Algorithms for Programming Contests - Week 05

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

11. November 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 05

Maximum Flow

Flow Network

Flow Network

Definition (Flow network)

A flow network is a tuple (V, E, c,s, t), where
® (V,E) is a directed graph
® c: E = R>q is the capacity function
® s c Vs a designated vertex called source
® t € V is a designated vertex called target or sink

W.l.o.g., we will only consider flow networks without antiparallel edges,
i.e. if (u,v) € E, then (v,u) ¢ E.

Algorithms for Programming Contests - Week 05

Maximum Flow
LFIow Network

Flow Network

Definition (Flow)

For a given flow network (V, E, c,s,t), let f: E — R>o. We define
® the outflow at v € V as outr(v) := >, . f(v,u)
® the inflow at v € V as inf(v) := > f(u, v), where
Ev.={ueV|(uv)eE}
f is called flow if

ucEv

Y(u,v) € E: 0<f(u,v)<c(u,v)
Yue V\{s,t}: outr(u)=ins(u)

Remark: (1) is called capacity constraint, while (2) is called flow
conservation. A function f satisfying only (1) is called a pre-flow.

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Maximum Flow Problem

Definition (Flow value)

The value |f| of a flow f is defined as

|f| = outr(s) — in¢(s)

Definition (Maximum Flow Problem)

For a given flow network (V, E, c,s,t), what is a flow f with maximal

value |f| over all flows?

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Flow network

13

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Flow network with flow

4/16 \

0/4

O——

fl =7

3/13

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Maximum Flow Problem

Let (V,E,c,s,t) be a flow network.

Lemma

There exists a maximum flow.

Algorithms for Programming Contests - Week 05
Maximum Flow
LMaximum Flow Problem

Maximum Flow: Existence

Let (V,E,c,s,t) be a flow network.

Lemma

There exists a maximum flow.

Proof.

Note that the functions E — R form a finite-dimensional vector-space.
The set A of all f: E — R satisfying (1) is closed, as A = []..£[0, c(e)].

The set B of all f: E — R satisfying (2) is closed, as for each

u € V\ {s,t}, the function ¢, : f — outs(u) — ing(u) is continuos, and
B= ﬂuEV\{s,t} (b;l({o})

Therefore, the set F = AN B of all flows E — R is closed. Moreover, it is
bounded (since F C A and A is bounded by max.ce c(e)), and hence
(since E is finite) compact. Now, the function ¢ : f — |f| is continuous,
and hence ¥(F) is compact as well. Since 0 € F (i.e. the constant
O-function), we have ¥(F) # (), and hence a maximum is attained.

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Maximum Flow: Remarks

Let (V,E,c,s,t) be a flow network.

Lemma

The set F of all flows E — R is convex, i.e. for all fi,f, € F and

a € [0,1], the function defined by e — afi(e) + (1 — a)f:(e) is again a
flow. It has value o |fi| + (1 — &) |f].

Note: In particular, this implies that there exists a flow with any value
between 0 and the maximum flow value.

Lemma

If ¢ is integral, i.e. c(e) € Z for all e € E, then there exists a maximum

flow that is integral.

Note: this not only means that the flow value is integral, but also all f(e)!

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Reductions to maximum flow

Hints

Minimum flow: send no flow at all.

Multiple sources/sinks: add super-source/sink and edges with infinite
capacity to other sources/sinks. ("infinite" can be replaced by any
bound on |f| such as out.(s))

Sources/sinks with supply constraints (e.g. "source can supply at
most 5"): add super-source/sink with edges to sources/sinks with
corresponding capacity.

Vertex capacities: Split up vertex with edge of that capacity in
between.

Antiparallel edges: Insert vertex in between one edge.

Undirected edges: Convert to two antiparallel directed edges.

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Maximum Flow: Towards First Algorithm

First, we look at the Ford-Fulkerson-Algorithm. The idea:
e Start with the O flow, i.e. f(e) = 0 for all e.

® |teratively improve f by finding a path along which the flow can be
increased ("augmenting path”).

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Augmenting path

4/16

313

6/14

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Augmenting path

G,cand f
O 4/4

O 4/4
4/16 5/20 4/16 5/20
0/4 3/ 4/4 @ 0/4 3/0 4/4 @
3/13 2/4 3+2/13 242/4
6/14 6+2/14

" Augmenting path” p: can increase flow by 2

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Augmenting path

G,cand f
O 4/4

O 4/4
4/16 5/20 4/16
0/4 3/ 4/4 @ 0/4 33/9
3/13 2/4 3+3/13
6/14 6/14

" Augmenting path” p: can increase flow by 3

5+3/20
“ O
2/4

Algorithms for Programming Contests - Week 05

Maximum Flow
LMaximum Flow Problem

Augmenting Paths

Definition (Residual capacity and residual network)

For a given flow network G and a flow f, and a pair of vertices u,v € V,
the residual capacity c(u, v) is defined by

c(u,v) — f(u,v) if (u,v)€E
if (v,u) € E
otherwise

The residual network of G induced by f is Gr = (V, Ef), where

Er ={(u,v) € Vx V: cr(u,v) > 0}

Algorithms for Programming Contests - Week 05

Maximum Flow
LMaximum Flow Problem

Augmenting Paths

Definition (Augmenting Path)

Given a flow network G and a flow 7, an augmenting path p is a simple
path in the residual network G¢ from s to t.
The residual capacity of an augmenting path p is given by

cr(p) = min{cr(u, v): (u,v) is on p}

The flow f, of an augmenting path p in G is defined as

cr(p) if (u,v)ison p
otherwise

Algorithms for Programming Contests - Week 05
Maximum Flow
LMaximum Flow Problem

Augmenting flow

Definition (Augmenting flows)

If £ is a flow in a flow network G and f’ is a flow in the corresponding
residual network Gy, then the augmentation f 1 f' of f by ' is a flow in
G defined as

(f t F)(u,v) = f(u,v) + f'(u,v) — f'(v,u) for (u,v) € E

where f'(e) := 0 for e ¢ Ef.

