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Graphs

A graph is a tuple G = (V, E), where V is a non-empty set of vertices
and E is a set of edges.

A directed graph is a graph with E C V x V ={(u,v) | u,v € V}.

An undirected graphs is a graph with £ C {{u,v} | u,v € V} =: (}).

For a vertex v, we denote the successors of v by
vE :={u | (v,u) € E} for directed graphs;
vE :={u | {v,u} € E} for undirected graphs.
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Graphs

® A path from vy to v, is a sequence p = vy V> ...V, such that
Viy1 € viE for all i € [1,n — 1]. The path is called simple if v; # v;
for all i # j. Note: € is a path from v; to vy.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.
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Graphs

® A path from vy to v, is a sequence p = V1V ...V, such that
Vit1 € V;E for all i € [1,n — 1]. The path is called simple if v; # v;
for all i £ j. Note: ¢ is a path from vy to vy.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.

® An undirected graph is connected if for every pair of vertices
u,v € V, there is a path from u to v.

® For an undirected graph, a connected component is a maximal
(w.r.t. set inclusion) set V' C V s.t. (V/,EN (%)) is connected.

® An undirected graph is a tree if it is acyclic and connected. For any
tree (V, E), we have |V| = |E| + 1.

® An undirected acyclic graph is called a forest. Note that each
connected component of a forest is a tree.
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Graphs

® A path from vy to v, is a sequence p = vy V> ...V, such that
Viy1 € viE for all i € [1,n — 1]. The path is called simple if v; # v;
for all i # j. Note: € is a path from v; to v;.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.

® A directed graph is strongly connected if for every pair of vertices
u,v € V, there is a path from u to v.

e A directed graph is connected if (V, E U ET) is strongly connected,
where ET := {(v,u) | (u,v) € E}.

® For a directed graph, a strongly connected component (SCC) is a
maximal set V/ C V s.t. (V/, EN (V' x V')) is strongly connected.

® A directed acyclic graph is also called a DAG.

® Note: For any directed graph, merging each SCC into a single node
results in a DAG. (Exercise: prove!)
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Graphs

Graphs: basic interface

Graph operations

® Make graph: build a graph from a list of vertices and edges.

® Get vertices: lterate over all vertices v € V.
Get edges: lterate over all edges e € E.
Test edge: Test existence of an edge (u,v) € E.
Get successors: For a vertex v, iterate over all successors u € vE.
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Graphs

Graphs: implementation

Graph representation

® Adjacency list: For each vertex v, store a list of successors vE.

® Adjacency matrix: For each pair of vertices u, v, store existence of
an edge (u,v) € E.

Which one to choose?
® Usually, adjacency lists are better.

® Adjacency matrices may be preferred if:

® the graph is dense, i.e. |E| is close to |V,
® edge testing is used extensively or
® performance difference is irrelevant.
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Graphs

Graphs: implementation

Edge test/iteration: Adjacency matrix

struct Graph {
n: usize,
adj_matrix: Vec<Vec<bool>>,

}

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_matrix[ull[v];

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec! [];
for u in 0..self.n {
for v in 0..self.n {
if self.adj_matrix[ul[v] {
result.push((u, v));
}
}
}
return result;
}
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Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

struct Graph {
n: usize,
adj_list: Vec<Vec<usize>>,

}

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_list[u].contains(&v);

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec![];
for u in 0..self.n {
for &v in self.adj_list[ul.iter() {
result.push((u, v));
}
}
return result;
}
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Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

struct Graph {
n: usize, can be made faster by

adj_list: Vec<Vec<usize>>, using binary search or
¥ hash table!

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_list[u].contains(&v);

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec![];
for u in 0..self.n {
for &v in self.adj_list[ul.iter() {
result.push((u, v));
}
}
return result;
}
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Graph traversal

Graph traversal

Graph traversal

® Visit vertices in certain order.
® Assign vertices an order 0 : V — N U {co} of discovery time.

® Possibly keep track of other information such as finishing time,
predecessor, etc.

® Find vertex with certain properties.
Check property for all vertices.
Find (strongly) connected components.
Check for cycles.
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Graph traversal
Depth First Search

Depth First Search (DFS)

Basic Idea:
® Manage discovered vertices that still need to be explored in a stack.

® Repeat: pop element from stack and push its successors to stack.
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

Depth First Search (DFS)
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Graph traversal
Depth First Search

DES Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V,E) procedure DFSEXPLORE(G, v)
procedure DFS(G) S.push(v)

for each vertex v € V do while S is not empty do
o(v) = o0 v = S.pop()

S < EmptyStack() if o(v) = co then

i+1 o(v) < i;

for each vertex v € V do i< i+1
if o(v) = oo then for each u € vE do

DFSEXPLORE(G, v) S.push(u)
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Graph traversal
Depth First Search

DES Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V,E) procedure DFSEXPLORE(G, v)
procedure DFS(G) S.push(v)

for each vertex v € V do while S is not empty do
O(V) — o0 Vv = Spop()

S < EmptyStack() if o(v) = %0 then

i1 o(v) < i;

for each vertex v € V do I i+1
if o(v) = oo then for each u € vE do

DFSEXPLORE(G, v) S.push(u)

