Algorithms for Programming Contests - Week 05

Prof. Dr. Javier Esparza, Vincent Fischer, Jakob Schulz, conpra@model.cit.tum.de

11. November 2025

Flow Network

Definition (Flow network)

A flow network is a tuple (V, E, c, s, t), where

- (V, E) is a directed graph
- $c: E \to \mathbb{R}_{\geq 0}$ is the capacity function
- $s \in V$ is a designated vertex called *source*
- $t \in V$ is a designated vertex called target or sink

W.l.o.g., we will only consider flow networks without antiparallel edges, i.e. if $(u, v) \in E$, then $(v, u) \notin E$.

Flow Network

Definition (Flow)

For a given flow network (V, E, c, s, t), let $f: E \to \mathbb{R}_{\geq 0}$. We define

- the outflow at $v \in V$ as $\operatorname{out}_f(v) := \sum_{u \in vE} f(v, u)$
- the inflow at $v \in V$ as $\inf_f(v) := \sum_{u \in Ev} f(u, v)$, where $Ev := \{u \in V \mid (u, v) \in E\}$

f is called flow if

$$\forall (u, v) \in E: \quad 0 \le f(u, v) \le c(u, v) \tag{1}$$

$$\forall u \in V \setminus \{s, t\}: \quad \mathsf{out}_f(u) = \mathsf{in}_f(u) \tag{2}$$

Remark: (1) is called *capacity constraint*, while (2) is called *flow conservation*. A function f satisfying only (1) is called a *pre-flow*.

Maximum Flow Problem

Definition (Flow value)

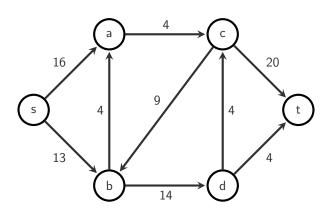
The value |f| of a flow f is defined as

$$|f| = \operatorname{out}_f(s) - \operatorname{in}_f(s)$$

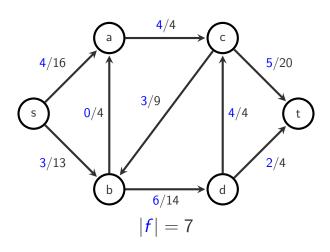
Definition (Maximum Flow Problem)

For a given flow network (V, E, c, s, t), what is a flow f with maximal value |f| over all flows?

Example: Flow network



Example: Flow network with flow



Maximum Flow Problem

Let (V, E, c, s, t) be a flow network.

Lemma

There exists a maximum flow.

Maximum Flow Problem

Maximum Flow: Existence

Let (V, E, c, s, t) be a flow network.

Lemma

There exists a maximum flow.

Proof.

Note that the functions $E \to \mathbb{R}$ form a finite-dimensional vector-space. The set A of all $f: E \to \mathbb{R}$ satisfying (1) is closed, as $A = \prod_{e \in E} [0, c(e)]$. The set B of all $f: E \to \mathbb{R}$ satisfying (2) is closed, as for each $u \in V \setminus \{s, t\}$, the function $\phi_u: f \mapsto \operatorname{out}_f(u) - \operatorname{in}_f(u)$ is continuos, and $B = \bigcap_{u \in V \setminus \{s, t\}} \phi_u^{-1}(\{0\})$.

Therefore, the set $F = A \cap B$ of all flows $E \to \mathbb{R}$ is closed. Moreover, it is bounded (since $F \subseteq A$ and A is bounded by $\max_{e \in E} c(e)$), and hence (since E is finite) compact. Now, the function $\psi : f \mapsto |f|$ is continuous, and hence $\psi(F)$ is compact as well. Since $0 \in F$ (i.e. the constant 0-function), we have $\psi(F) \neq \emptyset$, and hence a maximum is attained.

Maximum Flow: Remarks

Let (V, E, c, s, t) be a flow network.

Lemma

The set F of all flows $E \to \mathbb{R}$ is convex, i.e. for all $f_1, f_2 \in F$ and $\alpha \in [0,1]$, the function defined by $e \mapsto \alpha f_1(e) + (1-\alpha)f_2(e)$ is again a flow. It has value $\alpha |f_1| + (1-\alpha)|f_2|$.

Note: In particular, this implies that there exists a flow with any value between 0 and the maximum flow value.

Lemma

If c is integral, i.e. $c(e) \in \mathbb{Z}$ for all $e \in E$, then there exists a maximum flow that is integral.

Note: this not only means that the flow *value* is integral, but also *all* f(e)!

Reductions to maximum flow

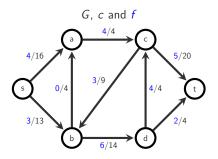
Hints

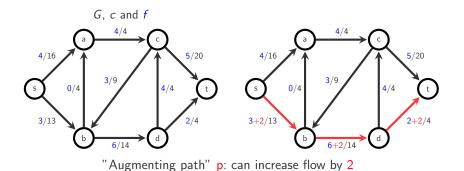
- Minimum flow: send no flow at all.
- Multiple sources/sinks: add super-source/sink and edges with infinite capacity to other sources/sinks. ("infinite" can be replaced by any bound on |f| such as $\operatorname{out}_c(s)$)
- Sources/sinks with supply constraints (e.g. "source can supply at most 5"): add super-source/sink with edges to sources/sinks with corresponding capacity.
- Vertex capacities: Split up vertex with edge of that capacity in between.
- Antiparallel edges: Insert vertex in between one edge.
- Undirected edges: Convert to two antiparallel directed edges.

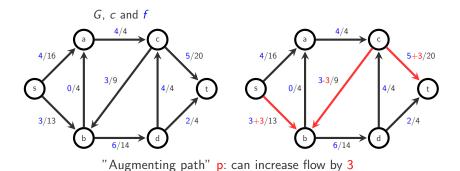
Maximum Flow: Towards First Algorithm

First, we look at the Ford-Fulkerson-Algorithm. The idea:

- Start with the 0 flow, i.e. f(e) = 0 for all e.
- Iteratively improve f by finding a path along which the flow can be increased ("augmenting path").







Augmenting Paths

Definition (Residual capacity and residual network)

For a given flow network G and a flow f, and a pair of vertices $u, v \in V$, the *residual capacity* $c_f(u, v)$ is defined by

$$c_f(u,v) = egin{cases} c(u,v) - f(u,v) & ext{if } (u,v) \in E \ f(v,u) & ext{if } (v,u) \in E \ 0 & ext{otherwise} \end{cases}$$

The *residual network* of G induced by f is $G_f = (V, E_f)$, where

$$E_f = \{(u,v) \in V \times V \colon c_f(u,v) > 0\}$$

Augmenting Paths

Definition (Augmenting Path)

Given a flow network G and a flow f, an augmenting path p is a simple path in the residual network G_f from s to t.

The residual capacity of an augmenting path p is given by

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

The flow f_p of an augmenting path p in G_f is defined as

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ is on } p \\ 0 & \text{otherwise} \end{cases}$$

Augmenting flow

Definition (Augmenting flows)

If f is a flow in a flow network G and f' is a flow in the corresponding residual network G_f , then the augmentation $f \uparrow f'$ of f by f' is a flow in G defined as

$$(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)$$
 for $(u,v) \in E$

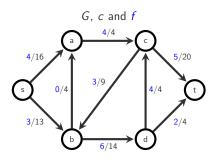
where f'(e) := 0 for $e \notin E_f$.

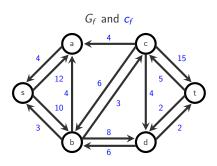
Lemma

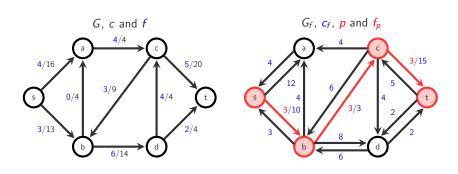
If f is a flow in a flow network G and f' is a flow in the corresponding residual network G_f , then $f \uparrow f'$ is also a flow in G and

$$|f \uparrow f'| = |f| + |f'|$$

Example: Residual network

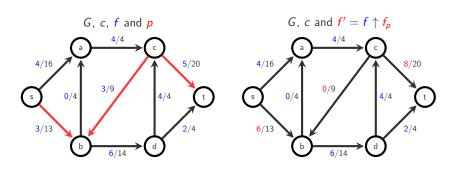






$$p = \text{sbct}$$
 $c_f(p) = 3$

Example: Augmenting flow



$$p = \text{sbct}$$
 $c_f(p) = 3$

Augmenting path algorithm (Ford-Fulkerson algorithm)

Algorithm 1 Ford-Fulkerson algorithm

```
\triangleright Initialize flow to 0 (f \leftarrow 0)
for (u, v) \in E do
     f(u,v) \leftarrow 0
end for
while there exists a path p from s to t in the residual network G_f do
     \triangleright Augment f by f_{\mathcal{D}} (f \leftarrow f \uparrow f_{\mathcal{D}})
     c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is on } p\}
     for each edge (u, v) in p do
          if (u, v) \in E then
               f(u, v) \leftarrow f(u, v) + c_f(p)
          else
               f(v, u) \leftarrow f(v, u) - c_f(p)
          end if
     end for
end while
```

Max-flow min-cut

Definition (Cut)

For a given flow network G with source s and target t, a $cut\ C = (S, T)$ is a partititon of V into two subsets S and T such that $s \in S$ and $t \in T$. The capacity c(S, T) of a cut (S, T) is defined as

$$c(S,T) = \sum_{(u,v)\in(S\times T)\cap E} c(u,v)$$

If a flow f is given, the *net flow* across the cut (S, T) is defined as

$$f(S,T) = \sum_{(u,v)\in(S\times T)\cap E} f(u,v) - \sum_{(u,v)\in(T\times S)\cap E} f(u,v)$$

Lemma

Let G = (V, E, c, s, t) be a flow network and f be a flow in G. Moreover, let (S, T) be a cut. Then $|f| = f(S, T) \le c(S, T)$.