If f is a flow in a flow network G and f' is a flow in the corresponding
residual network Gg, then f 1 ' is also a flow in G and

1] = If + |F]

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Residual network

G, cand f

[::: 4/4

4/16 5/20

0/4

3/13

6/14

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Augmenting path

Gf, Cr, P and fp

4/16

3/13

6/14

p = shct
cr(p) =3

Algorithms for Programming Contests - Week 05

Maximum Flow

Maximum Flow Problem

Example: Augmenting flow

G, c fandp G, cand f'=f1f,

O 4/4 O 4/4
4/16 5/20 4/16 8/20
0/4 3/9 4/4 @ 0/4 o/8 4/4 @
3/13 2/4 6/13 2/4
6/14 6/14
p = sbct
cr(p) =

Algorithms for Programming Contests - Week 05

Maximum Flow

Augmenting path algorithm

Augmenting path algorithm (Ford-Fulkerson algorithm)

Algorithm 1 Ford-Fulkerson algorithm
> Initialize flow to 0 (f < 0)
for (u,v) € E do
f(u,v) <0
end for
while there exists a path p from s to t in the residual network Gr do
> Augment f by f, (f < f 1 1,)
cr(p) + min{cr(u,v): (u,v) is on p}
for each edge (u,v) in p do
if (u,v) € E then
f(u,v) < f(u,v)+ cr(p)
else
f(v,u) < f(v,u) — cr(p)
end if
end for
end while

Algorithms for Programming Contests - Week 05
Maximum Flow
L Max-flow min-cut

Max-flow min-cut

Definition (Cut)

For a given flow network G with source s and target t, a cut C = (S, T)
is a partititon of V into two subsets S and T such that s€ Sand t € T.
The capacity ¢(S, T) of a cut (S, T) is defined as

c(S5,T)= Z c(u,v)

(u,v)E(SXT)NE

If a flow f is given, the net flow across the cut (S, T) is defined as

f(S,T) = Yoo fuv)—- D> f(uv)

(u,v)E(SXT)NE (u,v)E(TXS)NE

Algorithms for Programming Contests - Week 05

Maximum Flow

Max-flow min-cut

Lemma
Let G = (V,E, c,s,t) be a flow network and f be a flow in G. Moreover,

let (S, T) be a cut. Then |f| =f(S,T)<c(S,T).

Lemma

Let G=(V,E,c,s,t) be a flow network and f be a flow in G. TFAE:
1 f is a maximum flow
2 There are no augmenting paths
3 There exists a cut (S, T) s.t. |[f| =¢(S, T)

Corollary

If the Ford-Fulkerson Algorithm terminates, the result is correct.

Corollary (Max-flow min-cut theorem)

The maximum value |f| over all flows f is equal to the minimum capacity
c(S, T) over all cuts (S, T).

Algorithms for Programming Contests - Week 05

Maximum Flow

Max-flow min-cut

Running time

Running time (and even termination!) depends on the choice of the
augmenting paths and how they are found:
® Choosing any path (with DFS):
® |f capacities can be irrational, algorithm might not terminate.
® |f capacities are integral: Each iteration increases flow by at least 1.
Hence, at most U iterations, where U is the value of the maximum
flow. Complexity O(|E| U).
® Shortest path by number of edges (with BFS): Edmonds-Karp
algorithm. Complexity O(| V| |E|*) (at most %
® "Widest paths”, i.e. with maximal residual capacity (with modified
Dijkstra): Complexity O((|E| + |V|log|V|) |E|log U) (at most
O(|E|log U) iterations) when capacities are integral
Better:
* Dinic’s algorithm using "blocking flows”. Complexity O(|V|*|E|).
(Karzanov's variant: O(|V|*))

® "Push-Relabel Algorithm” in O(| V| |E|log %) resp. O(|V[*)

iterations).

Algorithms for Programming Contests - Week 05
M

aximum Flow

Dinic's algorithm

Dinic’s algorithm: Trivia

Complete abstract of paper by Shimon Even (1976):
Abstract: Recently A.V. Karzanov improved Dinic's algorithm to run in
time O(na) for networks of n vertices. For the benefit of those who do
not read Russian, the Dinic-Karzanov algorithm is explained and proved.
In addition to being the best algorithm known for network flow, this

algorithm is unique in that it does not use path augmentation.

Later in the paper:

I do not read Russian and could not read the more detailed available
material on the work of Dinic and Karzanov [5]. The short descriptions in
Soviet Math, Dokl. arehard to read because they are translations and lack
details. 1 have rediscovered Dinic's algorithm with J. Hoperoft in 1972
and have reconstructed Karzanov's result with the help of A. Itai. The
proofs are my own and I do not know if they differ from those of Dinic
and Karzanov. In any case I alone am responsible for any mistakes that

may be in my exposition.