Running time: O(|V| + |E|)
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Graph traversal
Depth First Search

Cycle Detection using DFS

DFS can be modified to detect cycles: return true iff a "back-edge” is
found (note that for undirected graphs, this back-edge must not be the
edge from the predecessor).
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Graph traversal
Breadth First Search

Breadth First Search (BFS)

Replacing worklist stack by a queue results in Breadth First Search (BFS).
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

Breadth First Search (BFS)
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Graph traversal
Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V,E) procedure BFSEXPLORE(G, v)
procedure BFS(G) S.enqueue(v)
for each vertex v € V do while S is not empty do
o(v) < o0 v = S.dequeue()
S « EmptyQueue() o(v) « i,
for each vertex v € V do for .each u € vE do
if o(v) = co then if o(u) = oo then
BFSEXPLORE(G, v) o(u) < 0;

S.enqueue(u)
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Graph traversal
Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V,E) procedure BFSEXPLORE(G, v)
procedure BFS(G) S.enqueue(v)
for each vertex v € V do while S is not empty do
o(v) < o0 v = S.dequeue()
S « EmptyQueue() o(v) « i,
for each vertex v € V do for .each u € vE do
if o(v) = co then if o(u) = oo then
BFSEXPLORE(G, v) o(u) < 0;

S.enqueue(u)

Running time: O(|V| + |E|)
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Graph traversal
Breadth First Search

BFS: Remarks

® Note that vertices in worklist are automatically ordered by distance
to source state.

® One can also keep track of the distances to the source state
explicitly.

® The shortest paths can be obtained by keeping track of predecessors.

® Well-known generalization for directed graphs with non-negative
weights: Dijkstra (essentially priority queue instead of FIFO queue
for worklist)
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Graph traversal

Topological sort

Topological sort (TS)

Topological order

For a directed graph G = (V, E), a topological order is an assignment
o : V — N such that for all (u, v) € E, we have o(u) < o(v).

® Topological order exists if and only if graph is acyclic (i.e. a DAG).
® Topological order may not be unique.

® Topological sort: Problem of finding a topological order.

Usages

Resolving dependencies.

Instruction /task scheduling.

Detecting cycles.

Find shortest paths from a source in some weighted DAG in linear
time.
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Graph traversal

Topological sort

Topological order: Examples
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Graph traversal

Topological sort

Topological order: Examples
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Graph traversal

Topological sort

Topological order: Examples

O ®
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Graph traversal

Topological sort

Topological order: Examples
6 5 3

0
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Graph traversal

Topological sort

Topological order: Examples
6 5 3

©

— not unique!
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Graph traversal

Topological sort

TS

Idea:
@ For every node, store the number of predecessors.
® Choose a node with 0 predecessors and remove it from the graph.
© Repeat until no nodes with 0 predecessors left.

O = The order in which the nodes are removed is topological
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Graph traversal

Topological sort

TS (example)
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Graph traversal

Topological sort

TS (example)
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Graph traversal

Topological sort

TS (example)
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Graph traversal

Topological sort

TS (example)
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Graph traversal

Topological sort

TS (example)

1,0 1 0

2,0

S =]
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Graph traversal

Topological sort

TS (example)

1,0 0 3,0

2,0

S = [b, h]
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Graph traversal

Topological sort

TS (example)

1,0 0 3,0

2,0

S=1[b]
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Graph traversal

Topological sort

TS (example)

1,0 5,0 3,0
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Graph traversal

Topological sort

TS (example)

S =gl
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Graph traversal

Topological sort

TS (example)

3,0
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Graph traversal

Topological sort

TS (example)

3,0
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Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V, E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)
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Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V. E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i; i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)

The graph is cyclic iff unvisited vertices (v € V with o(v) = o0)
remain.
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Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V, E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)

Running time: O(|V| + |E|)
(For that, need to count predecessors in linear time...)
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Graph traversal

Topological sort

TS: Remarks

Another possible way of implementing TS (again in linear time) is using
DFS:
® Run modified version, where instead of the discovery time, the finish
time of each vertex is returned
® A node finished if all its successors have been removed from the
FIFO queue



Algorithms for Programming Contests - Week 03
S

CC Discovery

SCC Discovery




Algorithms for Programming Contests - Week 03
SCC Discovery

SCC Discovery

Not in the scope of our course, but still worth mentioning:

SCC Discovery

Given a graph G = (V, E), return
1 all SCCs and

2 (optionally) a topological order on the SCCs

® This problem can still be solved in O(|V| + |E|)
® One algorithm: Tarjan’s SCC Discovery
® Another algorithm:
@ Run DFS, recording finish times
@® Run DFS in G”, where G” is G but with all edges reversed, and in
the main loop (where DFSExplore is called) consider vertices in
decreasing finish time order of first DFS

© The SCCs are the vertices of each tree explored in the second DFS
search
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Minimum spanning trees

Minimum spanning trees (MST)

Let G = (V,E) be a graph. A graph (V/,E") with V' C V, E' CE'is
called subgraph of G. It is spanning if V' = V. Sometimes, we identify a
spanning subgraph (V, E’) with its edge set E’.

