
Algorithms for Programming Contests - Week 03

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

October 28, 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 03

Graphs

Graphs

Algorithms for Programming Contests - Week 03

Graphs

Graphs

A graph is a tuple G = (V ,E), where V is a non-empty set of vertices
and E is a set of edges.

A directed graph is a graph with E ⊆ V × V = {(u, v) | u, v ∈ V }.

An undirected graphs is a graph with E ⊆ {{u, v} | u, v ∈ V } =:
(
V
2

)
.

For a vertex v , we denote the successors of v by
vE := {u | (v , u) ∈ E} for directed graphs;
vE := {u | {v , u} ∈ E} for undirected graphs.

Algorithms for Programming Contests - Week 03

Graphs

• A path from v1 to vn is a sequence p = v1v2 . . . vn such that
vi+1 ∈ viE for all i ∈ [1, n − 1]. The path is called simple if vi ̸= vj
for all i ̸= j . Note: ε is a path from v1 to v1.

• A cycle is a simple path v1v2 . . . vn s.t. v1 ∈ vnE and, only in the
undirected case, n ≥ 3.

• A graph is cyclic if there exists a cycle, otherwise it is acyclic.

• A directed graph is strongly connected if for every pair of vertices
u, v ∈ V , there is a path from u to v .

• A directed graph is connected if (V ,E ∪ ET) is strongly connected,
where ET := {(v , u) | (u, v) ∈ E}.

• For a directed graph, a strongly connected component (SCC) is a
maximal set V ′ ⊆ V s.t. (V ′,E ∩ (V ′ × V ′)) is strongly connected.

• A directed acyclic graph is also called a DAG.

• Note: For any directed graph, merging each SCC into a single node
results in a DAG. (Exercise: prove!)

Algorithms for Programming Contests - Week 03

Graphs

• A path from v1 to vn is a sequence p = v1v2 . . . vn such that
vi+1 ∈ viE for all i ∈ [1, n − 1]. The path is called simple if vi ̸= vj
for all i ̸= j . Note: ε is a path from v1 to v1.

• A cycle is a simple path v1v2 . . . vn s.t. v1 ∈ vnE and, only in the
undirected case, n ≥ 3.

• A graph is cyclic if there exists a cycle, otherwise it is acyclic.

• An undirected graph is connected if for every pair of vertices
u, v ∈ V , there is a path from u to v .

• For an undirected graph, a connected component is a maximal

(w.r.t. set inclusion) set V ′ ⊆ V s.t. (V ′,E ∩
(
V ′

2

)
) is connected.

• An undirected graph is a tree if it is acyclic and connected. For any
tree (V ,E), we have |V | = |E |+ 1.

• An undirected acyclic graph is called a forest. Note that each
connected component of a forest is a tree.

• A directed graph is strongly connected if for every pair of vertices
u, v ∈ V , there is a path from u to v .

• A directed graph is connected if (V ,E ∪ ET) is strongly connected,
where ET := {(v , u) | (u, v) ∈ E}.

• For a directed graph, a strongly connected component (SCC) is a
maximal set V ′ ⊆ V s.t. (V ′,E ∩ (V ′ × V ′)) is strongly connected.

• A directed acyclic graph is also called a DAG.
• Note: For any directed graph, merging each SCC into a single node

results in a DAG. (Exercise: prove!)

Algorithms for Programming Contests - Week 03

Graphs

• A path from v1 to vn is a sequence p = v1v2 . . . vn such that
vi+1 ∈ viE for all i ∈ [1, n − 1]. The path is called simple if vi ̸= vj
for all i ̸= j . Note: ε is a path from v1 to v1.

• A cycle is a simple path v1v2 . . . vn s.t. v1 ∈ vnE and, only in the
undirected case, n ≥ 3.

• A graph is cyclic if there exists a cycle, otherwise it is acyclic.

• A directed graph is strongly connected if for every pair of vertices
u, v ∈ V , there is a path from u to v .

• A directed graph is connected if (V ,E ∪ ET) is strongly connected,
where ET := {(v , u) | (u, v) ∈ E}.

• For a directed graph, a strongly connected component (SCC) is a
maximal set V ′ ⊆ V s.t. (V ′,E ∩ (V ′ × V ′)) is strongly connected.

• A directed acyclic graph is also called a DAG.

• Note: For any directed graph, merging each SCC into a single node
results in a DAG. (Exercise: prove!)

Algorithms for Programming Contests - Week 03

Graphs

Graphs: basic interface

Graph operations

• Make graph: build a graph from a list of vertices and edges.

• Get vertices: Iterate over all vertices v ∈ V .