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Dinic’s algorithm: Trivia

Dinitz (2006), Dinitz' Algorithm: The Original Version and Even's Version
The reader may be aware of the so called "Dinic’s algorithm”
[-]. [..] Shimon Even and [...] Alon Itai [...] were very curious
and intrigued by the two new network flow algorithms: mine and
that of Alexander Karzanov [...]. It was very difficult for them
to decipher these two papers (each compressed into four pages,
to meet the page restriction of the [...] journal Doklady). [...]
Even and lItai understood both papers, except for the layered
network maintenance issue. [...] "Dinic’s algorithm” was a great
success and gained a place in the annals of the computer science
community. Hardly anyone was aware that the algorithm, taught
in many universities since then, is not the original version [...].
[...] Also, its name was rendered incorrectly as [dinik] instead
of [dinits]. After more than 15 years [...] | finally explained the
original version of my algorithm [...] to Shimon Even.

Algorithms for Programming Contests - Week 05
Maximum Flow
LDinic's algorithm

Blocking flow

Definition (Level graph)

Given a residual network Gr = (V/, Ef), let dg,(s, v) be the length of the
shortest path from s to v in G¢ (by number of edges).
The level graph of Gf is the graph G, = (V, E;, c,), where

B = {(1:v) € Er: do (5.) = doy(5.) + 1)
c(u,v) = {Cf(“’ v) if (u,v) € EL

0] otherwise

Definition (Blocking flow)

A blocking flow in the level graph G, is a flow f such that every path
from s to t in G, contains a saturated edge, i.e., an edge (u, v) with

f(u,v)=cr(u,v).

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Dinic's algorithm

Algorithm 2 Dinic’s algorithm
f«0
while there exists a blocking flow ' in G, with |f'| > 0 do
f«frf
end while

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Finding a blocking flow

Algorithm 3 Finding blocking flows via DFS
'+ 0, ps;u+s
while v # t do
while there is an edge (u, v) € E; with f'(u,v) < ¢ (u,v) do
p < pv
u<—v
end while
if u=1 then
flef' 11l ps uss
else if u = s then
return f’
else
let (v, w) be the last edge on p; delete w from p
delete (v, w) from E;; u <+ v
end if
end while

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Dinic's algorithm (example)

16

13

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored
0/4

v Vertex on current path

0/16 0/20
=== Edge on augmenting path

@ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find blocking flow

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored
0/4

v Vertex on current path

0/16 0/20
=== Edge on augmenting path

@ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored
0/4

v Vertex on current path

0/16 0/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16
0/4 o/ 0/4 @ 4
0/13 0/4 13
0/14

GL, CL and f’ @ Vertex currently explored
0/4

a v Vertex on current path

0/16 0/20

14

=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored
0/4

a c v Vertex on current path

0/16 0/20

=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4

0/16 0/20 16
0/4 o/ 0/4 @ 4
0/13 0/4 13
0/14

14
GL, CL and f’ @ Vertex currently explored
0/4
QA f— C v Vertex on current path
0/16 0/20
=== Edge on augmenting path
s t Edge on current path
Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Augment ' by f,

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

0/4 @ 4

0/16 0/20 16 20
9
o { /| ©
0/13 13 4
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20
=== Edge on augmenting path
@ Edge on current path
Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Augment ' by f,

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored

4/4

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

@ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored

4/4

v Vertex on current path

4/16 4/20
=== Edge on augmenting path
s @ Edge on current path
Saturated/deleted edge
0/13 0/4
@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored

4/4

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

@ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored

4/4

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

@—) Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16
0/4 o/ 0/4 @ 4
0/13 0/4 13
0/14

GL, CL and f’ @ Vertex currently explored

4/4

14

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16
0/4 o/ 0/4 @ 4
0/13 0/4 13
0/14

GL, CL and f’ @ Vertex currently explored

4/4

14

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
0/13 0/4

Current operation:
0/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f
0/4
0/16 0/20 16
o ©,
0/13 0/4 13
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20
=== Edge on augmenting path
s t Edge on current path
Saturated/deleted edge
0/13 0/4
p——>(d Current operation:
0/14

Augment ' by f,

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f
0/4
0/16 0/20 16
o ©,
0/13 0/4 13
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20
=== Edge on augmenting path
@ Edge on current path
Saturated/deleted edge
4/13 4/4

@—)@ Current operation:
4/14

Augment ' by f,

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4

0/16 0/20 16
0/4 o/ 0/4 @ 4
0/13 0/4 13
0/14

14
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20
=== Edge on augmenting path
@ Edge on current path
Saturated/deleted edge
4/13 4/4

@—)@ Current operation:
4/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16
0/4 0/9 0/4 @ 4
0/13 0/4 13
0/14

GL, CL and f’ @ Vertex currently explored

4/4

14

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
4/13 4/4

@—)@ Current operation:
4/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 @ 4
0/16 0/20 16 20
o] 0/a @ P 4 @
0/13 0/4 13 4
0/14 14

GL, CL and f’ @ Vertex currently explored

4/4

v Vertex on current path

4/16 4/20
=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
4/13 4/4

@ Current operation:
4/14

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 : 4
0/16 0/20 16
A o
0/13 0/4 13
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
@ v Vertex on current path
4/16 4/20