Lemma

Let G = (V, E, c, s, t) be a flow network and f be a flow in G. TFAE:

- 1 f is a maximum flow
 - There are no augmenting paths
 - 3 There exists a cut (S,T) s.t. |f|=c(S,T)

Corollary

If the Ford-Fulkerson Algorithm terminates, the result is correct.

Corollary (Max-flow min-cut theorem)

The maximum value |f| over all flows f is equal to the minimum capacity c(S, T) over all cuts (S, T).

Running time

Running time (and even termination!) depends on the choice of the augmenting paths and how they are found:

- Choosing any path (with DFS):
 - If capacities can be irrational, algorithm might not terminate.
 - If capacities are integral: Each iteration increases flow by at least 1. Hence, at most U iterations, where U is the value of the maximum flow. Complexity $\mathcal{O}(|E|U)$.
- Shortest path by number of edges (with BFS): Edmonds-Karp algorithm. Complexity $\mathcal{O}(|V||E|^2)$ (at most $\frac{|V||E|}{2}$ iterations).
- "Widest paths", i.e. with maximal residual capacity (with modified Dijkstra): Complexity $\mathcal{O}((|E|+|V|\log|V|)|E|\log U)$ (at most $\mathcal{O}(|E|\log U)$ iterations) when capacities are integral

Better:

- Dinic's algorithm using "blocking flows". Complexity $\mathcal{O}(|V|^2|E|)$. (Karzanov's variant: $\mathcal{O}(|V|^3)$)
- "Push-Relabel Algorithm" in $\mathcal{O}(|V||E|\log\frac{|V|^2}{|E|})$ resp. $\mathcal{O}(|V|^3)$

Algorithms for Programming Contests - Week 05

Maximum Flow

└─ Dinic's algorithm

Dinic's algorithm: Trivia

Complete abstract of paper by Shimon Even (1976):

Abstract: Recently A.V. Karzanov improved Dinic's algorithm to run in time $O(n^3)$ for networks of n vertices. For the benefit of those who do not read Russian, the Dinic-Karzanov algorithm is explained and proved.

In addition to being the best algorithm known for network flow, this algorithm is unique in that it does not use path augmentation.

Later in the paper:

I do not read Russian and could not read the more detailed available material on the work of Dinic and Karzanov [5]. The short descriptions in Soviet Math. Dokl. arehard to read because they are translations and lack details. I have rediscovered Dinic's algorithm with J. Hopcroft in 1972 and have reconstructed Karzanov's result with the help of A. Itai. The proofs are my own and I do not know if they differ from those of Dinic and Karzanov. In any case I alone am responsible for any mistakes that may be in my exposition.

Algorithms for Programming Contests - Week 05

Maximum Flow

└─ Dinic's algorithm

Dinic's algorithm: Trivia

Dinitz (2006), Dinitz' Algorithm: The Original Version and Even's Version The reader may be aware of the so called "Dinic's algorithm" [...]. [...] Shimon Even and [...] Alon Itai [...] were very curious and intrigued by the two new network flow algorithms: mine and that of Alexander Karzanov [...]. It was very difficult for them to decipher these two papers (each compressed into four pages, to meet the page restriction of the [...] journal Doklady). [...] Even and Itai understood both papers, except for the layered network maintenance issue. [...] "Dinic's algorithm" was a great success and gained a place in the annals of the computer science community. Hardly anyone was aware that the algorithm, taught in many universities since then, is not the original version [...]. [...] Also, its name was rendered incorrectly as [dinik] instead of [dinits]. After more than 15 years [...] I finally explained the original version of my algorithm [...] to Shimon Even.

Blocking flow

Definition (Level graph)

Given a residual network $G_f = (V, E_f)$, let $d_{G_f}(s, v)$ be the length of the shortest path from s to v in G_f (by number of edges).

The *level graph* of G_f is the graph $G_L = (V, E_L, c_L)$, where

$$E_L = \{(u,v) \in E_f \colon d_{G_f}(s,v) = d_{G_f}(s,u) + 1\}$$
 $c_L(u,v) = egin{cases} c_f(u,v) & ext{if } (u,v) \in E_L \ 0 & ext{otherwise} \end{cases}$

Definition (Blocking flow)

A blocking flow in the level graph G_L is a flow f such that every path from s to t in G_L contains a saturated edge, i.e., an edge (u, v) with $f(u, v) = c_L(u, v)$.

Dinic's algorithm

Algorithm 2 Dinic's algorithm

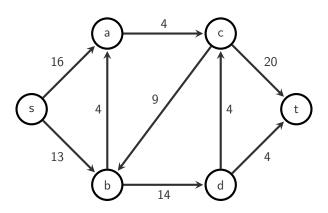
 $f\leftarrow 0$ while there exists a blocking flow f' in G_L with |f'|>0 do $f\leftarrow f\uparrow f'$ end while

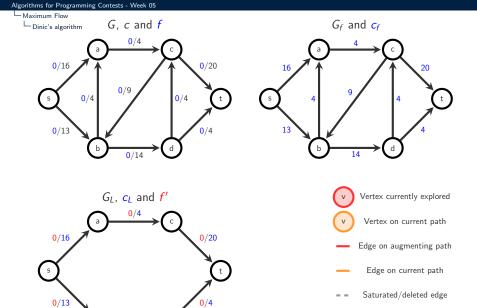
Finding a blocking flow

Algorithm 3 Finding blocking flows via DFS

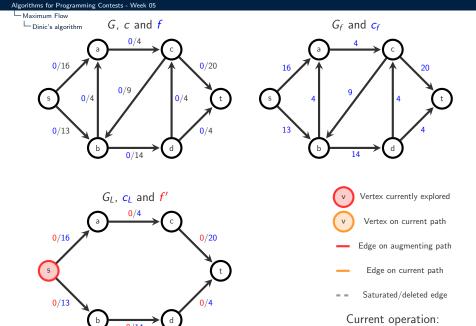
```
f' \leftarrow 0: p \leftarrow s: u \leftarrow s
while u \neq t do
    while there is an edge (u, v) \in E_I with f'(u, v) < c_I(u, v) do
         p \leftarrow pv
         II \leftarrow V
    end while
    if \mu = t then
         f' \leftarrow f' \uparrow f_p; p \leftarrow s; u \leftarrow s
     else if \mu = s then
         return f'
    else
         let (v, w) be the last edge on p; delete w from p
         delete (v, w) from E_l: u \leftarrow v
    end if
end while
```

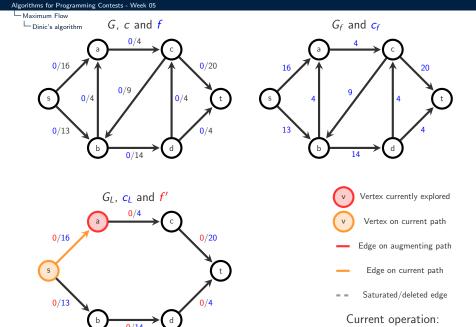
Dinic's algorithm (example)