• Get edges: Iterate over all edges e ∈ E .

• Test edge: Test existence of an edge (u, v) ∈ E .

• Get successors: For a vertex v , iterate over all successors u ∈ vE .

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Graph representation

• Adjacency list: For each vertex v , store a list of successors vE .

• Adjacency matrix: For each pair of vertices u, v , store existence of
an edge (u, v) ∈ E .

Which one to choose?

• Usually, adjacency lists are better.

• Adjacency matrices may be preferred if:
• the graph is dense, i.e. |E | is close to |V |2,
• edge testing is used extensively or
• performance difference is irrelevant.

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency matrix

struct Graph {

n: usize ,

adj_matrix: Vec <Vec <bool >>,

}

impl Graph {

fn has_edge (&self , u: usize , v: usize) -> bool {

return self.adj_matrix[u][v];

}

fn iter_edges (&self) -> Vec <(usize , usize)> {

let mut result = vec! [];

for u in 0.. self.n {

for v in 0.. self.n {

if self.adj_matrix[u][v] {

result.push((u, v));

}

}

}

return result;

}

}

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

can be made faster by
using binary search or
hash table!

struct Graph {

n: usize ,

adj_list: Vec <Vec <usize >>,

}

impl Graph {

fn has_edge (&self , u: usize , v: usize) -> bool {

return self.adj_list[u]. contains (&v);

}

fn iter_edges (&self) -> Vec <(usize , usize)> {

let mut result = vec! [];

for u in 0.. self.n {

for &v in self.adj_list[u].iter() {

result.push((u, v));

}

}

return result;

}

}

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

can be made faster by
using binary search or
hash table!

struct Graph {

n: usize ,

adj_list: Vec <Vec <usize >>,

}

impl Graph {

fn has_edge (&self , u: usize , v: usize) -> bool {

return self.adj_list[u]. contains (&v);

}

fn iter_edges (&self) -> Vec <(usize , usize)> {

let mut result = vec! [];

for u in 0.. self.n {

for &v in self.adj_list[u].iter() {

result.push((u, v));

}

}

return result;

}

}

Algorithms for Programming Contests - Week 03

Graph traversal

Graph traversal

Algorithms for Programming Contests - Week 03

Graph traversal

Graph traversal

Graph traversal

• Visit vertices in certain order.

• Assign vertices an order o : V → N ∪ {∞} of discovery time.

• Possibly keep track of other information such as finishing time,
predecessor, etc.

Usages

• Find vertex with certain properties.

• Check property for all vertices.

• Find (strongly) connected components.

• Check for cycles.

• . . .

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

Basic Idea:

• Manage discovered vertices that still need to be explored in a stack.

• Repeat: pop element from stack and push its successors to stack.

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a b c

d e

f g h

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

∞

b

∞

c

∞

d∞ e

∞

f

∞

g

∞

h

∞

S = [a]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d∞ e

∞

f

∞

g

∞

h

∞

S = [b, d, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d∞ e

∞

f

∞

g

∞

h

∞

S = [b, d, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d∞ e

∞

f

∞

g

2

h

∞

S = [b, d, f]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d∞ e

∞

f

3

g

2

h

∞

S = [b, d, a]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d∞ e

∞

f

3

g

2

h

∞

S = [b, d]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

∞

c

∞

d4 e

∞

f

3

g

2

h

∞

S = [b, f, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

∞

d4 e

∞

f

3

g

2

h

∞

S = [e, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

∞

d4 e

6

f

3

g

2

h

∞

S = [g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

∞

d4 e

6

f

3

g

2

h

∞

S = [c]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

7

d4 e

6

f

3

g

2

h

∞

S = [e, h]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

7

d4 e

6

f

3

g

2

h

8

S = [e, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Depth First Search (DFS)

a

1

b

5

c

7

d4 e

6

f

3

g

2

h

8

S = []

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

DFS Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V ,E)
procedure DFS(G)

for each vertex v ∈ V do
o(v)←∞

S ← EmptyStack()
i ← 1
for each vertex v ∈ V do

if o(v) =∞ then
DFSExplore(G , v)

procedure DFSExplore(G , v)
S .push(v)
while S is not empty do

v = S .pop()
if o(v) =∞ then

o(v)← i ;
i ← i + 1
for each u ∈ vE do

S .push(u)

Running time: O(|V |+ |E |)

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

DFS Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V ,E)
procedure DFS(G)

for each vertex v ∈ V do
o(v)←∞

S ← EmptyStack()
i ← 1
for each vertex v ∈ V do

if o(v) =∞ then
DFSExplore(G , v)

procedure DFSExplore(G , v)
S .push(v)
while S is not empty do

v = S .pop()
if o(v) =∞ then

o(v)← i ;
i ← i + 1
for each u ∈ vE do

S .push(u)

Running time: O(|V |+ |E |)

Algorithms for Programming Contests - Week 03

Graph traversal

Depth First Search

Cycle Detection using DFS

DFS can be modified to detect cycles: return true iff a ”back-edge” is
found (note that for undirected graphs, this back-edge must not be the
edge from the predecessor).