=== Edge on augmenting path

s @ Edge on current path

Saturated/deleted edge
4/13 4/4

@ 4/14

Q

Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

@ 0/4 : 4
0/16 0/20 16
A o
0/13 0/4 13
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
@ v Vertex on current path
4/16 4/20

=== Edge on augmenting path

@ @ Edge on current path

Saturated/deleted edge
4/13 4/4

@ 4/14

Q

Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

0/4 @ 4

0/16 0/20 16 20
9
o { /| ©
0/13 0/4 13 4
0/14 14
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20

=== Edge on augmenting path

@ @ Edge on current path

Saturated/deleted edge
4/13 4/4

@ Current operation:
4/14

Augment f by f’

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
4/4
v Vertex on current path
4/16 4/20

=== Edge on augmenting path

@ @ Edge on current path

Saturated/deleted edge
4/13 4/4

@ Current operation:
4/14

Augment f by f’

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

4/4 4

4/16 4/20
on ©,
4/13 4/4
4/14
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 0/16

=== Edge on augmenting path

0/4 @ Edge on current path

Saturated/deleted edge

@—) Current operation:
0/10

Find blocking flow

0/9

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/16

4/13

0/12

0/9

4/4

0/4

4/14

GL, CL and f’

@ 0/10

4/20

4/4

0/16

s ()

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/16

4/13

0/12

0/9

4/4

0/4

4/14

GL, CL and f’

@ 0/10

4/20

4/4

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/16

4/13

0/12

0/9

4/4

0/4

4/14

GL, CL and f’

@ 0/10

4/20

4/4

0/16

s ()

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/16

4/13

0/12

0/9

4/4

0/4

4/14

GL, CL and f’

@ 0/10

4/20

4/4

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 0/16

=== Edge on augmenting path

s 0/4 @ Edge on current path

Saturated/deleted edge
0/9

Current operation:
0/10

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 0/16

=== Edge on augmenting path

s 0/4 @ Edge on current path

Saturated/deleted edge
0/9

Current operation:
0/10

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
0/4 0/4 @ 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
c v Vertex on current path
0/12 0/16

=== Edge on augmenting path

s 0/4 @ Edge on current path

Saturated/deleted edge
0/9

Current operation:
0/10

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
0/4 0/4 @ 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
c v Vertex on current path
0/12 0/16

=== Edge on augmenting path
s 0/4 t Edge on current path

Saturated/deleted edge
0/9

W d Current operation:

Augment ' by f,

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

4/4 @ Edge on current path

Saturated/deleted edge

@—)@ Current operation:
4/10

Augment ' by f,

4/9

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

4/4 @ Edge on current path

Saturated/deleted edge

@—)@ Current operation:
4/10

Find augmenting path

4/9

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

s 4/4 @ Edge on current path

Saturated/deleted edge

@—)@ Current operation:
4/10

Find augmenting path

4/9

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

O 4/4

4

4/16 4/20 16
4
0/9 9
o o 4
4/13 4/4 4
/ / 10
4/14 7
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

s 4/4 @ Edge on current path

Saturated/deleted edge

@ Current operation:
4/10

Find augmenting path

4/9

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/4

4/16 4/20
0
4/13 4/4
4/14
GL, CL and f’
0/12 4/16
s 4/4 @
4

/9
ORTEO)

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G, C and f

4/4

4/16 4/20
©
4/13 4/4
4/14
GL, CL and f’
0/12 4/16
O] O
4

/9
ORI O)

Gr and ¢
4

@ Vertex currently explored

v Vertex on current path
=== Edge on augmenting path
Edge on current path
Saturated/deleted edge
Current operation:

Find augmenting path

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢

4/4 4

4/16 4/20
on ©,
4/13 4/4
4/14
GL, CL and f’ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

@ 4/4 @ Edge on current path

Saturated/deleted edge

/9
@ @ Current operation:
4/10

Augment f by f’

4

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢
4/4 4
4/16 8/20 /G) 12
12 8
o X /|
5
8/13 4/4 8 4
6
8/14 € 3 @
GL, CL and f/ @ Vertex currently explored
v Vertex on current path
0/12 4/16

=== Edge on augmenting path

@ 4/4 @ Edge on current path

Saturated/deleted edge

/9
@ @ Current operation:
4/10

Augment f by f’

4

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic's algorithm G,cand f Gr and ¢
4

@ 4/4
4/16 8/20 /G) 12
0/9 12 8
0/4 4/4 @ 4 4
8/13 4/4] 4
8/14 (8_@
GL, CL and f’ @ Vertex currently explored

@ v Vertex on current path

0/12
=== Edge on augmenting path
@ Edge on current path
Saturated/deleted edge
0/9

@—)@ Current operation:
0/10

Find blocking flow

Algorithms for Programming Contests - Week 05

Maximum Flow

L Dinic’s algorithm G, cand f Gf and Cr
4

@ 4/4
4/16 8/20 /G) 12
0/9 12 8
0/4 4/4 @ 4 4
8/13 4/4] 4
8/14 (8_@
GL, CL and f’ @ Vertex currently explored

@ % Vertex on current path

0/12
=== Edge on augmenting path
@ Edge on current path
Saturated/deleted edge
0/9

@—)@ No path from s to t:
0/10

Maximum flow found

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Dinic's Algorithm: Analysis

One can show: in each iteration, the blocking flow consists of
augmenting paths of the same length, and this length increases each
iteration.