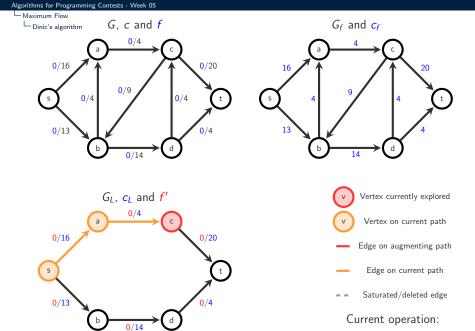


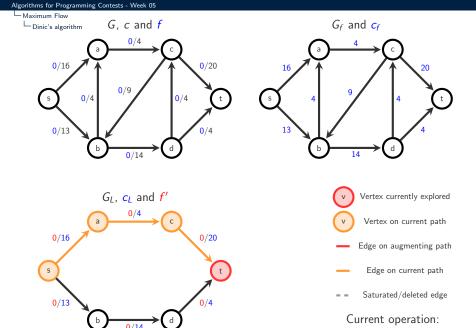


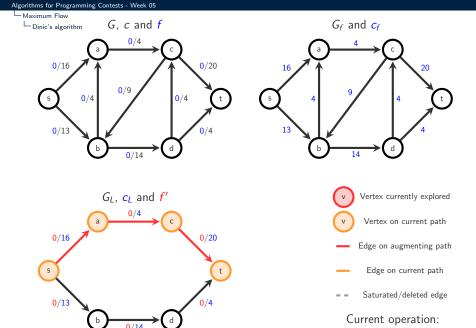
Current operation: Find blocking flow







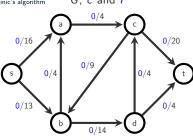


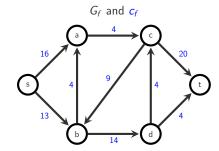


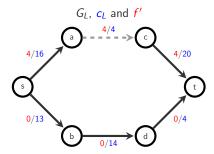
Augment f' by f_p

└─ Dinic's algorithm

G, c and f



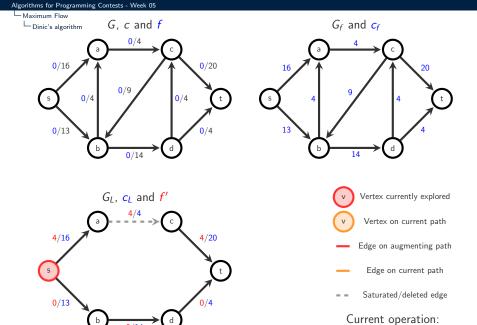


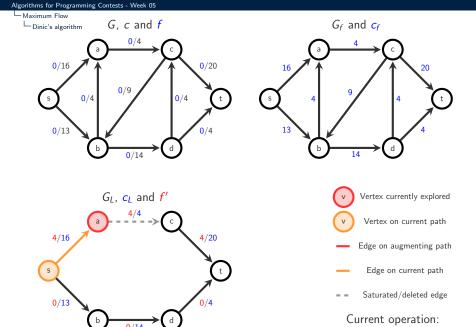


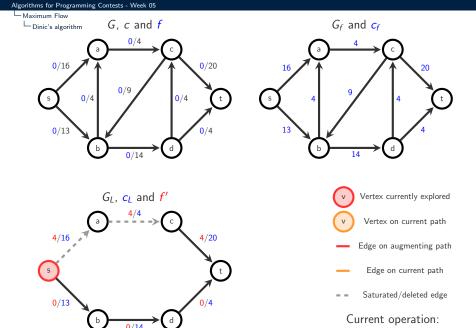
- v Vertex currently explored
- V Vertex on current path
- Edge on augmenting path
- Edge on current path
- = = Saturated/deleted edge

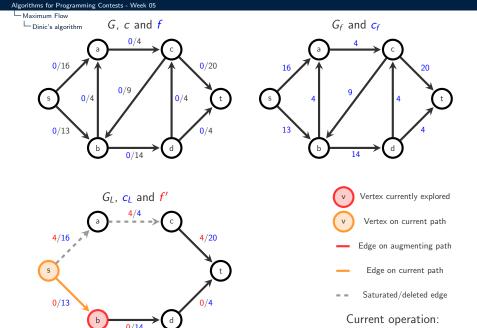
Current operation:

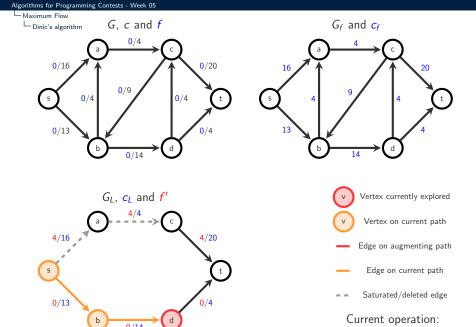
Augment f' by f_p

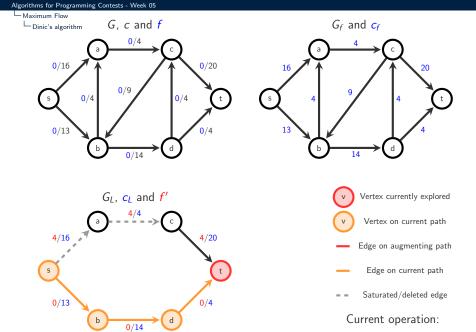


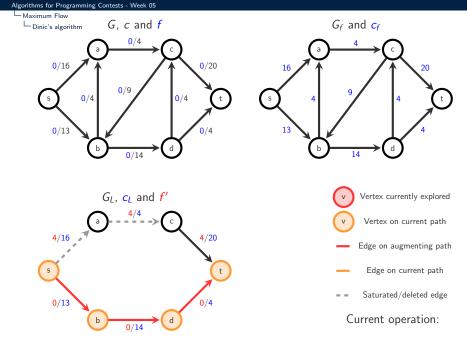




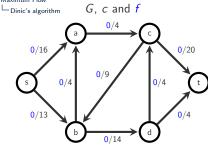


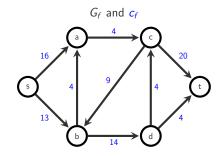


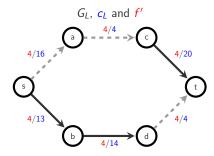


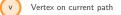


Augment f' by f_p





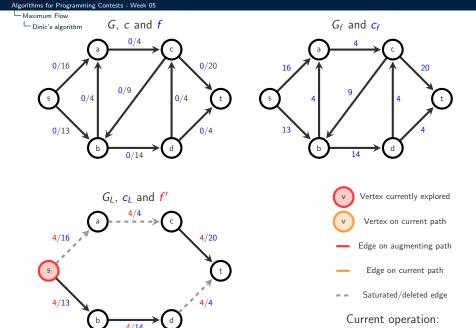


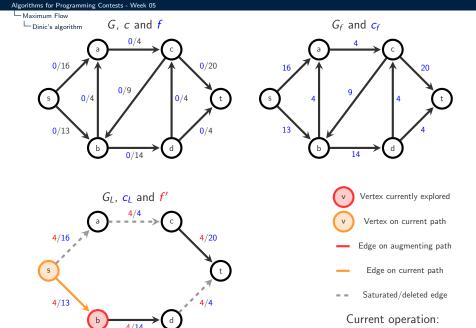


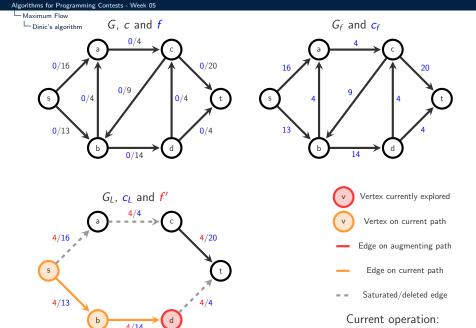
- Edge on augmenting path
- Edge on current path
 - Saturated/deleted edge

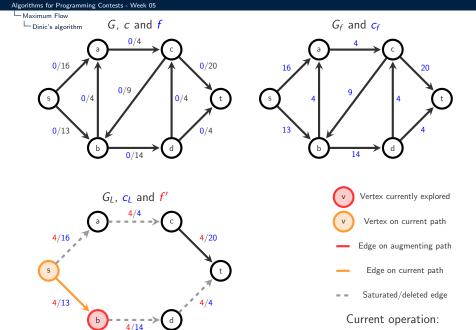
Current operation:

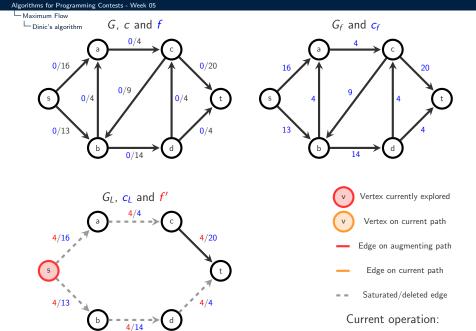
Augment f' by f_p

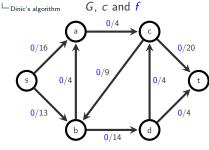


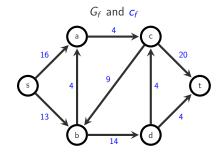


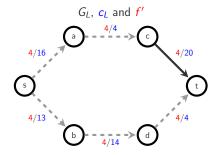








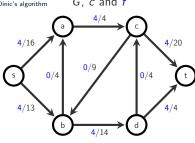


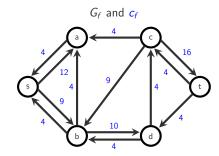


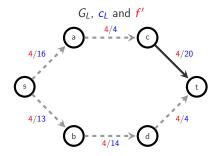
- v Vertex currently explored
- V Vertex on current path
- Edge on augmenting path
- Edge on current path
 - = = Saturated/deleted edge

Current operation:

Augment f by f'



