Algorithms for Programming Contests - Week 03

Prof. Dr. Javier Esparza,
Vincent Fischer,

Jakob Schulz,
conpra@model.cit.tum.de

October 28, 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 03
Gl

raphs

Algorithms for Programming Contests - Week 03

Graphs

A graph is a tuple G = (V, E), where V is a non-empty set of vertices
and E is a set of edges.

A directed graph is a graph with E C V x V ={(u,v) | u,v € V}.

An undirected graphs is a graph with £ C {{u,v} | u,v € V} =: (}).

For a vertex v, we denote the successors of v by
vE :={u | (v,u) € E} for directed graphs;
vE :={u | {v,u} € E} for undirected graphs.

Algorithms for Programming Contests - Week 03

Graphs

® A path from vy to v, is a sequence p = vy V> ...V, such that
Viy1 € viE for all i € [1,n — 1]. The path is called simple if v; # v;
for all i # j. Note: € is a path from v; to vy.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.

Algorithms for Programming Contests - Week 03

Graphs

® A path from vy to v, is a sequence p = V1V ...V, such that
Vit1 € V;E for all i € [1,n — 1]. The path is called simple if v; # v;
for all i £ j. Note: ¢ is a path from vy to vy.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.

® An undirected graph is connected if for every pair of vertices
u,v € V, there is a path from u to v.

® For an undirected graph, a connected component is a maximal
(w.r.t. set inclusion) set V' C V s.t. (V/,EN (%)) is connected.

® An undirected graph is a tree if it is acyclic and connected. For any
tree (V, E), we have |V| = |E| + 1.

® An undirected acyclic graph is called a forest. Note that each
connected component of a forest is a tree.

Algorithms for Programming Contests - Week 03

Graphs

® A path from vy to v, is a sequence p = vy V> ...V, such that
Viy1 € viE for all i € [1,n — 1]. The path is called simple if v; # v;
for all i # j. Note: € is a path from v; to v;.

® A cycle is a simple path viv, ... v, s.t. vy € v,E and, only in the
undirected case, n > 3.

® A graph is cyclic if there exists a cycle, otherwise it is acyclic.

® A directed graph is strongly connected if for every pair of vertices
u,v € V, there is a path from u to v.

e A directed graph is connected if (V, E U ET) is strongly connected,
where ET := {(v,u) | (u,v) € E}.

® For a directed graph, a strongly connected component (SCC) is a
maximal set V/ C V s.t. (V/, EN (V' x V')) is strongly connected.

® A directed acyclic graph is also called a DAG.

® Note: For any directed graph, merging each SCC into a single node
results in a DAG. (Exercise: prove!)

Algorithms for Programming Contests - Week 03

Graphs

Graphs: basic interface

Graph operations

® Make graph: build a graph from a list of vertices and edges.

® Get vertices: lterate over all vertices v € V.
Get edges: lterate over all edges e € E.
Test edge: Test existence of an edge (u,v) € E.
Get successors: For a vertex v, iterate over all successors u € vE.

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Graph representation

® Adjacency list: For each vertex v, store a list of successors vE.

® Adjacency matrix: For each pair of vertices u, v, store existence of
an edge (u,v) € E.

Which one to choose?
® Usually, adjacency lists are better.

® Adjacency matrices may be preferred if:

® the graph is dense, i.e. |E| is close to |V,
® edge testing is used extensively or
® performance difference is irrelevant.

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency matrix

struct Graph {
n: usize,
adj_matrix: Vec<Vec<bool>>,

}

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_matrix[ull[v];

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec! [];
for u in 0..self.n {
for v in 0..self.n {
if self.adj_matrix[ul[v] {
result.push((u, v));
}
}
}
return result;
}

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

struct Graph {
n: usize,
adj_list: Vec<Vec<usize>>,

}

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_list[u].contains(&v);

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec![];
for u in 0..self.n {
for &v in self.adj_list[ul.iter() {
result.push((u, v));
}
}
return result;
}

Algorithms for Programming Contests - Week 03

Graphs

Graphs: implementation

Edge test/iteration: Adjacency list

struct Graph {
n: usize, can be made faster by

adj_list: Vec<Vec<usize>>, using binary search or
¥ hash table!

impl Graph {
fn has_edge (&self, u: usize, v: usize) -> bool {
return self.adj_list[u].contains(&v);

}
fn iter_edges (&self) -> Vec<(usize, usize)> {
let mut result = vec![];
for u in 0..self.n {
for &v in self.adj_list[ul.iter() {
result.push((u, v));
}
}
return result;
}

Algorithms for Programming Contests - Week 03
Gl

raph traversal

Graph traversal

Algorithms for Programming Contests - Week 03

Graph traversal

Graph traversal

Graph traversal

® Visit vertices in certain order.
® Assign vertices an order 0 : V — N U {co} of discovery time.