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

Replacing worklist stack by a queue results in Breadth First Search (BFS).

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a b c

d e

f g h

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

∞

b

∞

c

∞

d∞ e

∞

f

∞

g

∞

h

∞

S = [a]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

0

c

∞

d0 e

∞

f

∞

g

0

h

∞

S = [b, d, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

0

c

∞

d0 e

∞

f

∞

g

0

h

∞

S = [b, d, g]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

∞

d0 e

0

f

∞

g

0

h

∞

S = [d, g, e]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

∞

d3 e

0

f

0

g

0

h

∞

S = [g, e, f]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

∞

d3 e

0

f

0

g

4

h

∞

S = [e, f]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

∞

d3 e

5

f

0

g

4

h

∞

S = [f]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

∞

d3 e

5

f

6

g

4

h

∞

S = []

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

7

d3 e

5

f

6

g

4

h

0

S = [h]

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

Breadth First Search (BFS)

a

1

b

2

c

7

d3 e

5

f

6

g

4

h

8

S = []

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V ,E)
procedure BFS(G)

for each vertex v ∈ V do
o(v)←∞

S ← EmptyQueue()
i ← 1
for each vertex v ∈ V do

if o(v) =∞ then
BFSExplore(G , v)

procedure BFSExplore(G , v)
S .enqueue(v)
while S is not empty do

v = S .dequeue()
o(v)← i ;
i ← i + 1
for each u ∈ vE do

if o(u) =∞ then
o(u)← 0;
S .enqueue(u)

Running time: O(|V |+ |E |)

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V ,E)
procedure BFS(G)

for each vertex v ∈ V do
o(v)←∞

S ← EmptyQueue()
i ← 1
for each vertex v ∈ V do

if o(v) =∞ then
BFSExplore(G , v)

procedure BFSExplore(G , v)
S .enqueue(v)
while S is not empty do

v = S .dequeue()
o(v)← i ;
i ← i + 1
for each u ∈ vE do

if o(u) =∞ then
o(u)← 0;
S .enqueue(u)

Running time: O(|V |+ |E |)

Algorithms for Programming Contests - Week 03

Graph traversal

Breadth First Search

BFS: Remarks

• Note that vertices in worklist are automatically ordered by distance
to source state.

• One can also keep track of the distances to the source state
explicitly.

• The shortest paths can be obtained by keeping track of predecessors.

• Well-known generalization for directed graphs with non-negative
weights: Dijkstra (essentially priority queue instead of FIFO queue
for worklist)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological sort (TS)

Topological order

For a directed graph G = (V ,E), a topological order is an assignment
o : V → N such that for all (u, v) ∈ E , we have o(u) < o(v).

• Topological order exists if and only if graph is acyclic (i.e. a DAG).

• Topological order may not be unique.

• Topological sort: Problem of finding a topological order.

Usages

• Resolving dependencies.

• Instruction/task scheduling.

• Detecting cycles.

• Find shortest paths from a source in some weighted DAG in linear
time.

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

a

1

b

3

c

2

d

4

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

a

1

b

3

c

2

d

4

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

s

2

a

6

b

5

c

4

d

7

e

1

f

3

→ not unique!

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

s

2

a

6

b

5

c

4

d

7

e

1

f

3

→ not unique!

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

s

2

a

6

b

5

c

4

d

7

e

1

f

3

→ not unique!

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS

Idea:

1 For every node, store the number of predecessors.

2 Choose a node with 0 predecessors and remove it from the graph.

3 Repeat until no nodes with 0 predecessors left.

4 ⇒ The order in which the nodes are removed is topological

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a b c

d e

f g h

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

0

b

2

c

0

d1 e

2

f

3

g

5

h

1

S = [a, c]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

0

b

2

c

0

d1 e

2

f

3

g

5

h

1

S = [a, c]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1, 0

b

1

c

0

d0 e

2

f

2

g

4

h

1

S = [c, d]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

1

c

0

d2,0 e

2

f

1

g

3

h

1

S = [c]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

0

c

3,0

d2,0 e

1

f

1

g

3

h

0

S = [b, h]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

0

c

3,0

d2,0 e

1

f

1

g

2

h

4,0

S = [b]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

5,0

c

3,0

d2,0 e

0

f

1

g

1

h

4,0

S = [e]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

5,0

c

3,0

d2,0 e

6,0

f

1

g

0

h

4,0

S = [g]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

5,0

c

3,0

d2,0 e

6,0

f

0

g

7,0

h

4,0

S = [f]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

a

1,0

b

5,0

c

3,0

d2,0 e

6,0

f

8,0

g

7,0

h

4,0

S = []

