Algorithms for Programming Contests - Week 03

Prof. Dr. Javier Esparza, Vincent Fischer, Jakob Schulz, conpra@model.cit.tum.de

October 28, 2025

Algorithms for Programming Contests - Week 03

Graphs

Graphs

Graphs

A graph is a tuple G = (V, E), where V is a non-empty set of vertices and E is a set of edges.

A directed graph is a graph with $E \subseteq V \times V = \{(u, v) \mid u, v \in V\}$.

An undirected graphs is a graph with $E \subseteq \{\{u,v\} \mid u,v \in V\} =: {V \choose 2}$.

For a vertex v, we denote the successors of v by $vE := \{u \mid (v, u) \in E\}$ for directed graphs; $vE := \{u \mid \{v, u\} \in E\}$ for undirected graphs.

- A path from v_1 to v_n is a sequence $p = v_1 v_2 \dots v_n$ such that $v_{i+1} \in v_i E$ for all $i \in [1, n-1]$. The path is called *simple* if $v_i \neq v_j$ for all $i \neq j$. Note: ε is a path from v_1 to v_1 .
- A *cycle* is a simple path $v_1v_2...v_n$ s.t. $v_1 \in v_nE$ and, only in the undirected case, $n \geq 3$.
- A graph is cyclic if there exists a cycle, otherwise it is acyclic.

- A path from v_1 to v_n is a sequence $p = v_1 v_2 \dots v_n$ such that $v_{i+1} \in v_i E$ for all $i \in [1, n-1]$. The path is called *simple* if $v_i \neq v_j$ for all $i \neq j$. Note: ε is a path from v_1 to v_1 .
- A *cycle* is a simple path $v_1v_2...v_n$ s.t. $v_1 \in v_nE$ and, only in the undirected case, $n \geq 3$.
- A graph is cyclic if there exists a cycle, otherwise it is acyclic.

- An undirected graph is connected if for every pair of vertices u, v ∈ V, there is a path from u to v.
- For an undirected graph, a connected component is a maximal (w.r.t. set inclusion) set V' ⊆ V s.t. (V', E ∩ (V') is connected.
- An undirected graph is a *tree* if it is acyclic and connected. For any tree (V, E), we have |V| = |E| + 1.
- An undirected acyclic graph is called a forest. Note that each connected component of a forest is a tree.

- A path from v_1 to v_n is a sequence $p = v_1 v_2 \dots v_n$ such that $v_{i+1} \in v_i E$ for all $i \in [1, n-1]$. The path is called simple if $v_i \neq v_j$ for all $i \neq j$. Note: ε is a path from v_1 to v_1 .
- A *cycle* is a simple path $v_1v_2...v_n$ s.t. $v_1 \in v_nE$ and, only in the undirected case, n > 3.
- A graph is cyclic if there exists a cycle, otherwise it is acyclic.

- A directed graph is *strongly connected* if for every pair of vertices $u, v \in V$, there is a path from u to v.
- A directed graph is *connected* if $(V, E \cup E^T)$ is strongly connected, where $E^T := \{(v, u) \mid (u, v) \in E\}$.
- For a directed graph, a strongly connected component (SCC) is a maximal set $V' \subseteq V$ s.t. $(V', E \cap (V' \times V'))$ is strongly connected.
- A directed acyclic graph is also called a DAG.
- Note: For any directed graph, merging each SCC into a single node results in a DAG. (Exercise: prove!)

— Graphs

Graphs: basic interface

Graph operations

- Make graph: build a graph from a list of vertices and edges.
- Get vertices: Iterate over all vertices $v \in V$.
- Get edges: Iterate over all edges $e \in E$.
- Test edge: Test existence of an edge $(u, v) \in E$.
- Get successors: For a vertex v, iterate over all successors $u \in vE$.

Graph representation

- Adjacency list: For each vertex v, store a list of successors vE.
- Adjacency matrix: For each pair of vertices u, v, store existence of an edge (u, v) ∈ E.

Which one to choose?