Hence: O(|V/|) iterations.
Each iteration (finding blocking flow) in O(|V||E|)
Total: O(|V|? |E|)

Finding the blocking flow can also be done in O(|V|?) using Karzanov's
Variant for a total running time of O(|V[*).

Algorithms for Programming Contests - Week 05
Maximum Flow
LDinic's algorithm

Dinic’s Algorithm: Karzanov's Variant

Definition (Preflow)

Let (V, E,c,s,t) be a flow network. A function f : E — Rxq is called
preflow if

Y(u,v) € E: 0<f(u,v)<c(u,v)
Yue V\{s}: ine(u) > outr(u)

Definition (Excess)

Let (V,E,c,s,t) be a flow network and f : E — R>q. The excess of f at
v € V is defined as

exr(v) := ing(v) — outs(v).

v is called active or overflowing if exs(v) > 0.

Algorithms for Programming Contests - Week 05
M

aximum Flow

Dinic's algorithm

Dinic's Algorithm: Karzanov's Variant

Karzanov's idea: maintain a preflow f’ and store the excess
of each node, along with a stack that stores the last increases of the excess.

Algorithm 4 Finding blocking flows: Karzanov's Variant

1 (v, va,..., y) ¢ TopologicalOrder(Gy) 21 5« min{c(e) — f'(e), ex[vi]}
2: for each v e V'\ {s,t} do 22 f'(e) « f'(e) +6

3 ex[v] + 0 23 ex[vj] « ex[v;] — 4

4 plv] - EmptyStack() 24: ex[w] « ex{w] + 4

5. frozen|[v] < false 25 plw].push((e,)

6: end for 26 end if

7. f 0 27 end for

8: for each v € sE; do 28 end if

9 e+ (s,v) 29 end for

10, f'(e) + ci(e) 30, Let / be maximal s.t. v; is active

11; if v # t then 31 while v; is active do

12 ex[v] « c(e) 32 (e,8) « plvi].pop()

13 plv]-push((e, cL(e))) 3 8« min{d, ex[v]}

14 end if 34 f'(e) « f'(e) — &

15: end for 35, ex[vi] « ex[v;] — &'

16: while there is an active vertex do 36 ex[v] < ex[v] + &' where (v,v;) = e
17 fori=1,2,...,ndo 37 end while

18: if v; is active then 38 frozen[vj] < true

19: for each w € v;E; do e < (v;, w) 39: end while

20 if f'(e) < ci(e) and not frozen[w] then

Algorithms for Programming Contests - Week 05

Maximum Flow

Dinic's algorithm

Dinic-Karzanov-Algorithm: Remarks

* Finds blocking flow in O(|V[?)
® But: quite complicated
® Better: Use Push-Relabel-Algorithms!

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel Algorithms

The class of push-relabel algorithms for maximum flow work by
maintaining a preflow and pushing it along edges, while (re-)labeling
vertices to determine where flow can be pushed.

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithms: Height labels

Definition (Height function)
For a given flow network G and a flow f, a function h: V — N is a
height function (or distance labeling) if
h(s) = \V\
(t) = and
h(u) < ()+1 for every residual edge (u, v) € E.

An edge (u, v) € E¢ is called admissible if h(u) = h(v) + 1.

Note: If his a height function, the distance of v to t in Gf is at least

h(v).

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push and relabel operations

Algorithm 5 Push operation
> Applies to (u, v) € Ef when u is overflowing and h(u) = h(v) + 1
0 <+ min(ex[u], cr(u, v))
if (u,v) € E then
f(u,v) + f(u,v)+46
else
f(v,u) « f(v,u)—9¢
end if
ex[u] < ex[u] — o
ex[v] < ex[v] + 0

Algorithm 6 Relabel operation

> Applies to u when u is overflowing and h(u) < h(v) for all (u,v) € Ef
h(u) < 1+ min{h(v): (u,v) € Ef}

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithm (Goldberg-Tarjan algorithm)

Algorithm 7 Push-relabel algorithm
for each vertex v € V do
h(v) < 0; ex[v] < 0
end for
for (u,v) € E do
f(u,v) <0
end for
h(s) < |V|
for each vertex v € sE do
f(s,v) < c(s,v)
ex[v] < ex[v] + ¢(s, V)
ex[s] « ex[s] — (s, v)
end for
while there is an applicable push or relabel operation do
select an applicable push or relabel operation and perform it
end while

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-relabel algorithm (example)

16

13

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f

@ 0/4

0/16 0/20 16
0/9
0/a 0/a @
0/13 0/4 13
0/14 14
h(v) h(v) and e(v)
7L
@ Currently selected vertex

6 -
5 v Overflowing vertex

— Edge selected for push
Edge available for push

Current operation:

1000000

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f
0/4
0/16 0/20
9
0/4 4
0/13 L
0/14
h(v)) and e(
4
6
s
s
s

© 000 0 0O0

14

@ Currently selected vertex

v Overflowing vertex
=== Edge selected for push
Edge available for push

Current operation:

Initialize preflow

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
0/4
16/16 0/20 16
o O Q
13/13 13
0/14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push
2
s 6 5 0 0 o Current operation:
't D © 0 0 0

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
0/4 4
16/16 0/20 16
o O O
13/13 13
0/14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push
2
s 6 5 0 0 o Current operation:
+ O ©® O 0 0 Relabel a