® Possibly keep track of other information such as finishing time,
predecessor, etc.

® Find vertex with certain properties.
Check property for all vertices.
Find (strongly) connected components.
Check for cycles.

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

Basic Idea:
® Manage discovered vertices that still need to be explored in a stack.

® Repeat: pop element from stack and push its successors to stack.

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

-
<

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

o
< C
oo
@]
y
. (v
0]

S =4

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

5]

g
8

S=[b,d,g]

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

5]

g
8

S =[b,d,g]

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

S=1b.d,f

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

S =1b.,d,a]

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

S=b.d]

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

-
<

8

S =[b,f g

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

-
<

8

S=lezgl

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

-
<

8

S =g

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

8

-
<

8

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

-
<

>

8

S = [e,h]

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

-
<

S=lezgl

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Depth First Search (DFS)

-
<

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

DES Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V,E) procedure DFSEXPLORE(G, v)
procedure DFS(G) S.push(v)

for each vertex v € V do while S is not empty do
o(v) = o0 v = S.pop()

S < EmptyStack() if o(v) = co then

i+1 o(v) < i;

for each vertex v € V do i< i+1
if o(v) = oo then for each u € vE do

DFSEXPLORE(G, v) S.push(u)

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

DES Algorithm

Algorithm 1 Depth First Search

Input: Graph G = (V,E) procedure DFSEXPLORE(G, v)
procedure DFS(G) S.push(v)

for each vertex v € V do while S is not empty do
O(V) — o0 Vv = Spop()

S < EmptyStack() if o(v) = %0 then

i1 o(v) < i;

for each vertex v € V do I i+1
if o(v) = oo then for each u € vE do

DFSEXPLORE(G, v) S.push(u)

Running time: O(|V| + |E|)

Algorithms for Programming Contests - Week 03

Graph traversal
Depth First Search

Cycle Detection using DFS

DFS can be modified to detect cycles: return true iff a "back-edge” is
found (note that for undirected graphs, this back-edge must not be the
edge from the predecessor).

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

Replacing worklist stack by a queue results in Breadth First Search (BFS).

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

-
<

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

o
< C
oo
@]
y
. (v
0]

S =4

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

S =1b,d,g]

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

S =1b,d,g]

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

S=[dge

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

S= [g.,e,ﬂ

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

8

-
<

8

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

-
<

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

Breadth First Search (BFS)

-
<

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V,E) procedure BFSEXPLORE(G, v)
procedure BFS(G) S.enqueue(v)
for each vertex v € V do while S is not empty do
o(v) < o0 v = S.dequeue()
S « EmptyQueue() o(v) « i,
for each vertex v € V do for .each u € vE do
if o(v) = co then if o(u) = oo then
BFSEXPLORE(G, v) o(u) < 0;

S.enqueue(u)

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

BFS Algorithm

Algorithm 2 Breadth First Search

Input: Graph G = (V,E) procedure BFSEXPLORE(G, v)
procedure BFS(G) S.enqueue(v)
for each vertex v € V do while S is not empty do
o(v) < o0 v = S.dequeue()
S « EmptyQueue() o(v) « i,
for each vertex v € V do for .each u € vE do
if o(v) = co then if o(u) = oo then
BFSEXPLORE(G, v) o(u) < 0;

S.enqueue(u)

Running time: O(|V| + |E|)

Algorithms for Programming Contests - Week 03

Graph traversal
Breadth First Search

BFS: Remarks

® Note that vertices in worklist are automatically ordered by distance
to source state.

® One can also keep track of the distances to the source state
explicitly.

® The shortest paths can be obtained by keeping track of predecessors.

® Well-known generalization for directed graphs with non-negative
weights: Dijkstra (essentially priority queue instead of FIFO queue
for worklist)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological sort (TS)

Topological order

For a directed graph G = (V, E), a topological order is an assignment
o : V — N such that for all (u, v) € E, we have o(u) < o(v).

® Topological order exists if and only if graph is acyclic (i.e. a DAG).
® Topological order may not be unique.

® Topological sort: Problem of finding a topological order.

Usages

Resolving dependencies.

Instruction /task scheduling.

Detecting cycles.

Find shortest paths from a source in some weighted DAG in linear
time.

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples

O ®

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples
6 5 3

0

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Topological order: Examples
6 5 3

©

— not unique!

