
Algorithms for Programming Contests - Week 04

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

November 4, 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 04

Graphs

Graphs

A weighted graph is a tuple G = (V ,E , c), where

• V is a non-empty set of vertices,

• E is a set of edges,

• c : E → R is the weight function.

A simple path from v1 to vn is a sequence p = v1v2 . . . vn such that
(vi , vi+1) ∈ E for all i ∈ [1, n − 1], and vi ̸= vj for all i ̸= j .

The length of a path is the sum of its edge weights.

Note: Length of a path can also mean the number of edges it traverses.
Which one is meant has to be understood from context.

Algorithms for Programming Contests - Week 04

Shortest Paths

Shortest Path Problem - Classification

s

a

b

c

d

t

4

1

2

3

2
2

1

2

5

• Single Pair Shortest Path (SPSP):
Find a shortest path between s and t.

• Single Source Shortest Path (SSSP):
Find a shortest path between s and all the other nodes.

• All Pairs Shortest Path (APSP):
Find a shortest path between all pairs of nodes.

Algorithms for Programming Contests - Week 04

Shortest Paths

Shortest Path Problem - Applications

• transportation

• networking

• plant and facility layout

• . . .

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

• Published by Edsger W. Dijkstra in 1959.

• Solves the SSSP for graphs with non-negative weights.

• Idea: Graph exploration similar to DFS/BFS, but instead of having a
stack/queue as worklist, use priority queue.

• Priority given by distance to source state.

• Keep track of predecessors to construct shortest paths.

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

a

b

c

d

t

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Find the shortest path between s and t!

s

0

a

∞

b

∞

c

∞

d

∞

t

∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

4,s

b

1,s

c

∞

d

∞

t

∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

7,d

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

7,d

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Dijkstra’s Algorithm

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Shortest Path Tree

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Shortest Path Tree

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Shortest Path Tree

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Shortest Path Tree

s

0

a

3,b

b

1,s

c

3,b

d

2,b

t

6,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Algorithm 1 Dijkstra’s Algorithm

Input: Graph G = (V ,E , c)
procedure Dijkstra(G , src)

for each vertex v ∈ V do
dist[v]←∞, prev[v]← null , visited[v]← false

end for
dist[src]← 0
PQ ← PriorityQueue over V
for each vertex v ∈ V do

PQ.insert(v , dist[v])
end for
while PQ is not empty do

v ← PQ.deleteMin()
visited[v]← true
for each neighbor w of v do

if not visited[w] and dist[v] + c(v ,w) < dist[w] then
dist[w]← dist[v] + c(v ,w)
PQ.decreaseKey(w , dist[w])
prev[w]← v

end if
end for

end while
end procedure

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Analysis of Dijkstra’s Algorithm

Running time

• With Fibonacci heap as priority queue:

• |V | insert operations: O(|V |)
• |E | decreaseKey operations: O(|E |)
• |V | deleteMin operations: O(|V | log |V |)
• In total: O(|E |+ |V | log |V |)

Note that the running time is the same as for Prim’s Algorithm.

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!

s

a

t

1

-3

-5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!

s

0

a

1,b

t

−3,b
1

-3

-5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!

s

0

a

1,b

t

−3,b
1

-3

-5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!

s

0

a

1,b

t

−3,b
1

-3

-5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Vertex t is not updated because it was already visited.

Algorithms for Programming Contests - Week 04

SSSP

Dijkstra’s Algorithm

Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!

s

0

a

1,b

t

−3,b
1

-3

-5

v Active vertex

v Vertex in queue

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

• Published by Richard Bellman and Lester Ford in 1958 and 1956
respectively.

• Solves SSSP even if the graph has negative edge weights.

• Basic Idea: ”relax” all edges (i.e. update distances by considering
each edge), repeat |V | − 1 times

• Some constant-factor optimizations possible

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Algorithm 2 Bellman-Ford Algorithm (simplest version)

Input: Weighted Graph G = (V ,E , c) with no negative cycles
procedure Bellman-Ford(G , src)

for each vertex v ∈ V do
dist[v]←∞, prev[v]← null

end for
dist[src]← 0
for i = 1, 2, . . . , |V | − 1 do

for each (v ,w) ∈ E do
if dist[v] + c(v ,w) < dist[w] then

dist[w]← dist[v] + c(v ,w)
prev[w]← v

end if
end for

end for
end procedure

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm: Correctness

Lemma

Let v ∈ V s.t. there exists a shortest path from src to v containing at
most i edges. Then, after the i-th iteration of Bellman-Ford, dist[v] is
the length of this path.

• Note: If there are no negative cycles, for every v there exists a
shortest path from src to v containing at most |V | − 1 edges.

• But what if there are negative cycles?

• Idea: do another iteration. If there are still updates, there are
negative cycles.

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Negative Cycles

• If there are negative cycles in the graph, the distance between s
and t can become arbitrarily short.