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
0/4
16/16 0/20 16
o O Q
13/13 13
0/14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push
2+ 16
L . " 0 0 o Current operation:
't 00 0 0

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

0/4
16/16 0/20 16
o O Q
13/13 13
0/14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push
2+ 16
L . \ 0 0 o Current operation:
o b @ @ O Push from a to c

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
2) —(
16/16 0/20 16 20
9
oo | /| ©
13/13 13 4
b | —
0/14 14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push
2+ 12
s . 5 . 0 o Current operation:
D © 0 O

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
2) —(
16/16 0/20 16 20
9
oo | /| ©
13/13 13 4
0/14 14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push
2+ 12
s . 5 . 0 o Current operation:
ot ® O 0 0O Relabel b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4 c
a —
16/16 0/20 16 20
o d | /| o
13/13 13 4
b
0/14 14
h(v) h(v) and e(v)

7+ 29
@ @ Currently selected vertex
6 -
\

Overflowing vertex

— Edge selected for push

3
Edge available for push

2+ 12 13

14 a b . o o Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
2) —(
16/16 0/20 16 20
9
oo | /| ©
13/13 13 4
b —
0/14 14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push
2+ 12 13
L . 5 \ 0 o Current operation:
o ¢ @ O Push from b to d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
2) —(
16/16 0/20 20
0 /| o
13/13 4
/ 1
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push

2+ 12 0
L . @ . 5 o Current operation:
> @ O

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 0/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push

2+ 12 0
s . @ . 5 o Current operation:
o @ d O Relabel c

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
2) —(
16/16 0/20 20
0 /| o
13/13 4
/ 1
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push

2+ 12 0 4
L . @ . 5 o Current operation:
70

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
Py DA
16/16 0/20 20
0 /| o
13/13 4
/ 1
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6
5 v Overflowing vertex
4T = Edge selected for push
3L
Edge available for push

2+ 12 0 4
s . @ . *) o Current operation:
o d O Push fromcto t

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push

2+ 12 0 0
i . @ @ 5 . Current operation:
) 0

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4
a
16/16 4/20 16
o o -
13/13 13
13/14
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push
2+ 12 0 0
i . @ @ 5 . Current operation:
o+ ® 0O Relabel d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push

2+ 12 0 0 13
s . @ @ 5 . Current operation:
o

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push

2+ 12 0 0 13
s . @ @ 5 W . Current operation:
o O Push from d to t

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push

2+ 12 0 0 9
L . @ @ 7 s Current operation:
o

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4 4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) h(v) and e(v)
7+ 29
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
34
Edge available for push

2+ 12 0 0 9
L @ @ @ 7 s Current operation:
o O Relabel a

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O Q
13/13
P—
13/14 13
h(v) 12 h(v) and e(v)
7+ 29 a
@ @ Currently selected vertex
6 -
5 v Overflowing vertex
4T = Edge selected for push
3
Edge available for push

2 0 0 9
L @ @ 7 s Current operation:
o

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4

16/16 4/20
o O O
13/13
P—
13/14 13
h(v) 12 h(v) and e(v)
7+ 29 a
@/ @ Currently selected vertex
6
5 v Overflowing vertex
4T = Edge selected for push
3L
Edge available for push

2 0 0 9
L @ @ 7 s Current operation:
o O Push from a to s

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 4/20
0/a @
13/13
13/14 «—_
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex
— Edge selected for push

Edge available for push

1+ @ @ d 8 Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

[::: 4/4
4/16
0/4 o/
13/13
13/14
0

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

Edge available for push

i @ @ @ s Current operation:
T Relabel d
©)

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 4/20
o
13/13
13/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex
— Edge selected for push

Edge available for push

i @ @ s Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 4/20
o
13/13
13/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex
— Edge selected for push
Edge available for push
i @ @/ s Current operation:
o O Push from d to c

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

O 4/4

C

4/16 16

0/9 4
0/4 4

13/13 4

d
13/14
h(v) 0

o O
@ @ Currently selected vertex
6 -
\

Overflowing vertex

— Edge selected for push

3+ 5

Edge available for push
2 0 4 d
s @ . . Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

C 4/4

C

4/16 16

0/9 4
0/4 4

13/13 4

d
13/14
h(v) 0

o O
@ Currently selected vertex

51 v Overflowing vertex
— Edge selected for push
Edge available for push

2 0 4 d
L @/ . Current operation:

o O Push from d to b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

4/4 4
O —
4/16 4/20 4 16
12 4
0/9
0/4 / 4/4 @ 4 o 4
13/13 4/a 13 ; 4
=0
8/14 3
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

3+ 0

Edge available for push
0
1 b s s Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

4/4 4
O —
4/16 4/20 4 16
12 4
0/9
0/4 / 4/4 @ 4 o 4
13/13 4/a 13 ; 4
=0
8/14 3
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

3+ 0

Edge available for push
0
1 b s s Current operation:

Push fromcto t

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

O 4/4

4

4/16 8/20 4
0/4 o8 4/4 @
13/13 4/4 13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

3+ 0

Edge available for push
. .0
1+ b @ 2 Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

Edge available for push
.0

L @ @ o Current operation:
o ©) Relabel b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

O 4/4

4

4/16 8/20 4
0/4 0/9 4/4 @
13/13 4/4 13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 v Overflowing vertex
A 5 === Edge selected for push
3T b 0