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS

Idea:
@ For every node, store the number of predecessors.
® Choose a node with 0 predecessors and remove it from the graph.
© Repeat until no nodes with 0 predecessors left.

O = The order in which the nodes are removed is topological

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

<
/
€
<
€

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

O
-()
©

S =Ja, (]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

O
-()
©

S =Ja, (]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

1,0 1 0

=)
_\

S =c,d]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

1,0 1 0

2,0

S =]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

1,0 0 3,0

2,0

S = [b, h]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

1,0 0 3,0

2,0

S=1[b]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

1,0 5,0 3,0

2,0

S =]

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

S =gl

3,0

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

3,0

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

TS (example)

3,0

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V, E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V. E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i; i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)

The graph is cyclic iff unvisited vertices (v € V with o(v) = o0)
remain.

Algorithms for Programming Contests - Week 03

Graph traversal

Topological sort

Algorithm 3 Topological sort

Input: Directed graph G = (V, E) procedure TSEXPLORE(G, v)

procedure TS(G) if o(v) = co then
for each vertex v € V do S.push(v)
o(v) <= o0 while S is not empty do
> count predecessors v = S.pop()
pre(v) <= {u | v € uE}| o(v) < i i+ i+1
S < EmptyQueue() for each u € vE do
i+ 1 pre(u) < pre(u) — 1
for each vertex v € V do if pre(u) = 0 then
if pre(v) =0 then S.push(u)

TSEXPLORE(G, v)

Running time: O(|V| + |E|)
(For that, need to count predecessors in linear time...)

Algorithms for Programming Contests - Week 03
Graph traversal

Topological sort

TS: Remarks

Another possible way of implementing TS (again in linear time) is using
DFS:
® Run modified version, where instead of the discovery time, the finish
time of each vertex is returned
® A node finished if all its successors have been removed from the
FIFO queue

Algorithms for Programming Contests - Week 03
S

CC Discovery

SCC Discovery

Algorithms for Programming Contests - Week 03
SCC Discovery

SCC Discovery

Not in the scope of our course, but still worth mentioning:

SCC Discovery

Given a graph G = (V, E), return
1 all SCCs and

2 (optionally) a topological order on the SCCs

® This problem can still be solved in O(|V| + |E|)
® One algorithm: Tarjan’s SCC Discovery
® Another algorithm:
@ Run DFS, recording finish times
@® Run DFS in G”, where G” is G but with all edges reversed, and in
the main loop (where DFSExplore is called) consider vertices in
decreasing finish time order of first DFS

© The SCCs are the vertices of each tree explored in the second DFS
search

Algorithms for Programming Contests - Week 03
M

inimum spanning trees

Minimum spanning trees

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Minimum spanning trees (MST)

Let G = (V,E) be a graph. A graph (V/,E") with V' C V, E' CE'is
called subgraph of G. It is spanning if V' = V. Sometimes, we identify a
spanning subgraph (V, E’) with its edge set E’.

Spanning tree

For an undirected graph G = (V, E), a spanning tree of G is a spanning

subgraph which is a tree.

Weighted graphs

We now consider graphs with a weight function w : E — R on the edges.
For a subset of edges E' C E, we define w(E') := 3 .z w(e).

Minimum (weight) spanning tree

For an undirected graph G = (V/, E) with a weight function w : E — R,

a minimum spanning tree (MST) is a spanning tree S of G such that for
all spanning trees T of G, we have w(S) < w(T).

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Minimum spanning trees (MST)

® Spanning trees only exist for connected graphs.

® Otherwise, a spanning tree exists for each connected component.

® All spanning trees of a graph have the same number of edges.

® Negative weights can be avoided by adding a constant to all weights.

® Maximum spanning tree can be obtained with w'(e) = —w(e).

Algorithms for Programming Contests - Week 03
M

inimum spanning trees

Kruskal and Prim

Kruskal’s Algorithm

Given anetwork............

Choose the shortest edge (if
there is more than one, choose

Choose the next shortest edge

and add it.........

edge which

wonldn't

create a =

cvcle and, - 2
add it.

edge which
wounldn’t

create a
eycle an

add it.

any of the shortesi)........
‘2\. /\‘
4 ?.}, J 8 Repeat uniil you have a minimal
Choose the roose the spanning tree.
next next 5
shortest 3 shortest

Algorithms for Programming Contests - Week 03
Minimum spanning trees

Kruskal's algorithm

Algorithm 4 Kruskal's algorithm
Input: Undirected graph G = (V, E)

procedure KRUSKAL(G)
S« 0 > Current set of edges

L + List of edges e € E sorted in increasing order by w(e)
U < Union-Find structure initialized over set V
for each edge (u,v) in L in order do
> Test if vertices are in different components
if U.find(u) # U.find(v) then
> If yes, add edge to MST and merge components
U.union(u, v)

