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Graphs

A weighted graph is a tuple G = (V, E, c¢), where

® V is a non-empty set of vertices,
® [ is a set of edges,

® c: E — R is the weight function.

A simple path from vy to v, is a sequence p = w1 V5 ...V, such that
(vi,vit1) € E for all i € [1,n — 1], and v; # v; for all i # j.

The length of a path is the sum of its edge weights.

Note: Length of a path can also mean the number of edges it traverses.
Which one is meant has to be understood from context.
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Shortest Path Problem - Classification

¢ Single Pair Shortest Path (SPSP):
Find a shortest path between s and t.
¢ Single Source Shortest Path (SSSP):
Find a shortest path between s and all the other nodes.

¢ All Pairs Shortest Path (APSP):
Find a shortest path between all pairs of nodes.
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Shortest Paths

Shortest Path Problem - Applications

® transportation

® networking

plant and facility layout
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Dijkstra’s Algorithm

Published by Edsger W. Dijkstra in 1959.
Solves the SSSP for graphs with non-negative weights.

Idea: Graph exploration similar to DFS/BFS, but instead of having a
stack/queue as worklist, use priority queue.

® Priority given by distance to source state.

® Keep track of predecessors to construct shortest paths.
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Dijkstra’s Algorithm
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4 .
v Vertex in queue
v Visited vertex
_— Active edge
1 Visited edge

42 Distance to s

X Predecessor



Algorithms for Programming Contests - Week 04
SSSP
(- Dijkstra’s Algorithm

Dijkstra’s Algorithm

Find the shortest path between s and t!
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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test Path Tree
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test Path Tree
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Algorithm 1 Dijkstra’s Algorithm
Input: Graph G = (V,E,c)
procedure DIJKSTRA(G, src)
for each vertex v € V do
dist[v] < oo, prev[v] < null, visited[v] < false
end for
dist[src] < 0
PQ < PriorityQueue over V
for each vertex v € V do
PQ.insert(v, dist[v])
end for
while PQ is not empty do
v < PQ.deleteMin()
visited[v] < true
for each neighbor w of v do
if not visited[w] and dist[v] + c(v, w) < dist[w] then
dist[w] « dist[v] + c(v, w)
PQ.decreaseKey(w, dist[w])
prev[w] - v
end if
end for
end while
end procedure
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Analysis of Dijkstra’s Algorithm

Running time

With Fibonacci heap as priority queue:
|V| insert operations: O(|V])

|E| decreaseKey operations: O(|E|)
|V| deleteMin operations: O(|V|log|V/|)
In total: O(|E|+ |V|log|V])

Note that the running time is the same as for Prim’s Algorithm.
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Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!
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Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!
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Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!
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Limitations of Dijkstra’s Algorithm

Dijkstra’'s Algorithm may not work for graphs with negative edge weights!
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Vertex t is not updated because it was already visited.
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Limitations of Dijkstra’s Algorithm

Dijkstra’s Algorithm may not work for graphs with negative edge weights!
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Bellman-Ford Algorithm

® Published by Richard Bellman and Lester Ford in 1958 and 1956
respectively.

® Solves SSSP even if the graph has negative edge weights.

® Basic Idea: "relax” all edges (i.e. update distances by considering
each edge), repeat |V/| — 1 times

® Some constant-factor optimizations possible
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Bellman-Ford Algorithm

Algorithm 2 Bellman-Ford Algorithm (simplest version)

Input: Weighted Graph G = (V, E, ¢) with no negative cycles
procedure BELLMAN-FORD(G, src)
for each vertex v € V do
dist[v] « oo, prev[v] < null
end for
dist[src] < 0
fori=12..., V| —1do
for each (v, w) € E do
if dist[v] + c(v, w) < dist[w] then
dist[w] « dist[v] + c(v, w)
prev[w] < v
end if
end for
end for
end procedure
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Bellman-Ford Algorithm: Correctness

Lemma

Let v € V s.t. there exists a shortest path from src to v containing at

most i edges. Then, after the i-th iteration of Bellman-Ford, dist[v] is
the length of this path.

® Note: If there are no negative cycles, for every v there exists a
shortest path from src to v containing at most |V/| — 1 edges.

® But what if there are negative cycles?

® |dea: do another iteration. If there are still updates, there are
negative cycles.
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Negative Cycles

® |f there are negative cycles in the graph, the distance between s
and t can become arbitrarily short.

® Detection of negative cycles becomes necessary.