Edge available for push
0
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

[::J 4/4
4/16
0/4 o/
13/13
8/14
0

o O
@ Currently selected vertex

4

51 v Overflowing vertex
A 5 === Edge selected for push
3T b 0

\ Edge available for push
—0
i @ b Current operation:

o O Push from b to d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
0/a @
13/13
13/14 —
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 v Overflowing vertex
A 0 === Edge selected for push
o

Edge available for push
2 0 d
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
13/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

Edge available for push
O

L @ o Current operation:

o+ ©) Relabel d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
13/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 5 v Overflowing vertex
A 0 g === Edge selected for push
e

Edge available for push
2 0
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

C 4/4

4/16 8/20
0/4 o/ 4/4 @
13/13
13/14
0

h(v) and e(v)

o O
@ Currently selected vertex

5 5 v Overflowing vertex

/ — Edge selected for push
e

Edge available for push

L @ o Current operation:

o O Push from d to b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

O 4/4

4

4/16 8/20 4
0/4 o8 4/4 @
13/13 4/4 13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 0 v Overflowing vertex
A 5 @ === Edge selected for push
3T b

Edge available for push
2 0
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 0 v Overflowing vertex
A 5 @ === Edge selected for push
©

Edge available for push
24 0
i @ b Current operation:

o+ ©) Relabel b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms
G, cand f Gr and ¢

O 4/4

4

4/16 8/20 4
0/4 0/9 4/4 @
13/13 4/4 13
8/14
h(v) 0 h(v) and e(v)

o O
@ Currently selected vertex

51 b 0 v Overflowing vertex
A @ === Edge selected for push
34

Edge available for push
2T 0
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms
G, cand f Gr and ¢

[::J 4/4
4/16
0/4 o/
13/13
8/14
0

o O
@ Currently selected vertex

4

51 b \ 0 v Overflowing vertex
A @ === Edge selected for push
34

Edge available for push
24 0
i @ b Current operation:

o O Push from b to d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
0/a @
13/13
13/14 —
h(v) 0 h(v) and e(v)

te 0
@ Currently selected vertex
5 @ 5 v Overflowing vertex

A g === Edge selected for push
34

Edge available for push
2+ 0
i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
13/14
h(v) 0 h(v) and e(v)

te 0
@ Currently selected vertex
5 @ 5 v Overflowing vertex

4T @ === Edge selected for push
3

Edge available for push
24 0
i @ b Current operation:

o+ ©) Relabel d

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
o/a @
13/13
13/14
h(v) 0 h(v) and e(v)

7+ 17 @ 5
@ Currently selected vertex
5 @ v Overflowing vertex

— Edge selected for push

34
Edge available for push

2+ 0

i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
0/a @
13/13
13/14
h(v) 0 h(v) and e(v)

7+ 17 @ 5

@ Currently selected vertex
S¥o) : :
54 @/ v Overflowing vertex

— Edge selected for push

34
Edge available for push

2+ 0

i @ b Current operation:

o O Push from d to b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
4/16 8/20 4
0/a @
13/13 13
8/14
h(v) 0 h(v) and e(v)

7+ 17 @ 0
@ Currently selected vertex

5 b v Overflowing vertex

— Edge selected for push

34
Edge available for push

2+ 0

i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20
0
13/13
8/14
h(v) 0 h(v) and e(v)

7+ 17 @ 0
@ Currently selected vertex
5 @ v Overflowing vertex

— Edge selected for push

34
Edge available for push

2+ 0

i @ b Current operation:

o+ ©) Relabel b

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

G, cand f Gr and ¢
4/4
4/16 8/20 4
0/a @
13/13 13
8/14
h(v) 0 5 h(v) and e(v)

7+ 17 @ b 0
@ Currently selected vertex

5 v Overflowing vertex

— Edge selected for push

34
Edge available for push

2+ 0

i @ b Current operation:

Algorithms for Programming Contests - Week 05

Maximum Flow
Push-Relabel Algorithms

G, cand f Gr and ¢
4/4 4
4/16 8/20 4
o O
13/13 13
8/14
h(v) 0 5 h(v) and e(v)
7+ 17 b 0
@ @ @ Currently selected vertex
6
51 v Overflowing vertex
A === Edge selected for push
3
Edge available for push
2+ 0
i @ b Current operation:
o O Push from b to s

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

4/16

G, cand f
4/4
8/20
o
8/14
0 0 h(v) and e(v)
(ONNO) :

Gr and ¢
4

@ Currently selected vertex

v Overflowing vertex
— Edge selected for push
Edge available for push
No overflowing vertex:

Maximum flow found

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithm: Correctness

During execution,
® f is always a preflow
® h is always a height function

every relabel operation on u strictly increases h(u)

s is reachable from any active vertex in Gy
if w is reachable from v in G with distance k, then h(v) < h(w) + k

® t is not reachable from s in Gy.

The last property implies that after execution (when there is no more
overflowing vertex), we obtain a flow that has no augmenting path, i.e. a
maximum flow.

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithm: Analysis

One can show:
e O(|V|?) relabel operations
® O(|V]|E]|) "saturating” push operations (where afterwards
f(e) = c(e))
e O(]V|? |E]) "non-saturating” push operations. This can be improved
(see next slide).

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithm: Analysis

Keep list of overflowing vertices in appropriate data structure and update
accordingly after each operation!
Order for choosing next overflowing vertex?

e Any order (e.g. with stack): Goldberg-Tarjan algorithm, O(|V|*|E|).
* FIFO (with a queue): O(|V]?).
® Highest label (with buckets): O(|V[* \/|E]).