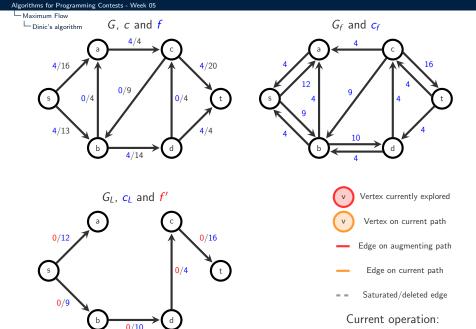




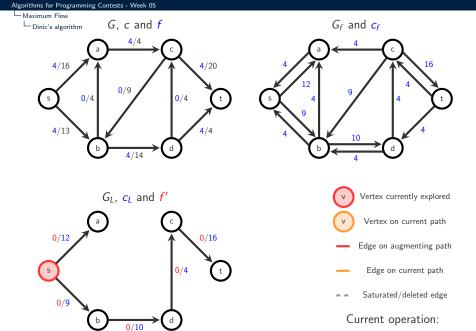
- v Vertex currently explored
- V Vertex on current path
- Edge on augmenting path
- Edge on current path
 - Saturated/deleted edge

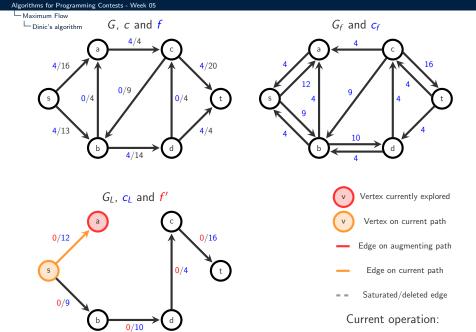
Current operation:

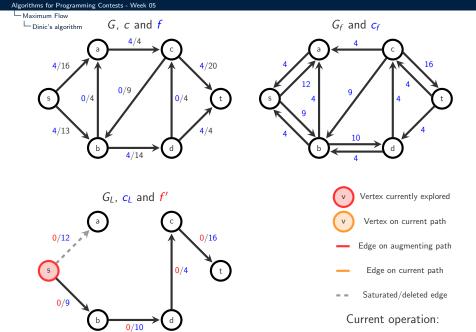
Augment f by f'

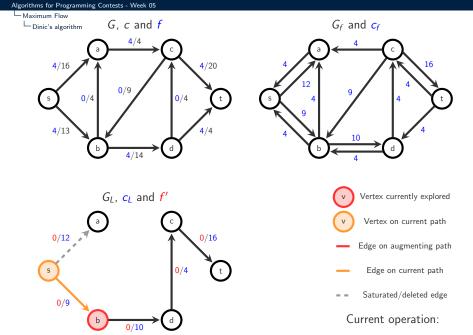


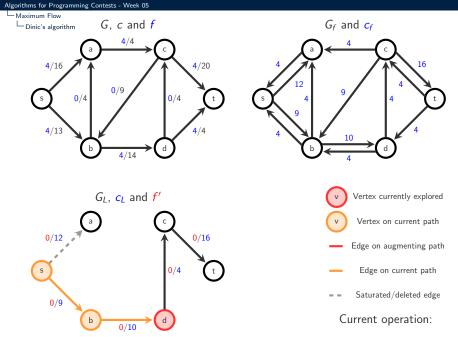
Find blocking flow

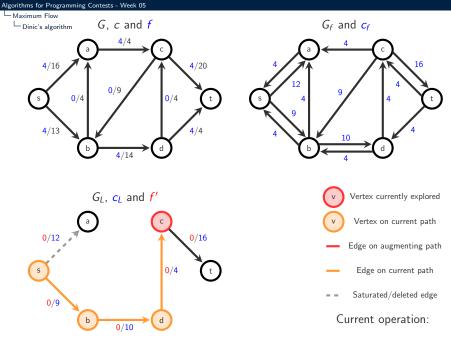


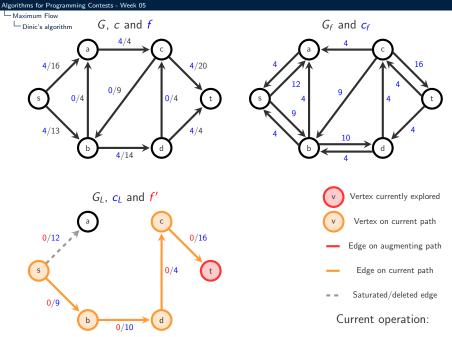


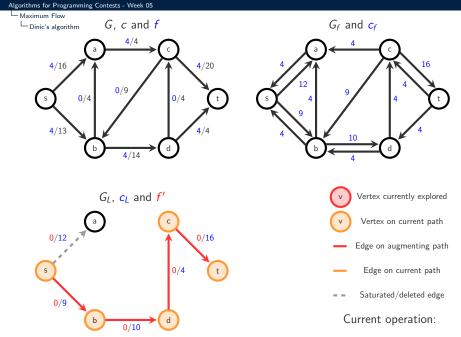




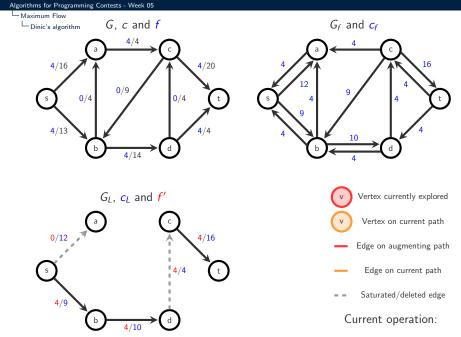




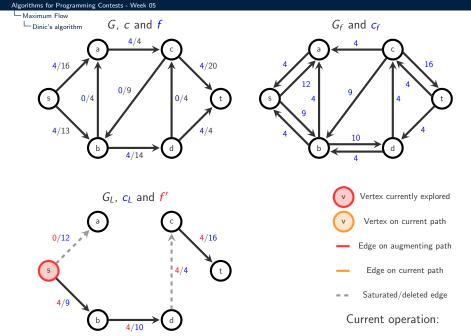


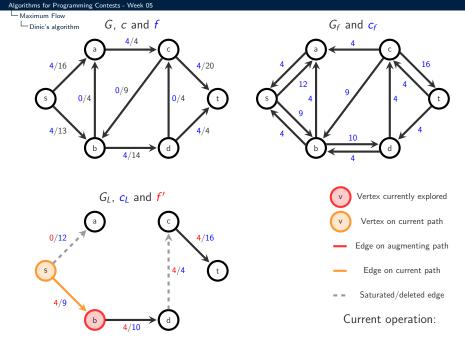


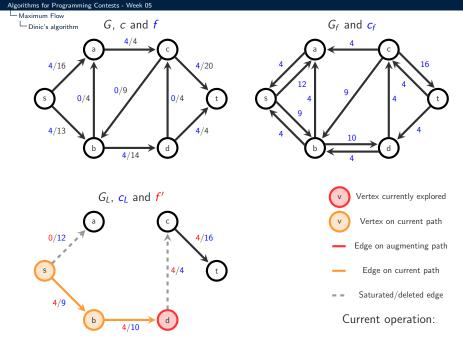
Augment f' by f_p

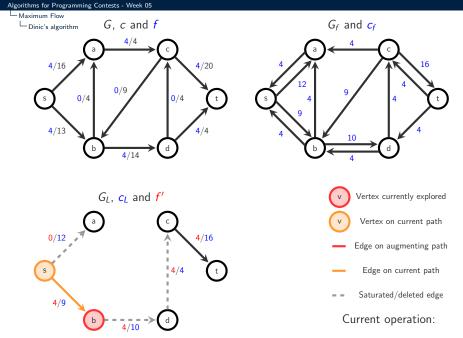


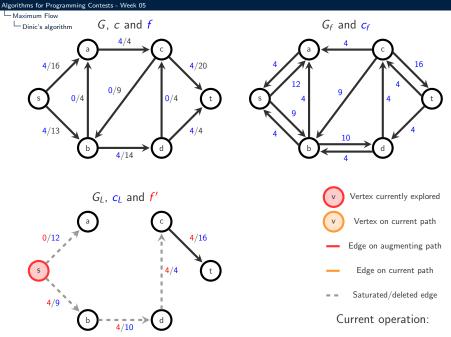
Augment f' by f_p





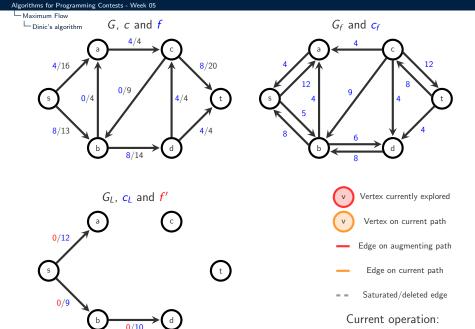




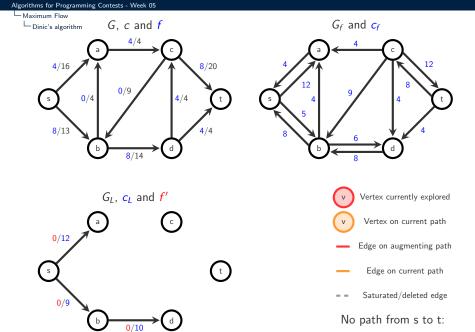


Augment f by f'

Augment f by f'



Find blocking flow



Maximum flow found

Dinic's Algorithm: Analysis

- One can show: in each iteration, the blocking flow consists of augmenting paths of the same length, and this length increases each iteration.
- Hence: $\mathcal{O}(|V|)$ iterations.
- Each iteration (finding blocking flow) in $\mathcal{O}(|V||E|)$
- Total: $\mathcal{O}(|V|^2|E|)$

Finding the blocking flow can also be done in $\mathcal{O}(|V|^2)$ using Karzanov's Variant for a total running time of $\mathcal{O}(|V|^3)$.