S« SuU{e}

Iff vertices in different components remain, the graph is not connected.
(Note that in that case, a minimum spanning forest is constructed.)
Remark: Kruskal's algorithm is an instance of a greedy algorithm. Greedy
algorithms can be shown to be correct for (and only for) matroids.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Kruskal's algorithm

Analysis of Kruskal's algorithm

Running time

Sorting of edges: O(|E|log|E]|)

With « as the inverse Ackermann function, i.e. o = =1 with
f(n) = A(n, n):

2 |E| find operations: O(|E| a(|V]))
|V| union operations: O(| V| a(|V]))
In total: O(|E|log |E|)

Algorithms for Programming Contests - Week 03
Minimum spanning trees
(- Kruskal's algorithm

Proof of correctness for Kruskal's algorithm

Let T C E be a set of edges such that there is a minimum spanning tree
SofGwithTCS.

Let e € E\ T be an edge such that T U {e} does not create a cycle,
with e having minimal weight among all of these edges.

Then, there is a minimum spanning tree S’ of G such that T U{e} C §'.

When e € S, then S’ := S fulfills the requirement.

When e ¢ S, then S U {e} has a cycle ¢, and there is an edge f # e in ¢
that is not in T (otherwise adding e to T would create a cycle). Then
S§":= S\ {f} U{e} is a also a spanning tree, and w(S’) < w(S), as
w(e) < w(f). Hence, as S is a minimum spanning tree, S’ is also a
minimium spanning tree.

Algorithms for Programming Contests - Week 03
Minimum spanning trees

LPrim‘s algorithm

Kruskal and Prim

Prim’s Algorithm

Given a network.

Choose a vertex

Choose the shortest edge from
this vertex.

"

Choose the
nearest
vertex not
vet in the
solution.

?‘imose the

Hext nearest

vertex not P
vet in the 3f
solution,
when there
is a choic;
choose
either.

Repear until you have a minimal
spanning tree.

{ 3
\

|

Algorithms for Programming Contests - Week 03
Minimum spanning trees

Prim’s algorithm

Prim: Implementation

® Use 3 colors for the vertices:
® black (finished node — already part of the MST)

® grey (discovered node — at least one connection to a black node)
® white (unknown node — no connection to initial node found yet)
@ Start at a single node, keep track of encountered nodes.
® Choose a grey node that is closest to any black node, color it black
and all its white neighbors grey.

© Repeat until no grey nodes are left.

Algorithms for Programming Contests - Week 03
Minimum spanning trees

Prim’s algorithm

Algorithm 5 Prim’s algorithm

Input: Graph G = (V,E) procedure PRIMVISIT(v)
procedure PRIM(G) visited(v) < true
S0 for each u € vE do
for each vertex v € V do if not visited(u) then
visited(v) <« false if w(v,u) < c(u) then
c(v) < o0 pre(u) < v
PQ < PriorityQueue over V c(u) < w(v,u)
s<anyveV if uin PQ then
PRIMVISIT(s) PQ.decreaseKey(u, c(u))
while PQ is not empty do else
v+ PQ.deleteMin) PQ.insert(u, (1))
S« SU{{pre(v),v}}
PriMVisiT(v)

If not all vertices were visited, the graph is not connected.

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Analysis of Prim’s algorithm

Running time

Graph exploration without priority queue: O(|V/|+ |E|)
With Fibonacci heap as priority queue:
|V/| insert operations: O(|V])

|E| decreaseKey operations: O(|E|)
|V| deleteMin operations: O(|V/|log|V|)
In total: O(|E| + |V|log|V])

Note: Fibonacci Heaps not part of the standard library of C++/Rust.
However, libraries exist, e.g. the fibonacci heap crate (remember to
cite the correct source when using it!).

Algorithms for Programming Contests - Week 03

Minimum spanning trees

Prim’s algorithm

Prim vs. Kruskal

Which one to choose?

® Prim: O(|E| + |V]log|V])
Kruskal: O(|E|log |E|)
® Prim looks asymptotically better

However, in practice, usually Kruskal is faster, unless the graph is
large and dense

Remark: Sometimes, people write Kruskal's running time as
O(|E|log |V]). Why?

	Graphs
	Graph traversal
	Depth First Search
	Breadth First Search
	Topological sort

	SCC Discovery
	Minimum spanning trees
	Kruskal's algorithm
	Prim's algorithm