Spanning tree

For an undirected graph G = (V, E), a spanning tree of G is a spanning

subgraph which is a tree.

Weighted graphs

We now consider graphs with a weight function w : E — R on the edges.
For a subset of edges E' C E, we define w(E') := 3 .z w(e).

Minimum (weight) spanning tree

For an undirected graph G = (V/, E) with a weight function w : E — R,

a minimum spanning tree (MST) is a spanning tree S of G such that for
all spanning trees T of G, we have w(S) < w(T).
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Minimum spanning trees

Minimum spanning trees (MST)

® Spanning trees only exist for connected graphs.

® Otherwise, a spanning tree exists for each connected component.

® All spanning trees of a graph have the same number of edges.

® Negative weights can be avoided by adding a constant to all weights.

® Maximum spanning tree can be obtained with w'(e) = —w(e).
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Kruskal and Prim

Kruskal’s Algorithm
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Minimum spanning trees

Kruskal's algorithm

Algorithm 4 Kruskal's algorithm
Input: Undirected graph G = (V, E)

procedure KRUSKAL(G)
S« 0 > Current set of edges

L + List of edges e € E sorted in increasing order by w(e)
U < Union-Find structure initialized over set V
for each edge (u,v) in L in order do
> Test if vertices are in different components
if U.find(u) # U.find(v) then
> If yes, add edge to MST and merge components
U.union(u, v)

S« SuU{e}

Iff vertices in different components remain, the graph is not connected.
(Note that in that case, a minimum spanning forest is constructed.)
Remark: Kruskal's algorithm is an instance of a greedy algorithm. Greedy
algorithms can be shown to be correct for (and only for) matroids.
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Minimum spanning trees

Kruskal's algorithm

Analysis of Kruskal's algorithm

Running time

Sorting of edges: O(|E|log|E]|)

With « as the inverse Ackermann function, i.e. o = =1 with
f(n) = A(n, n):

2 |E| find operations: O(|E| a(|V]))
|V| union operations: O(| V| a(|V]))
In total: O(|E|log |E|)
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Minimum spanning trees
(- Kruskal's algorithm

Proof of correctness for Kruskal's algorithm

Let T C E be a set of edges such that there is a minimum spanning tree
SofGwithTCS.

Let e € E\ T be an edge such that T U {e} does not create a cycle,
with e having minimal weight among all of these edges.

Then, there is a minimum spanning tree S’ of G such that T U{e} C §'.

When e € S, then S’ := S fulfills the requirement.

When e ¢ S, then S U {e} has a cycle ¢, and there is an edge f # e in ¢
that is not in T (otherwise adding e to T would create a cycle). Then
S§":= S\ {f} U{e} is a also a spanning tree, and w(S’) < w(S), as
w(e) < w(f). Hence, as S is a minimum spanning tree, S’ is also a
minimium spanning tree.
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Minimum spanning trees

LPrim‘s algorithm

Kruskal and Prim

Prim’s Algorithm

Given a network.
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Prim’s algorithm

Prim: Implementation

® Use 3 colors for the vertices:
® black (finished node — already part of the MST)

® grey (discovered node — at least one connection to a black node)
® white (unknown node — no connection to initial node found yet)
@ Start at a single node, keep track of encountered nodes.
® Choose a grey node that is closest to any black node, color it black
and all its white neighbors grey.

© Repeat until no grey nodes are left.
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Minimum spanning trees

Prim’s algorithm

Algorithm 5 Prim’s algorithm

Input: Graph G = (V,E) procedure PRIMVISIT(v)
procedure PRIM(G) visited(v) < true
S0 for each u € vE do
for each vertex v € V do if not visited(u) then
visited(v) <« false if w(v,u) < c(u) then
c(v) < o0 pre(u) < v
PQ < PriorityQueue over V c(u) < w(v,u)
s<anyveV if uin PQ then
PRIMVISIT(s) PQ.decreaseKey(u, c(u))
while PQ is not empty do else
v+ PQ.deleteMin) PQ.insert(u, (1))
S« SU{{pre(v),v}}
PriMVisiT(v)

If not all vertices were visited, the graph is not connected.
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Minimum spanning trees

Prim’s algorithm

Analysis of Prim’s algorithm

Running time

Graph exploration without priority queue: O(|V/|+ |E|)
With Fibonacci heap as priority queue:
|V/| insert operations: O(|V])

|E| decreaseKey operations: O(|E|)
|V| deleteMin operations: O(|V/|log|V|)
In total: O(|E| + |V|log|V])

Note: Fibonacci Heaps not part of the standard library of C++/Rust.
However, libraries exist, e.g. the fibonacci heap crate (remember to
cite the correct source when using it!).
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Minimum spanning trees

Prim’s algorithm

Prim vs. Kruskal

Which one to choose?

® Prim: O(|E| + |V]log|V])
Kruskal: O(|E|log |E|)
® Prim looks asymptotically better

However, in practice, usually Kruskal is faster, unless the graph is
large and dense

Remark: Sometimes, people write Kruskal's running time as
O(|E|log |V]). Why?
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