Note: Having O(|V|? V/|E|) push-operations is not enough for a total

complexity of O(|V|* \/|E[). Need amortized constant-time for each
push operation!

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Push-Relabel-Algorithm: Achieving O(|V|* \/|E])

® Note: any active vertex v can reach s in G using at most n — 1
edges, so h(v) < h(s)+n—1=2n—1.
Hence, can store active vertices in 2n — 1 buckets Vg, Vi,..., Vo,_1,
where V; contains vertices of height i (implement e.g. using array of
doubly-linked lists).
Maintain index i as highest index to non-empty bucket V;
® |nitialize with i =0
® Increase during relabel
® After push, if V; = (): decrease i until V; # ()
® Moreover, for each v € V/, store admissible edges leaving v in
doubly-linked list A, and update during push/relabel operations.

Algorithms for Programming Contests - Week 05
Maximum Flow
L Push-Relabel Algorithms

Heuristics for the Push-Relabel-Algorithm

Two-phase algorithm

® In first phase, only push/relabel vertices with h(v) < |V/|.
® Does not compute complete flow, but value of maximum flow at t.

® Remaining excess flow may be pushed back to s in second phase.

Initial labeling heuristic

® Compute initial heights as minimal distance to t by backwards BFS,
computing h(v) < dg(v, t).
® Avoids unnecessary initial relabeling operations.

® Can also compute labeling for second phase with
h(v) < dg,(v,s) + | V.

Algorithms for Programming Contests - Week 05

Maximum Flow
L Push-Relabel Algorithms

Heuristics for the Push-Relabel-Algorithm

Gap heuristic

® After each relabeling, check if there is a height k with 0 < k < |V/|
such that there is no vertex v with h(v) = k (keep a count array).

® If yes, all vertices u with k < h(u) < |V/| are disconnected from t in
Gr and can be disregarded (set h(u) < |V]).

® One of the most efficient heuristics, crucial for improving the
performance.

Algorithms for Programming Contests - Week 05

Maximum Flow

Further reading

Further reading

Several improved algorithms available:
® Orlin: Max flows in O(nm) time, or better, 2013: O(|V/||E|)
e Sidford and Lee: Path-Finding Methods for Linear Programming,
2014: O(|E| /[V(log | V[)°™M(log U)?)
Additional literature on flow problems and algorithms:
® T.H. Cormen et al.: Introduction to Algorithms. MIT press, 2009.

® R. Ahuja, T. Magnanti and J. B. Orlin: Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

® B. Korte, J. Vygen: Combinatorial Optimization: Theory and
Algorithms. Springer, 2012.

Algorithms for Programming Contests - Week 05

Maximum Flow

Bipartite Matching

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

Given two disjoint sets of vertices X and Y and a set of edges
E C X x Y, a matching M C E is a subset of edges such that each node

of X UY appears in at most one edge of M. The maximum matching
problem is finding a matching M such that |M| is maximal.

QO O
KX
O 000

Algorithms for Programming Contests - Week 05

Maximum Flow

Bipartite Matching

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

Given two disjoint sets of vertices X and Y and a set of edges
E C X x Y, a matching M C E is a subset of edges such that each node
of X UY appears in at most one edge of M. The maximum matching

problem is finding a matching M such that |M| is maximal.

Maximal matching M

XX/

Algorithms for Programming Contests - Week 05

Maximum Flow

Bipartite Matching

Application: Bipartite Matching

Definition (Bipartite Matching / Maximum Matching Problem)

Given two disjoint sets of vertices X and Y and a set of edges
E C X x Y, a matching M C E is a subset of edges such that each node
of X UY appears in at most one edge of M. The maximum matching

problem is finding a matching M such that |M| is maximal.

Maximum matching M

0

Algorithms for Programming Contests - Week 05

Maximum Flow

Bipartite Matching

Application: Bipartite Matching

Matching problem as a flow problem

Given a bipartite matching problem, construct flow network G = (V, E’)
with V = {s,t}UXUY and E' = EU ({s} x X)U (Y x {t}) and
c(e) =1 for all e € E’. Then the value of the maximum flow is equal to
the size of the maximum matching.

dO0D
oYofioNe
\/
©

Algorithms for Programming Contests - Week 05

Maximum Flow

Bipartite Matching

Application: Bipartite Matching

Matching problem as a flow problem

Given a bipartite matching problem, construct flow network G = (V, E’)
with V = {s,t}UXUY and E' = EU ({s} x X)U (Y x {t}) and
c(e) =1 for all e € E’. Then the value of the maximum flow is equal to
the size of the maximum matching.

IO——Q"
1 a
é 0/1
on 1/1
1/7 S
ool
0/1 ~\ /Q
0/1 2
O O

Algorithms for Programming Contests - Week 05

Maximum Flow

Performance

Choosing the Algorithm

Which Algorithm to choose?
® |n general, Push-Relabel-Algorithm is best

® Better asymptotic complexity not always decisive — check the
constraints

® |mplement improvements as needed

	Maximum Flow
	Flow Network
	Maximum Flow Problem
	Augmenting path algorithm
	Max-flow min-cut
	Dinic's algorithm
	Push-Relabel Algorithms
	Further reading
	Bipartite Matching
	Performance