\®1

O— O
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Bellman-Ford Algorithm

Algorithm 3 Bellman-Ford Algorithm (simplest version with negative cycle
detection)
Input: Weighted Graph G = (V, E, )
procedure BELLMAN-FORD(G, src)
for each vertex v € V do
dist[v] < oo, prev|v] < null
end for
dist[src] < 0
fori=12..., V| —1do
for each (v, w) € E do
if dist[v] + c(v, w) < dist[w] then
dist[w] « dist[v] + c(v, w)
prev[w] - v
end if
end for
end for
for each (v, w) € E do
if dist[v] + c(v, w) < dist[w] then
return Negative Cycle detected
end if
end for
end procedure
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Bellman-Ford Algorithm: Remarks

Negative Cycles:

® |f one wants to find which nodes are reachable through some
negative cycle, don't return, but update distjw] to —oco. Then,
propagate, e.g. by iterating another |V| — 1 times.

® Keeping paths to negative cycles also possible without changing
complexity, but makes algorithm more complicated.

Constant-factor optimizations:
® Break loop once no edge relaxation changes anything

® Do not consider edges where the source vertex has not changed its
distance since last iteration — use queue @ to store vertices whose
distance has changed
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm

Q =a,d,t]

@ Active vertex
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Bellman-Ford Algorithm

Q =[d,t,c]

@ Active vertex
5

4,c % Vertex in queue
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Bellman-Ford Algorithm

Q = [t,c]
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Bellman-Ford Algorithm

Q =[d]

Y @ Active vertex
3,d v Vertex in queue

-2 @ — Active edge

5
42 Distance to s
-3 X Predecessor
d

1, 6,b




Algorithms for Programming Contests - Week 04
SSSP
L Beliman-Ford Algorithm

Bellman-Ford Algorithm

Q = [t]
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm
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Algorithm 4 Bellman-Ford Algorithm (improved, no negative cycles)
Input: Weighted Graph G = (V, E, ¢) with no negative cycles
procedure BELLMAN-FORD(G, src)
for each vertex v € V do
dist[v] < oo, prev[v] < null
end for
dist[src] < 0
Q <+ FIFO-Queue
Q.insert(src)
while Q is not empty do
v ¢+ Q.pop()
for each neighbor w of v do
if dist[v] + c(v, w) < dist[w] then
dist[w] < dist[v] + c(v, w)
prevw] < v
if w not in Q then

Q.push(w)
end if
end if
end for
end while

end procedure
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Negative Cycle Detection

® |dea: Process FIFO-Queue in phases.
® One phase = processing all nodes currently in the queue.
® After phase i, all shortest paths using at most / edges were detected.

® |f there are nodes left in the queue after phase |V/|, then there is a

negative cycle.

® Cycle can be constructed by recursively visiting the predecessors of a
node that is left in the queue after phase |V/.
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Algorithm 5 Bellman-Ford Algorithm (improved, negative cycle detection)
Input: Graph G = (V,E,c)
procedure BELLMAN-FORD(G, src)
for each vertex v € V do
dist[v] « oo, prev[v] « null
end for
dist[src] < 0
Q, Q" + FIFO-Queue
Q.insert(src)

for phase = 1,2,...,|V| do
while Q is not empty do
v < Q.pop()

for each neighbor w of v do
if dist[v] + c(v, w) < dist[w] then
dist[w] « dist[v] + c(v,w)
prev[w] « v
if w not in Q' then

Q' .push(w)
end if
end if
end for
end while
swap(Q, Q')

end for
if Q is not empty then
return there exists a negative cycle
end if
end procedure
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Bellman-Ford Algorithm with Negative Cycles

Initialization

@ Active vertex

% Vertex in queue
o0
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Bellman-Ford Algorithm with Negative Cycles

Phase 1: Q =(s) — Q' = (a)

@ Active vertex
/ % Vertex in queue
— Active edge

42 Distance to s

X Predecessor
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Bellman-Ford Algorithm with Negative Cycles

Phase 2: @ = (a) — Q' = (b)

1,a

b @ Active vertex

-1 -1
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0 2,s 00 00
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Bellman-Ford Algorithm with Negative Cycles

Phase 3: @ = (b) — Q' = (¢)

@ Active vertex
\% Vertex in queue

( ) @ — Active edge

42 Distance to s
X Predecessor
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Bellman-Ford Algorithm with Negative Cycles

Phase 4: Q@ =(c) — Q' =(d,t)

1,a

@ Active vertex
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% Vertex in queue
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Bellman-Ford Algorithm with Negative Cycles