☐ Dinic's algorithm

Dinic's Algorithm: Karzanov's Variant

Definition (Preflow)

Let (V, E, c, s, t) be a flow network. A function $f: E \to \mathbb{R}_{\geq 0}$ is called *preflow* if

$$\forall (u, v) \in E: \quad 0 \le f(u, v) \le c(u, v) \tag{3}$$

$$\forall u \in V \setminus \{s\}: \quad \inf_f(u) \ge \operatorname{out}_f(u)$$
 (4)

Definition (Excess)

Let (V, E, c, s, t) be a flow network and $f : E \to \mathbb{R}_{\geq 0}$. The excess of f at $v \in V$ is defined as

$$ex_f(v) := in_f(v) - out_f(v).$$

v is called active or overflowing if $ex_f(v) > 0$.

Dinic's Algorithm: Karzanov's Variant

Karzanov's idea: maintain a preflow f' and store the excess of each node, along with a stack that stores the last increases of the excess.

```
Algorithm 4 Finding blocking flows: Karzanov's Variant

 (v<sub>1</sub>, v<sub>2</sub>,..., v<sub>n</sub>) ← TopologicalOrder(G<sub>L</sub>)

                                                                                                       21:
                                                                                                                                     \delta \leftarrow \min\{c_i(e) - f'(e), \exp[v_i]\}
 2: for each v \in V \setminus \{s, t\} do
                                                                                                       22:
                                                                                                                                      f'(e) \leftarrow f'(e) + \delta
         ex[v] \leftarrow 0
                                                                                                       23:
                                                                                                                                     ex[v:] \leftarrow ex[v:] - \delta
          p[v] \leftarrow \text{EmptvStack()}
                                                                                                                                     ex[w] \leftarrow ex[w] + \delta
                                                                                                       24:
          frozen[v] \leftarrow false
                                                                                                       25.
                                                                                                                                     p[w].push((e, \delta))
 6: end for
                                                                                                                                 end if
                                                                                                       26
 7 \cdot f' \leftarrow 0
                                                                                                       27.
                                                                                                                           end for
 8: for each v \in sE_l do
                                                                                                                       end if
                                                                                                       28.
         e \leftarrow (s, v)
                                                                                                       29.
                                                                                                                 end for
10.
          f'(e) \leftarrow c_l(e)
                                                                                                       30-
                                                                                                                 Let i be maximal s.t. v_i is active
          if v \neq t then
                                                                                                                  while v<sub>i</sub> is active do
11:
                                                                                                       31.
              ex[v] \leftarrow c_I(e)
                                                                                                                      (e, \delta) \leftarrow p[v_i].pop()
12.
                                                                                                       32.
              p[v].push((e, c_l(e)))
                                                                                                                      \delta' \leftarrow \min\{\delta, \exp[v_i]\}
13.
                                                                                                       33.
                                                                                                                      f'(e) \leftarrow f'(e) - \delta'
          end if
                                                                                                        34.
15: end for
                                                                                                       35:
                                                                                                                      ex[v_i] \leftarrow ex[v_i] - \delta'
                                                                                                                      ex[v] \leftarrow ex[v] + \delta' where (v, v_i) = e
16: while there is an active vertex do
                                                                                                       36.
          for i = 1, 2, ..., n do
                                                                                                                 end while
17-
                                                                                                       37.
              if v<sub>i</sub> is active then
                                                                                                                 frozen[v_i] \leftarrow true
18-
                   for each w \in v_i E_l do e \leftarrow (v_i, w)
19-
                                                                                                       39 end while
20:
                        if f'(e) < c_I(e) and not frozen[w] then
```

Dinic-Karzanov-Algorithm: Remarks

- Finds blocking flow in $\mathcal{O}(|V|^2)$
- But: quite complicated
- Better: Use Push-Relabel-Algorithms!

Push-Relabel Algorithms

The class of *push-relabel* algorithms for maximum flow work by maintaining a *preflow* and pushing it along edges, while (re-)labeling vertices to determine where flow can be pushed.

Push-Relabel-Algorithms: Height labels

Definition (Height function)

For a given flow network G and a flow f, a function $h \colon V \to \mathbb{N}$ is a height function (or distance labeling) if

$$h(s)=|V|$$

$$h(t)=0 \qquad \qquad ext{and}$$

$$h(u)\leq h(v)+1 \qquad \qquad ext{for every residual edge } (u,v)\in E_f.$$

An edge $(u, v) \in E_f$ is called *admissible* if h(u) = h(v) + 1.

Note: If h is a height function, the distance of v to t in G_f is at least h(v).

Push and relabel operations

Algorithm 5 Push operation

Applies to
$$(u, v) \in E_f$$
 when u is overflowing and $h(u) = h(v) + 1$
 $\delta \leftarrow \min(\exp[u], c_f(u, v))$
if $(u, v) \in E$ then
$$f(u, v) \leftarrow f(u, v) + \delta$$
else
$$f(v, u) \leftarrow f(v, u) - \delta$$
end if
$$\exp[u] \leftarrow \exp[u] - \delta$$

$$\exp[v] \leftarrow \exp[v] + \delta$$

Algorithm 6 Relabel operation

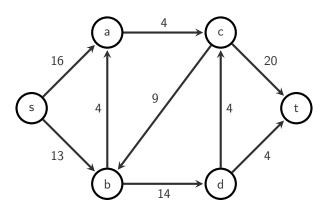
▷ Applies to u when u is overflowing and $h(u) \le h(v)$ for all $(u, v) \in E_f$ $h(u) \leftarrow 1 + \min\{h(v): (u, v) \in E_f\}$

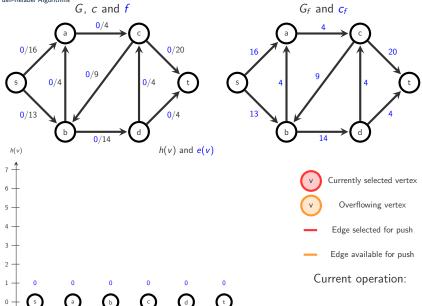
Push-Relabel-Algorithm (Goldberg-Tarjan algorithm)

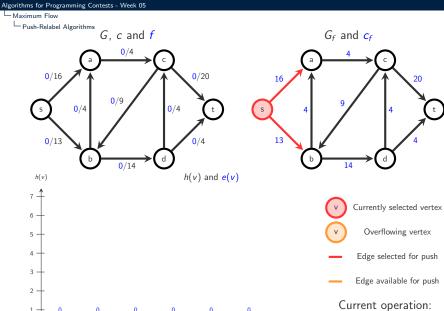
Algorithm 7 Push-relabel algorithm

```
for each vertex v \in V do
    h(v) \leftarrow 0: ex[v] \leftarrow 0
end for
for (u, v) \in E do
    f(u,v) \leftarrow 0
end for
h(s) \leftarrow |V|
for each vertex v \in sF do
    f(s,v) \leftarrow c(s,v)
    ex[v] \leftarrow ex[v] + c(s, v)
    ex[s] \leftarrow ex[s] - c(s, v)
end for
while there is an applicable push or relabel operation do
    select an applicable push or relabel operation and perform it
end while
```

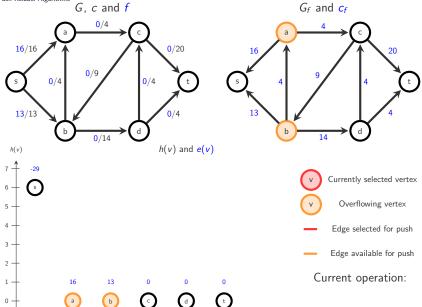
Push-relabel algorithm (example)



