \in \Theta(g)$.

Brute Force and Backtracking

Estimating size of search space

Some approximations

Theorem (Stirling's formula)

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Corollary

$$C_n \sim \frac{4^n}{\sqrt{\pi} \cdot n^{3/2}}$$

Some approximations

Other approximations:

$$\sum_{i=1}^{n} i^{k} \sim \frac{1}{k+1} n^{k+1}$$

$$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{\frac{2n}{3}}}$$

$$B_{n} \sim \frac{1}{\sqrt{n}} \left(\frac{n}{W(n)}\right)^{n+\frac{1}{2}} e^{\frac{n}{W(n)} - n - 1}$$

where W is the Lambert W function.

Brute Force and Backtracking
Estimating size of search space

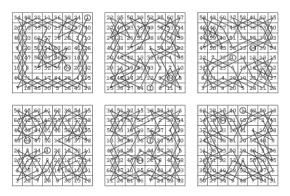
Bounds and Approximations: Final Remarks

Which one to use?

- Try to keep it simple!
- Use bounds whenever possible.
- Use approximations only if they make life easier.

☐ Brute Force and Backtracking ☐ Backtracking

Knight's Tour



Algorithms for Programming Contests - Week 06

Brute Force and Backtracking

Solving Knight's Tour

Naive Solution

Generate all tours (permutations of [64]) and check whether the Knight can travel along such a path.

Brute Force and Backtracking

Solving Knight's Tour

Naive Solution

Generate all tours (permutations of [64]) and check whether the Knight can travel along such a path.

 $64! \approx 10^{89}$ — impossible!

What other methods can you think of?

Backtracking

- Applicable when there exist
 - Partial candidate solutions
 - Fast way of semi-checking if the partial candidate cannot be completed
- Consider search space as a tree Internal nodes represent partial solutions
- Dismiss subtree prune/backtrack if partial solution can't be completed

Example: CNF SAT

Given a boolean formula $\varphi(x_1, \ldots, x_n)$, is there a variable assignment such that φ is satisfied?

We may represent the space of all variable assignments as a tree.

Backtracking Pseudocode

Given a problem which admits partial solutions:

- valid(s): Is partial solution s worth completing?
- completed(c): Is c a complete solution?
- next(c): Set of extensions of c by one step.

Backtracking Pseudocode

Given a problem which admits partial solutions:

- valid(s): Is partial solution s worth completing?
- completed(c): Is c a complete solution?
- next(c): Set of extensions of c by one step.

Algorithm 3 Backtracking

```
function BACKTRACK(c)

if !valid(c) then

return false

if completed(c) then

output(c)

return true

for all c' in next(c) do

if BACKTRACK(c') then

return true
```

Constraint Satisfaction Problem

Constraint Satisfaction Problem: Find assignment $\mathcal{X} \to R$ over variables \mathcal{X} such that some constraints \mathcal{C} are satisfied.

Many discrete optimization/search problems can be specified as CSPs.

- SAT
- Puzzles (Crossword, Sudoku, Kakuro, Battleships, . . .)
- Graph Coloring
- Combinatorial Optimization (e.g. Knapsack)

Remark: Usually, CSPs are NP-complete.

Brute Force and Backtracking

CSP: Backtracking: Sudoku

Goal: Find $y=(y_1,y_2,\ldots,y_{81})$ in $\{1,\ldots,9\}^{81}$ satisfying $\mathcal{C}=$ sudoku constraints.

In order to use backtracking, we need valid(c), completed(c) and next(c) where c is a partial solution.

CSP: Backtracking: Sudoku

Goal: Find $y = (y_1, y_2, \dots, y_{81})$ in $\{1, \dots, 9\}^{81}$ satisfying C = sudoku constraints.

In order to use backtracking, we need valid(c), completed(c) and next(c) where c is a partial solution.

Given partial solution, $c = (y_1, y_2, \dots, y_k), k \le 81$:

- valid(c): iterate over each row/column/block and check that the partial assignment does not put any number twice in one of them
- completed(c): return " k = 81"
- $next(c) = \{(y_1, y_2, \dots y_k, 1), (y_1, y_2, \dots y_k, 2), \dots (y_1, y_2, \dots y_k, 9)\}$

CSP: Backtracking

More generally: Goal: Find $y = (y_1, \dots, y_n) \in R^n$ (where R is some finite set) satisfying a set of constraints C.

Assume each constraint is of the form $C: \mathbb{R}^n \to \{\text{false}, \text{true}\}$, and can be partially evaluated w.r.t. a partial assignment $c \in \mathbb{R}^I$ for $I \subseteq [n]$.

Given partial solution, $c = (y_1, y_2, \dots, y_k), k \le n$:

- valid(c): for each $C \in \mathcal{C}$, check whether c already violates C, i.e. whether the partial evaluation C(c) is already trivially false. If so (for any C), return false. Otherwise, return true.
- completed(c): return "k = n".
- $next(c) = \{(y_1, y_2, \dots y_k, v) \mid v \in R\}$

-Brute Force and Ba ∟Backtracking

Backtracking: Tips

- The order in which you complete your solution candidates matters.
- The better the order, the more branches of the tree can be cut off.