Phase 5: @ = (d,t) — Q' = (a)

1,a

@ Active vertex
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Bellman-Ford Algorithm with Negative Cycles

Phase 6: @ = (a) — Q' = (b)

@ Active vertex

% Vertex in queue
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42 Distance to s
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Bellman-Ford Algorithm with Negative Cycles

After phase 6 = |V[|: Q = (b)
The queue is not empty — negative cycle — predecessor backtracking

—3,a
@ Active vertex
1 .
% Vertex in queue
0,b 2.c
2 @ — Active edge
42 Distance to s
-1 -1 X Predecessor
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Analysis of Bellman-Ford Algorithm

Running time

Simple version: Obviously O(| V| |E|). Improved version:
® At most O(|V/|) phases.
® One phase takes at most O(|V/| + |E|) operations.

Pop all | V| nodes, consider all |E| edges, push all |V| nodes.
® In total: O(|V||E|)
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Floyd-Warshall Algorithm

How to solve APSP?

® Naive approach: Executing Dijkstra algorithm |V/| times
® Running time: O(|V||E| +|V|*log|V|)
® Can neither handle negative edge weights nor negative cycles.

® Floyd-Warshall Algorithm:

® Running time: O(|V|?)
Can handle negative edge weights.
Negative cycle detection possible.
Easy to code.

= Apply the naive approach if the graph is sparse!
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Floyd-Warshall Algorithm

® Represent graph in distance matrix.

® |dea: iteratively try to shortcut over intermediate node
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Floyd-Warshall Algorithm

When considering a vertex k as intermediate node, there are two
possibilities:

® Shortest path between i and j does not go over k.
® Shortest path between i and j uses k as intermediate node.

e Update: dist[i][j] = min{dist[/][/], dist[i/][k] + dist[k][/]}

2 ) 2 @ dist =
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Algorithm 6 Floyd-Warshall Algorithm
Input: Graph G = (V,E,c)
procedure FLOYD-WARSHALL(G)

dist[][] - array of size |V/| x |V/| initialized to co
for each vertex v € V do

dist[v][v] +- 0
end for
for each edge (u,v) € E do

dist[u][v] < ¢c(u, w)
end for
for each vertex k € V do

for each vertex i € V do

for each vertex j € V do
if dist[/][k] + dist[K][j] < dist[/][j] then
dist[i][j] < dist[i][k] + dist[K][/]
end if
end for

end for

end for
end procedure
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Analysis of Floyd-Warshall Algorithm

Running time

® Consider each of the O(|V|) vertices as intermediate node.

e Check if the shortest path between all O(|V|?) vertex pairs becomes

shorter by passing over intermediate node.
* In total: O(|V]?)
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Floyd-Warshall Algorithm

Order of loops matter: k — i — j
® Negative cycles exists < negative entries on diagonal of matrix.

® Shortest path tree can be reconstructed by bookkeeping the update
steps in another | V| x | V| matrix.

Floyd-Warshall algorithm is an example of Dynamic Programming
(discussed later in class).

Other application: computation of transitive closure.
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Longest Path Problem

® Longest Path Problem: Find a simple path of maximum length
between two nodes in a graph.

® NP-hard for general graphs.
® Polynomial time algorithms exist for directed acyclic graphs.

® Application in DAGs: Finding critical paths in scheduling problems.



Algorithms for Programming Contests - Week 04

Longest Path Problem

Longest Path Problem

® Approach 1:
® Negate all edge weights in given DAG.
® The shortest path in the modified graph is the longest path in the
original graph.
® Use Bellman-Ford to compute shortest path.
® Complexity: O(|V||E])

® Approach 2:

® Compute topological order of nodes in DAG.

® Process nodes in topological order.

For each node v in the DAG check whether the distance to any of its
successors can be increased by passing over v.

® Complexity: O(|V|+ |E])
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Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t
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est Path in DAG

Topological order: s,b,a,d,c,t
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est Path in DAG

Topological order: s,b,a,d,c,t
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Longest Path Problem
Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t
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Longest Path Problem
Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t

2
a
4
0 7,d

6,a
C
i 3
‘o 30
2
5
d
2.b

; C/
b
1

©

42

Active vertex

Visited vertex
Active edge
Visited edge
Distance to s

Predecessor




Algorithms for Programming Contests - Week 04

Longest Path Problem
Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t
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Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t
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Longest Path Problem
Approach 2

est Path in DAG

Topological order: s,b,a,d,c,t
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