• Detection of negative cycles becomes necessary.

s a

b

c

d

t
2

-1 -1

-1-1

2

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Algorithm 3 Bellman-Ford Algorithm (simplest version with negative cycle
detection)

Input: Weighted Graph G = (V ,E , c)
procedure Bellman-Ford(G , src)

for each vertex v ∈ V do
dist[v]←∞, prev[v]← null

end for
dist[src]← 0
for i = 1, 2, . . . , |V | − 1 do

for each (v ,w) ∈ E do
if dist[v] + c(v ,w) < dist[w] then

dist[w]← dist[v] + c(v ,w)
prev[w]← v

end if
end for

end for
for each (v ,w) ∈ E do

if dist[v] + c(v ,w) < dist[w] then
return Negative Cycle detected

end if
end for

end procedure

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm: Remarks

Negative Cycles:

• If one wants to find which nodes are reachable through some
negative cycle, don’t return, but update dist[w] to −∞. Then,
propagate, e.g. by iterating another |V | − 1 times.

• Keeping paths to negative cycles also possible without changing
complexity, but makes algorithm more complicated.

Constant-factor optimizations:

• Break loop once no edge relaxation changes anything

• Do not consider edges where the source vertex has not changed its
distance since last iteration → use queue Q to store vertices whose
distance has changed

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [s]

s

0

a

∞

b

∞

c

∞

d

∞

t

∞
4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [a,b]

s

0

a

4,s

b

1,s

c

∞

d

∞

t

∞
4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [b, c]

s

0

a

4,s

b

1,s

c

2,a

d

∞

t

∞
4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [c , a, d]

s

0

a

−1,b

b

1,s

c

−1,b

d

6,b

t

∞
4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [a, d , t]

s

0

a

−1,b

b

1,s

c

−1,b

d

6,b

t

4,c

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [d , t, c]

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

4,c

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [t, c]

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

3,d

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [c]

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

3,d

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = [t]

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

2,c

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = []

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

2,c

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Q = []

s

0

a

−1,b

b

1,s

c

−3,a

d

6,b

t

2,c

4

1

-2

5

-2
-2

5

-2

-3

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Algorithm 4 Bellman-Ford Algorithm (improved, no negative cycles)

Input: Weighted Graph G = (V ,E , c) with no negative cycles
procedure Bellman-Ford(G , src)

for each vertex v ∈ V do
dist[v]←∞, prev[v]← null

end for
dist[src]← 0
Q ← FIFO-Queue
Q.insert(src)
while Q is not empty do

v ← Q.pop()
for each neighbor w of v do

if dist[v] + c(v ,w) < dist[w] then
dist[w]← dist[v] + c(v ,w)
prev[w]← v
if w not in Q then

Q.push(w)
end if

end if
end for

end while
end procedure

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Negative Cycle Detection

• Idea: Process FIFO-Queue in phases.

• One phase = processing all nodes currently in the queue.

• After phase i , all shortest paths using at most i edges were detected.

• If there are nodes left in the queue after phase |V |, then there is a
negative cycle.

• Cycle can be constructed by recursively visiting the predecessors of a
node that is left in the queue after phase |V |.

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Algorithm 5 Bellman-Ford Algorithm (improved, negative cycle detection)

Input: Graph G = (V ,E , c)
procedure Bellman-Ford(G , src)

for each vertex v ∈ V do
dist[v]←∞, prev[v]← null

end for
dist[src]← 0
Q,Q ′ ← FIFO-Queue
Q.insert(src)
for phase = 1, 2, . . . , |V | do

while Q is not empty do
v ← Q.pop()
for each neighbor w of v do

if dist[v] + c(v ,w) < dist[w] then
dist[w]← dist[v] + c(v ,w)
prev[w]← v
if w not in Q ′ then

Q ′.push(w)
end if

end if
end for

end while
swap(Q,Q ′)

end for
if Q is not empty then

return there exists a negative cycle
end if

end procedure

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Initialization

s

0

a

∞

b

∞

c

∞

d

∞

t

∞
2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 1: Q = (s) −→ Q ′ = (a)

s

0

a

2,s

b

∞

c

∞

d

∞

t

∞
2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 2: Q = (a) −→ Q ′ = (b)

s

0

a

2,s

b

1,a

c

∞

d

∞

t

∞
2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 3: Q = (b) −→ Q ′ = (c)

s

0

a

2,s

b

1,a

c

0,b

d

∞

t

∞
2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 4: Q = (c) −→ Q ′ = (d , t)

s

0

a

2,s

b

1,a

c

0,b

d

−1,c

t

2,c

2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 5: Q = (d , t) −→ Q ′ = (a)

s

0

a

−2,d

b

1,a

c

0,b

d

−1,c

t

2,c

2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

Phase 6: Q = (a) −→ Q ′ = (b)

s

0

a

−2,d

b

−3,a

c

0,b

d

−1,c

t

2,c

2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Bellman-Ford Algorithm with Negative Cycles

After phase 6 = |V |: Q = (b)
The queue is not empty → negative cycle → predecessor backtracking

s

0

a

−2,d

b

−3,a

c

0,b

d

−1,c

t

2,c

2

-1 -1

-1-1

2

v Active vertex

v Vertex in queue

Active edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

SSSP

Bellman-Ford Algorithm

Analysis of Bellman-Ford Algorithm

Running time

Simple version: Obviously O(|V | |E |). Improved version:

• At most O(|V |) phases.
• One phase takes at most O(|V |+ |E |) operations.