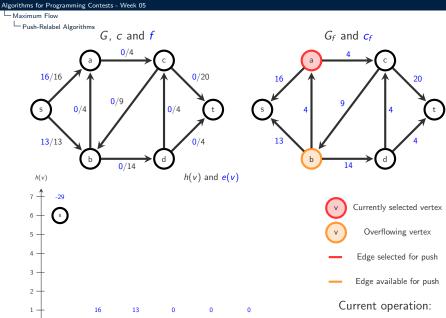




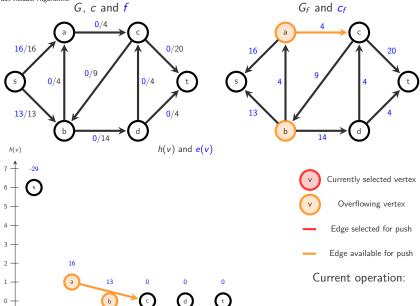
Initialize preflow

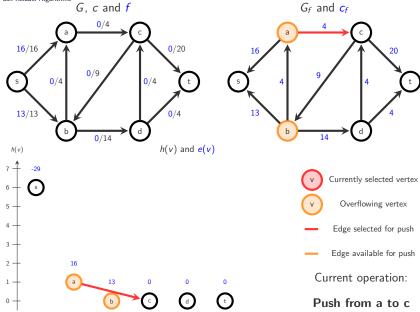


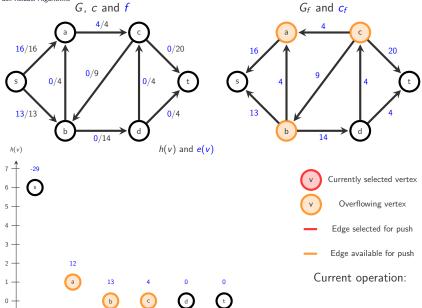
0 +

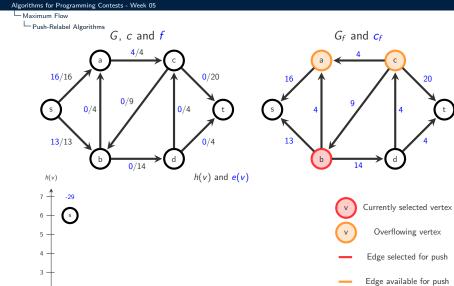


Relabel a









2 +

1 +

0 +

12

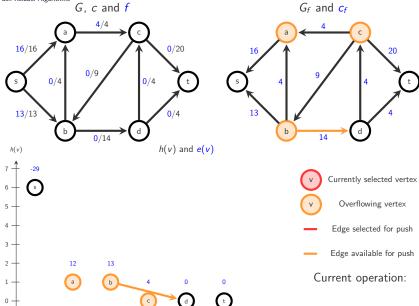
a

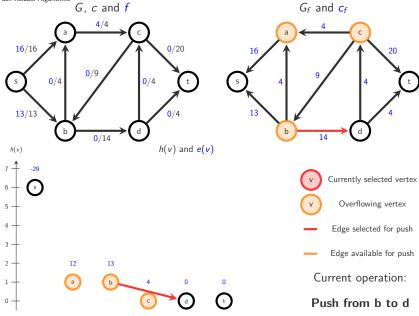
13

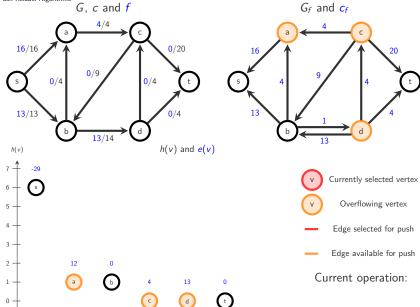
Ь

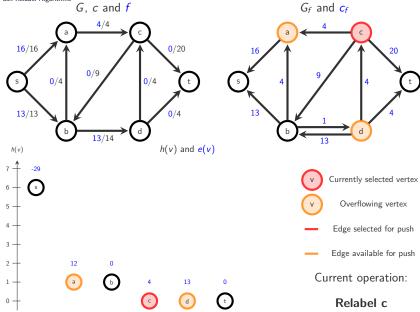
Current operation:

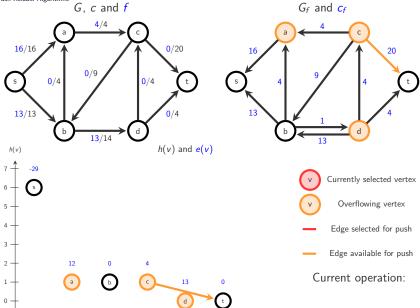
Relabel b

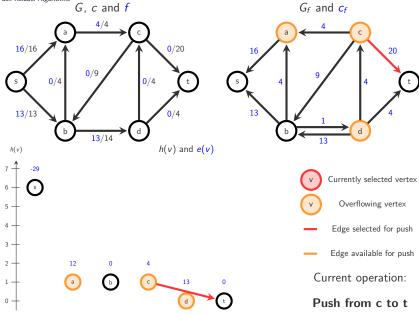


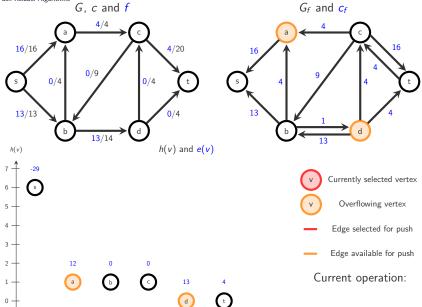


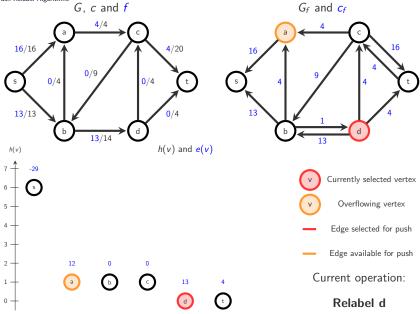


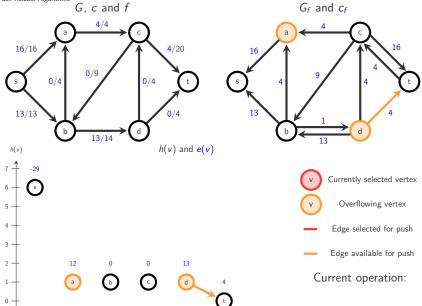


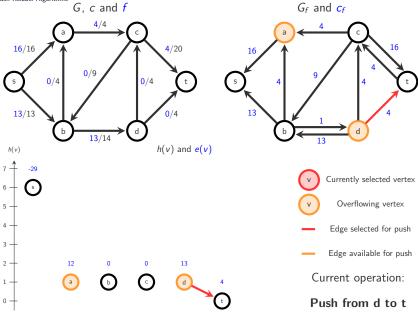


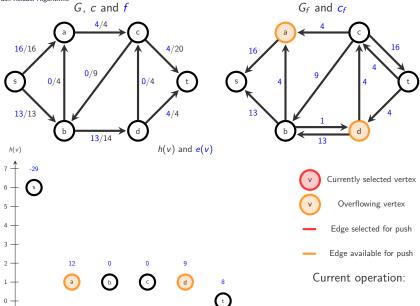


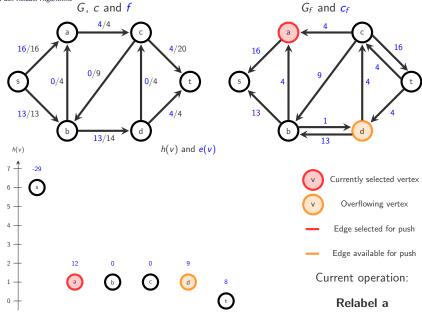


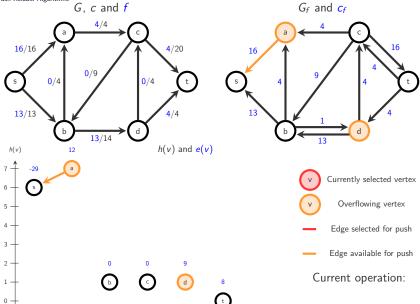


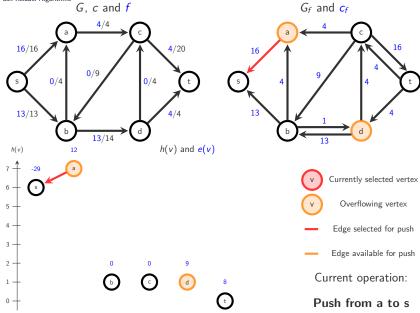


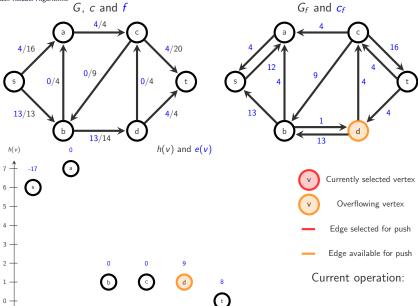


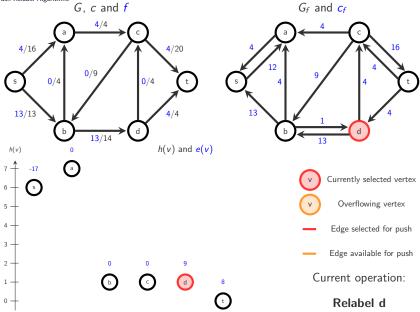


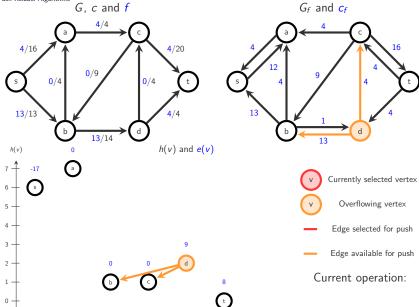


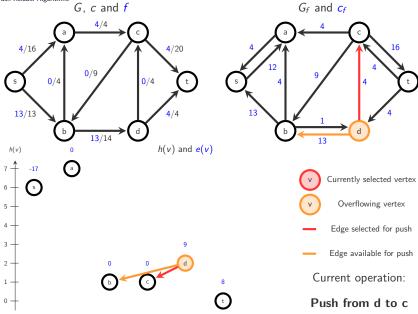


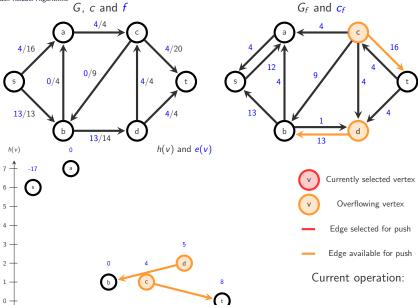


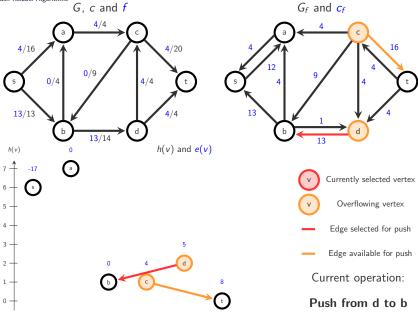


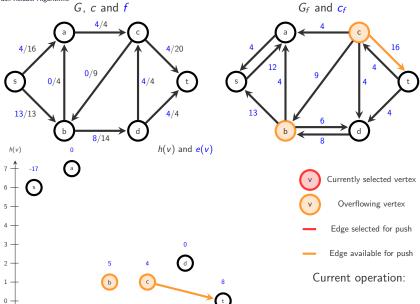


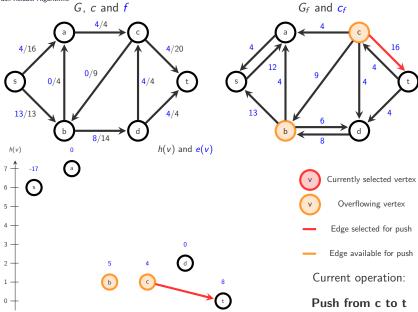


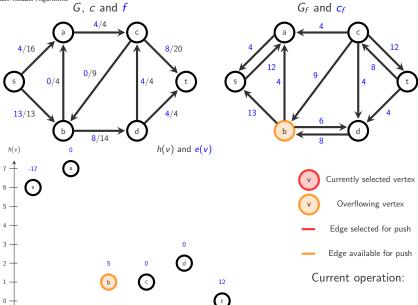


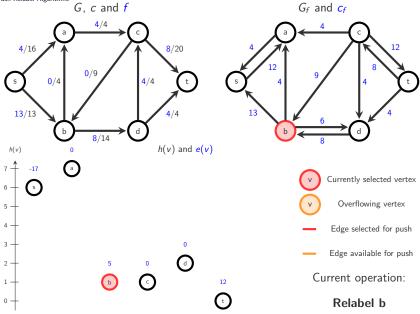


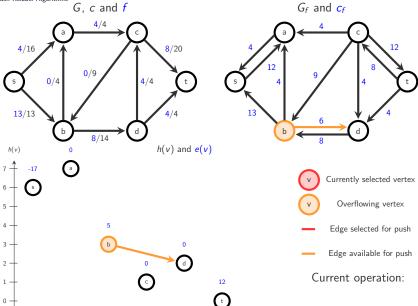


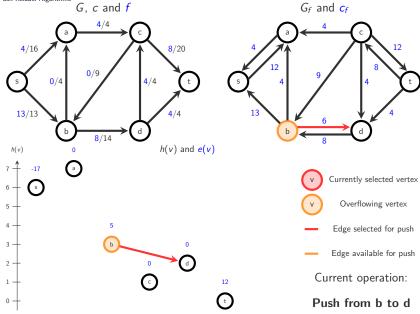


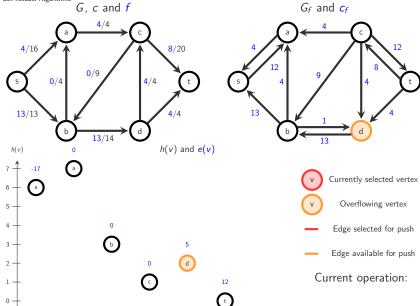


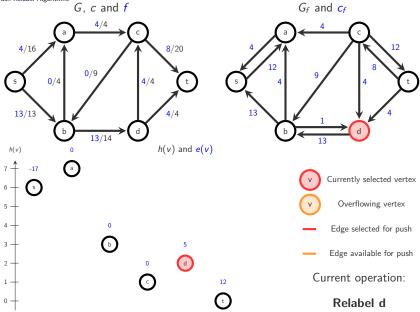


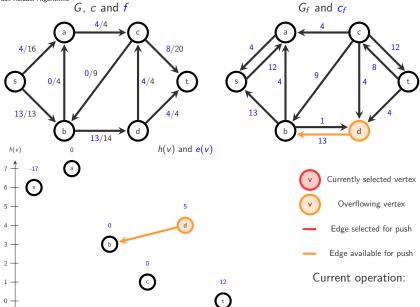


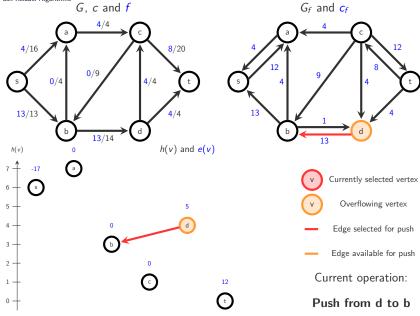


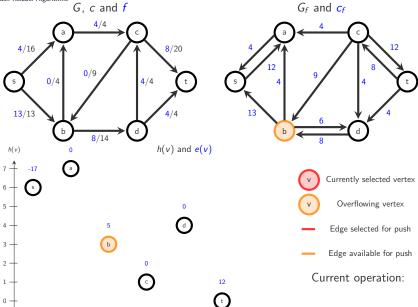


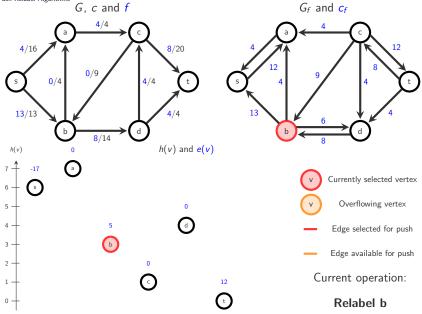


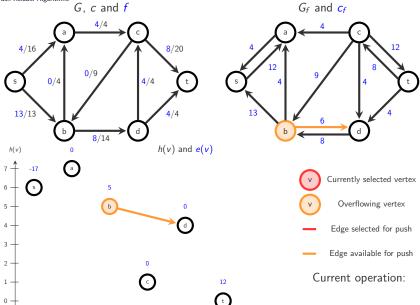


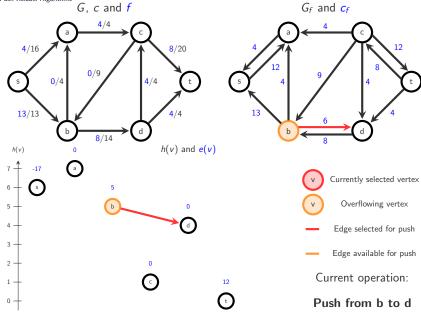


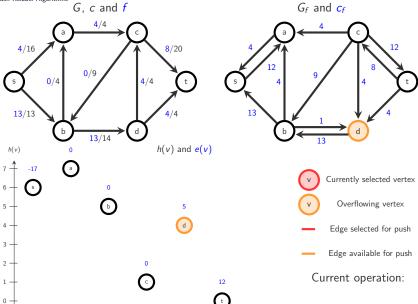


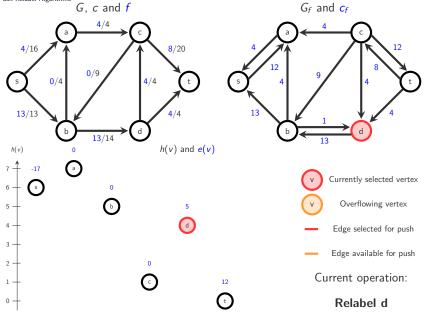


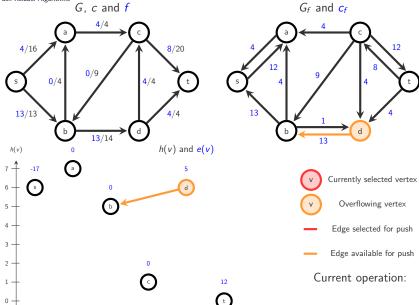


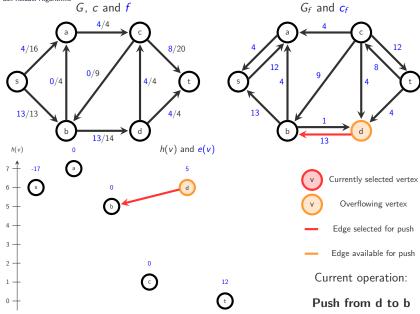


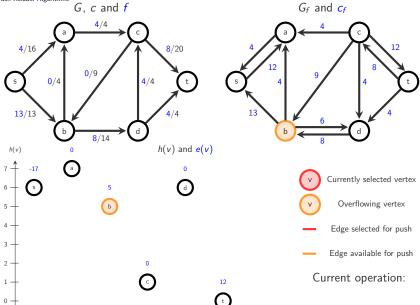


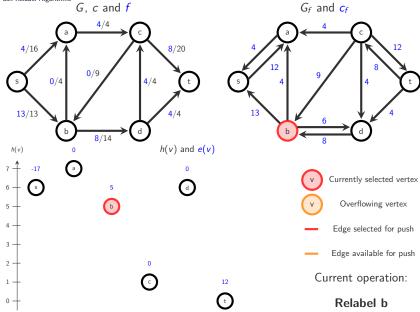


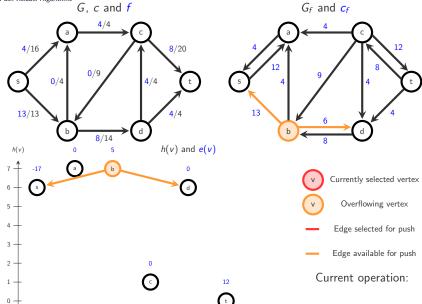


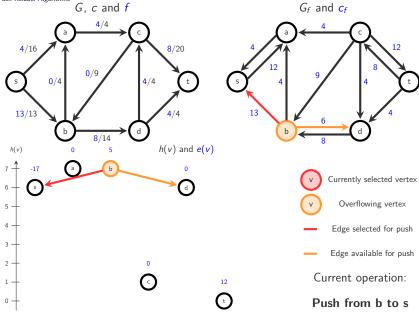


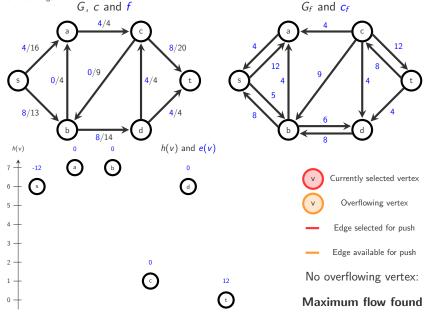












Push-Relabel-Algorithm: Correctness

During execution,

- f is always a preflow
- h is always a height function
- every relabel operation on u strictly increases h(u)
- s is reachable from any active vertex in G_f
- if w is reachable from v in G_f with distance k, then $h(v) \leq h(w) + k$
- t is not reachable from s in G_f .

The last property implies that after execution (when there is no more overflowing vertex), we obtain a flow that has no augmenting path, i.e. a maximum flow.

Push-Relabel-Algorithm: Analysis

One can show:

- $\mathcal{O}(|V|^2)$ relabel operations
- $\mathcal{O}(|V||E|)$ "saturating" push operations (where afterwards f(e) = c(e))
- $\mathcal{O}(|V|^2|E|)$ "non-saturating" push operations. This can be improved (see next slide).

Push-Relabel-Algorithm: Analysis

Keep list of overflowing vertices in appropriate data structure and update accordingly after each operation!

Order for choosing next overflowing vertex?

- Any order (e.g. with stack): Goldberg-Tarjan algorithm, $\mathcal{O}(|V|^2|E|)$.
- FIFO (with a queue): $\mathcal{O}(|V|^3)$.
- Highest label (with buckets): $\mathcal{O}(|V|^2 \sqrt{|E|})$.

Note: Having $\mathcal{O}(|V|^2 \sqrt{|E|})$ push-operations is not enough for a total complexity of $\mathcal{O}(|V|^2 \sqrt{|E|})$. Need amortized constant-time for each push operation!

Push-Relabel-Algorithm: Achieving $\mathcal{O}(|V|^2 \sqrt{|E|})$

• Note: any active vertex v can reach s in G_f using at most n-1 edges, so $h(v) \le h(s) + n - 1 = 2n - 1$. Hence, can store active vertices in 2n - 1 buckets $V_0, V_1, \ldots, V_{2n-1}$.

where V_i contains vertices of height i (implement e.g. using array of doubly-linked lists).

Maintain index i as highest index to non-empty bucket V_i

- Initialize with i = 0
- Increase during relabel
- After push, if $V_i = \emptyset$: decrease i until $V_i \neq \emptyset$
- Moreover, for each v ∈ V, store admissible edges leaving v in doubly-linked list A_v and update during push/relabel operations.