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V ,E)
procedure TS(G)

for each vertex v ∈ V do
o(v)←∞
▷ count predecessors
pre(v)← |{u | v ∈ uE}|

S ← EmptyQueue()
i ← 1
for each vertex v ∈ V do

if pre(v) = 0 then
TSExplore(G , v)

procedure TSExplore(G , v)
if o(v) =∞ then

S .push(v)

while S is not empty do
v = S .pop()
o(v)← i ; i ← i + 1
for each u ∈ vE do

pre(u)← pre(u)− 1
if pre(u) = 0 then

S .push(u)

Running time: O(|V |+ |E |)
(For that, need to count predecessors in linear time...)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V ,E)
procedure TS(G)

for each vertex v ∈ V do
o(v)←∞
▷ count predecessors
pre(v)← |{u | v ∈ uE}|

S ← EmptyQueue()
i ← 1
for each vertex v ∈ V do

if pre(v) = 0 then
TSExplore(G , v)

procedure TSExplore(G , v)
if o(v) =∞ then

S .push(v)

while S is not empty do
v = S .pop()
o(v)← i ; i ← i + 1
for each u ∈ vE do

pre(u)← pre(u)− 1
if pre(u) = 0 then

S .push(u)

The graph is cyclic iff unvisited vertices (v ∈ V with o(v) =∞)
remain.

Running time: O(|V |+ |E |)
(For that, need to count predecessors in linear time...)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V ,E)
procedure TS(G)

for each vertex v ∈ V do
o(v)←∞
▷ count predecessors
pre(v)← |{u | v ∈ uE}|

S ← EmptyQueue()
i ← 1
for each vertex v ∈ V do

if pre(v) = 0 then
TSExplore(G , v)

procedure TSExplore(G , v)
if o(v) =∞ then

S .push(v)

while S is not empty do
v = S .pop()
o(v)← i ; i ← i + 1
for each u ∈ vE do

pre(u)← pre(u)− 1
if pre(u) = 0 then

S .push(u)

Running time: O(|V |+ |E |)
(For that, need to count predecessors in linear time...)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS: Remarks

Another possible way of implementing TS (again in linear time) is using
DFS:

• Run modified version, where instead of the discovery time, the finish
time of each vertex is returned

• A node finished if all its successors have been removed from the
FIFO queue

Algorithms for Programming Contests - Week 03

SCC Discovery

SCC Discovery

Algorithms for Programming Contests - Week 03

SCC Discovery

SCC Discovery

Not in the scope of our course, but still worth mentioning:

SCC Discovery

Given a graph G = (V ,E), return

1 all SCCs and

2 (optionally) a topological order on the SCCs

• This problem can still be solved in O(|V |+ |E |)
• One algorithm: Tarjan’s SCC Discovery

• Another algorithm:

1 Run DFS, recording finish times
2 Run DFS in GT , where GT is G but with all edges reversed, and in

the main loop (where DFSExplore is called) consider vertices in
decreasing finish time order of first DFS

3 The SCCs are the vertices of each tree explored in the second DFS
search

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Minimum spanning trees

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Minimum spanning trees (MST)

Let G = (V ,E) be a graph. A graph (V ′,E ′) with V ′ ⊆ V , E ′ ⊆ E is
called subgraph of G . It is spanning if V ′ = V . Sometimes, we identify a
spanning subgraph (V ,E ′) with its edge set E ′.

Spanning tree

For an undirected graph G = (V ,E), a spanning tree of G is a spanning
subgraph which is a tree.

Weighted graphs

We now consider graphs with a weight function w : E → R on the edges.
For a subset of edges E ′ ⊆ E , we define w(E ′) :=

∑
e∈E ′ w(e).

Minimum (weight) spanning tree

For an undirected graph G = (V ,E) with a weight function w : E → R,
a minimum spanning tree (MST) is a spanning tree S of G such that for
all spanning trees T of G , we have w(S) ≤ w(T).

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Minimum spanning trees (MST)

• Spanning trees only exist for connected graphs.