• Pop all |V | nodes, consider all |E | edges, push all |V | nodes.
• In total: O(|V | |E |)

Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

How to solve APSP?

• Naive approach: Executing Dijkstra algorithm |V | times
• Running time: O(|V | |E |+ |V |2 log |V |)
• Can neither handle negative edge weights nor negative cycles.

• Floyd-Warshall Algorithm:
• Running time: O(|V |3)
• Can handle negative edge weights.
• Negative cycle detection possible.
• Easy to code.

⇒ Apply the naive approach if the graph is sparse!

Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

• Represent graph in distance matrix.

• Idea: iteratively try to shortcut over intermediate node

s

a

b

c

d

t

4

1

2

3

2
2

1

2

5

dist =



s a b c d t

s 0 4 1 ∞ ∞ ∞
a ∞ 0 ∞ 2 ∞ ∞
b ∞ 2 0 2 1 ∞
c ∞ ∞ ∞ 0 ∞ 3
d ∞ ∞ ∞ 2 0 5
t ∞ ∞ ∞ ∞ ∞ 0



Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

• When considering a vertex k as intermediate node, there are two
possibilities:

• Shortest path between i and j does not go over k.
• Shortest path between i and j uses k as intermediate node.

• Update: dist[i][j] = min{dist[i][j], dist[i][k] + dist[k][j]}

s

a

b

c

d

t

4

1

2

3

2
2

1

2

5

dist =



s a b c d t

s 0 4 1 ∞ ∞ ∞
a ∞ 0 ∞ 2 ∞ ∞
b ∞ 2 0 2 1 ∞
c ∞ ∞ ∞ 0 ∞ 3
d ∞ ∞ ∞ 2 0 5
t ∞ ∞ ∞ ∞ ∞ 0



Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Algorithm 6 Floyd-Warshall Algorithm

Input: Graph G = (V ,E , c)
procedure Floyd-Warshall(G)

dist[][]← array of size |V | × |V | initialized to ∞
for each vertex v ∈ V do

dist[v][v]← 0
end for
for each edge (u, v) ∈ E do

dist[u][v]← c(u,w)
end for
for each vertex k ∈ V do

for each vertex i ∈ V do
for each vertex j ∈ V do

if dist[i][k] + dist[k][j] < dist[i][j] then
dist[i][j]← dist[i][k] + dist[k][j]

end if
end for

end for
end for

end procedure

Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Analysis of Floyd-Warshall Algorithm

Running time

• Consider each of the O(|V |) vertices as intermediate node.

• Check if the shortest path between all O(|V |2) vertex pairs becomes
shorter by passing over intermediate node.

• In total: O(|V |3)

Algorithms for Programming Contests - Week 04

APSP

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

• Order of loops matter: k → i → j

• Negative cycles exists ⇔ negative entries on diagonal of matrix.

• Shortest path tree can be reconstructed by bookkeeping the update
steps in another |V | × |V | matrix.

• Floyd-Warshall algorithm is an example of Dynamic Programming
(discussed later in class).

• Other application: computation of transitive closure.

Algorithms for Programming Contests - Week 04

Longest Path Problem

Longest Path Problem

• Longest Path Problem: Find a simple path of maximum length
between two nodes in a graph.

• NP-hard for general graphs.

• Polynomial time algorithms exist for directed acyclic graphs.

• Application in DAGs: Finding critical paths in scheduling problems.

Algorithms for Programming Contests - Week 04

Longest Path Problem

Longest Path Problem

• Approach 1:
• Negate all edge weights in given DAG.
• The shortest path in the modified graph is the longest path in the

original graph.
• Use Bellman-Ford to compute shortest path.
• Complexity: O(|V ||E |)

• Approach 2:
• Compute topological order of nodes in DAG.
• Process nodes in topological order.
• For each node v in the DAG check whether the distance to any of its

successors can be increased by passing over v .
• Complexity: O(|V |+ |E |)

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

−∞

b

−∞

c

−∞

d

−∞

t

−∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

−∞

d

−∞

t

−∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

3,b

d

2,b

t

−∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

6,a

d

2,b

t

−∞
4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

6,a

d

2,b

t

7,d

4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

6,a

d

2,b

t

9,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

6,a

d

2,b

t

9,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

Algorithms for Programming Contests - Week 04

Longest Path Problem

Approach 2

Longest Path in DAG

Topological order: s,b,a,d,c,t

s

0

a

4,s

b

1,s

c

6,a

d

2,b

t

9,c

4

1

2

3

2
2

1

2

5

v Active vertex

v Visited vertex

Active edge

Visited edge

42 Distance to s

x Predecessor

	Graphs
	Shortest Paths
	SSSP
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm

	APSP
	Floyd-Warshall Algorithm

	Longest Path Problem
	Approach 2