Heuristics for the Push-Relabel-Algorithm

Two-phase algorithm

- In first phase, only push/relabel vertices with h(v) < |V|.
- Does not compute complete flow, but value of maximum flow at t.
- ullet Remaining excess flow may be pushed back to s in second phase.

Initial labeling heuristic

- Compute initial heights as minimal distance to t by backwards BFS, computing $h(v) \leftarrow d_G(v, t)$.
- Avoids unnecessary initial relabeling operations.
- Can also compute labeling for second phase with $h(v) \leftarrow d_{G_r}(v,s) + |V|$.

Heuristics for the Push-Relabel-Algorithm

Gap heuristic

- After each relabeling, check if there is a height k with 0 < k < |V| such that there is no vertex v with h(v) = k (keep a count array).
- If yes, all vertices u with k < h(u) < |V| are disconnected from t in G_f and can be disregarded (set $h(u) \leftarrow |V|$).
- One of the most efficient heuristics, crucial for improving the performance.

Further reading

Several improved algorithms available:

- Orlin: Max flows in $\mathcal{O}(nm)$ time, or better, 2013: $\mathcal{O}(|V||E|)$
- Sidford and Lee: Path-Finding Methods for Linear Programming, 2014: $\mathcal{O}(|E|\sqrt{|V|}(\log |V|)^{\mathcal{O}(1)}(\log U)^2)$

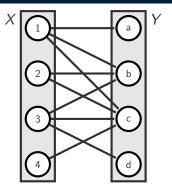
Additional literature on flow problems and algorithms:

- T. H. Cormen et al.: Introduction to Algorithms. MIT press, 2009.
- R. Ahuja, T. Magnanti and J. B. Orlin: Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.
- B. Korte, J. Vygen: Combinatorial Optimization: Theory and Algorithms. Springer, 2012.

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

Given two disjoint sets of vertices X and Y and a set of edges $E \subseteq X \times Y$, a matching $M \subseteq E$ is a subset of edges such that each node of $X \cup Y$ appears in at most one edge of M. The maximum matching problem is finding a matching M such that |M| is maximal.



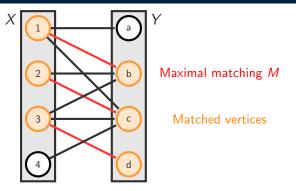
- Maximum Flow

L Bipartite Matching

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

Given two disjoint sets of vertices X and Y and a set of edges $E \subseteq X \times Y$, a matching $M \subseteq E$ is a subset of edges such that each node of $X \cup Y$ appears in at most one edge of M. The maximum matching problem is finding a matching M such that |M| is maximal.

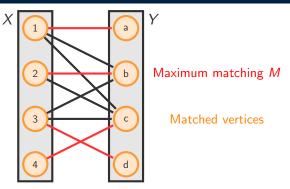


Bipartite Matching

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

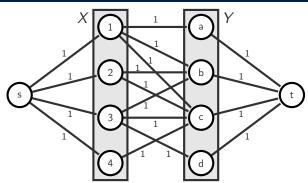
Given two disjoint sets of vertices X and Y and a set of edges $E \subseteq X \times Y$, a matching $M \subseteq E$ is a subset of edges such that each node of $X \cup Y$ appears in at most one edge of M. The maximum matching problem is finding a matching M such that |M| is maximal.



Application: Bipartite Matching

Matching problem as a flow problem

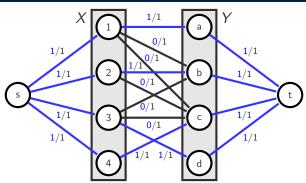
Given a bipartite matching problem, construct flow network G = (V, E') with $V = \{s, t\} \cup X \cup Y$ and $E' = E \cup (\{s\} \times X) \cup (Y \times \{t\})$ and c(e) = 1 for all $e \in E'$. Then the value of the maximum flow is equal to the size of the maximum matching.



Application: Bipartite Matching

Matching problem as a flow problem

Given a bipartite matching problem, construct flow network G = (V, E') with $V = \{s, t\} \cup X \cup Y$ and $E' = E \cup (\{s\} \times X) \cup (Y \times \{t\})$ and c(e) = 1 for all $e \in E'$. Then the value of the maximum flow is equal to the size of the maximum matching.



Choosing the Algorithm

Which Algorithm to choose?

- In general, Push-Relabel-Algorithm is best
- Better asymptotic complexity not always decisive check the constraints
- Implement improvements as needed