• Otherwise, a spanning tree exists for each connected component.

• All spanning trees of a graph have the same number of edges.

• Negative weights can be avoided by adding a constant to all weights.

• Maximum spanning tree can be obtained with w ′(e) = −w(e).

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Kruskal and Prim

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Kruskal’s algorithm

Algorithm 4 Kruskal’s algorithm

Input: Undirected graph G = (V ,E)
procedure Kruskal(G)

S ← ∅ ▷ Current set of edges
L← List of edges e ∈ E sorted in increasing order by w(e)
U ← Union-Find structure initialized over set V
for each edge (u, v) in L in order do

▷ Test if vertices are in different components
if U.find(u) ̸= U.find(v) then

▷ If yes, add edge to MST and merge components
U.union(u, v)
S ← S ∪ {e}

Iff vertices in different components remain, the graph is not connected.
(Note that in that case, a minimum spanning forest is constructed.)

Remark: Kruskal’s algorithm is an instance of a greedy algorithm. Greedy
algorithms can be shown to be correct for (and only for) matroids.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Kruskal’s algorithm

Analysis of Kruskal’s algorithm

Running time

• Sorting of edges: O(|E | log |E |)
• With α as the inverse Ackermann function, i.e. α = f −1 with
f (n) = A(n, n):

• 2 |E | find operations: O(|E |α(|V |))
• |V | union operations: O(|V |α(|V |))
• In total: O(|E | log |E |)

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Kruskal’s algorithm

Proof of correctness for Kruskal’s algorithm

Lemma

Let T ⊆ E be a set of edges such that there is a minimum spanning tree
S of G with T ⊆ S.
Let e ∈ E \ T be an edge such that T ∪ {e} does not create a cycle,
with e having minimal weight among all of these edges.
Then, there is a minimum spanning tree S ′ of G such that T ∪ {e} ⊆ S ′.

Proof.

When e ∈ S , then S ′ := S fulfills the requirement.
When e /∈ S , then S ∪ {e} has a cycle c , and there is an edge f ̸= e in c
that is not in T (otherwise adding e to T would create a cycle). Then
S ′ := S \ {f } ∪ {e} is a also a spanning tree, and w(S ′) ≤ w(S), as
w(e) ≤ w(f). Hence, as S is a minimum spanning tree, S ′ is also a
minimium spanning tree.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Kruskal and Prim

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Prim: Implementation

• Use 3 colors for the vertices:
• black (finished node — already part of the MST)
• grey (discovered node – at least one connection to a black node)
• white (unknown node — no connection to initial node found yet)

1 Start at a single node, keep track of encountered nodes.

2 Choose a grey node that is closest to any black node, color it black
and all its white neighbors grey.

3 Repeat until no grey nodes are left.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Algorithm 5 Prim’s algorithm

Input: Graph G = (V ,E)
procedure Prim(G)

S ← ∅
for each vertex v ∈ V do

visited(v)← false
c(v)←∞

PQ ← PriorityQueue over V
s ← any v ∈ V
PrimVisit(s)
while PQ is not empty do

v ← PQ.deleteMin()
S ← S ∪ {{pre(v), v}}
PrimVisit(v)

procedure PrimVisit(v)
visited(v)← true
for each u ∈ vE do

if not visited(u) then
if w(v , u) < c(u) then

pre(u)← v
c(u)← w(v , u)
if u in PQ then

PQ.decreaseKey(u, c(u))
else

PQ.insert(u, c(u))

If not all vertices were visited, the graph is not connected.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Analysis of Prim’s algorithm

Running time

• Graph exploration without priority queue: O(|V |+ |E |)
• With Fibonacci heap as priority queue:

• |V | insert operations: O(|V |)
• |E | decreaseKey operations: O(|E |)
• |V | deleteMin operations: O(|V | log |V |)
• In total: O(|E |+ |V | log |V |)

Note: Fibonacci Heaps not part of the standard library of C++/Rust.
However, libraries exist, e.g. the fibonacci heap crate (remember to
cite the correct source when using it!).

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Prim vs. Kruskal

Which one to choose?

• Prim: O(|E |+ |V | log |V |)
• Kruskal: O(|E | log |E |)
• Prim looks asymptotically better

• However, in practice, usually Kruskal is faster, unless the graph is
large and dense

Remark: Sometimes, people write Kruskal’s running time as
O(|E | log |V |). Why?

	Graphs
	Graph traversal
	Depth First Search
	Breadth First Search
	Topological sort

	SCC Discovery
	Minimum spanning trees
	Kruskal's algorithm
	Prim's algorithm