- Usually, adjacency lists are better.
- Adjacency matrices may be preferred if:
 - the graph is dense, i.e. |E| is close to $|V|^2$,
 - · edge testing is used extensively or
 - performance difference is irrelevant.

```
Edge test/iteration: Adjacency matrix
struct Graph {
        n: usize,
        adj_matrix: Vec < Vec < bool >> ,
}
impl Graph {
        fn has_edge(&self, u: usize, v: usize) -> bool {
                 return self.adj_matrix[u][v];
        fn iter_edges(&self) -> Vec<(usize, usize)> {
                 let mut result = vec![];
                 for u in 0..self.n {
                         for v in 0..self.n {
                                  if self.adj_matrix[u][v] {
                                          result.push((u, v));
                 return result;
```

Edge test/iteration: Adjacency list

```
struct Graph {
        n: usize,
        adj_list: Vec<Vec<usize>>,
}
impl Graph {
        fn has_edge(&self, u: usize, v: usize) -> bool {
                return self.adj_list[u].contains(&v);
        fn iter_edges(&self) -> Vec<(usize, usize)> {
                let mut result = vec![];
                for u in 0..self.n {
                        for &v in self.adj_list[u].iter() {
                                 result.push((u, v));
                         }
                return result:
        }
```

Edge test/iteration: Adjacency list

```
struct Graph {
                                                can be made faster by
        n: usize,
                                                using binary search or
        adj_list: Vec<Vec<usize>>,
}
                                                hash table!
impl Graph {
        fn has_edge(&self, u: usize, v: usize) -> bool {
                return self.adj_list[u].contains(&v);
        fn iter_edges(&self) -> Vec<(usize, usize)> {
                let mut result = vec![];
                for u in 0..self.n {
                         for &v in self.adj_list[u].iter() {
                                  result.push((u, v));
                return result:
```

Algorithms for Programming Contests - Week 03

Graph traversal

Graph traversal

Graph traversal

Graph traversal

- Visit vertices in certain order.
- Assign vertices an order $o: V \to \mathbb{N} \cup \{\infty\}$ of discovery time.
- Possibly keep track of other information such as finishing time, predecessor, etc.

Usages

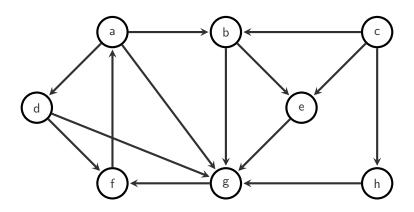
- Find vertex with certain properties.
- Check property for all vertices.
- Find (strongly) connected components.
- Check for cycles.
- . . .

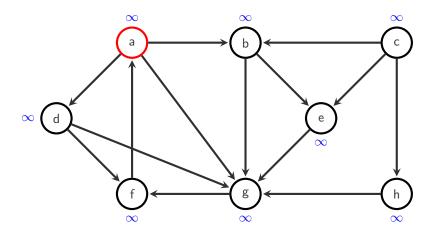
L Depth First Search

Depth First Search (DFS)

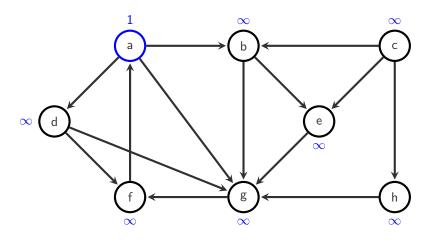
Basic Idea:

- Manage discovered vertices that still need to be explored in a stack.
- Repeat: pop element from stack and push its successors to stack.

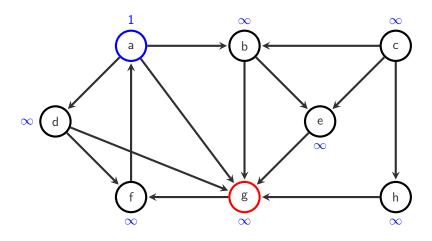




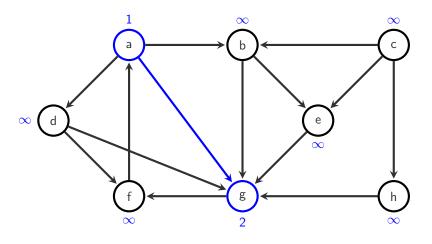
$$S = [a]$$



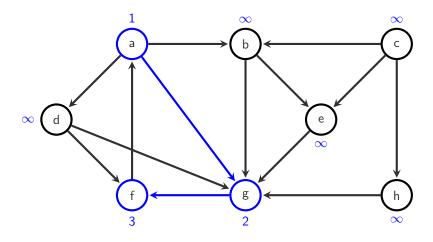
$$S = [b, d, g]$$



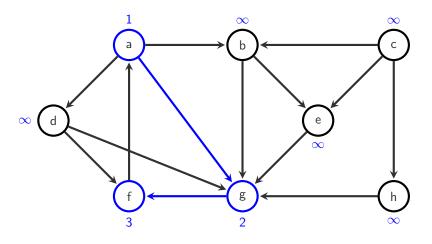
$$\mathcal{S} = [\mathsf{b},\mathsf{d}, \mathbf{g}]$$



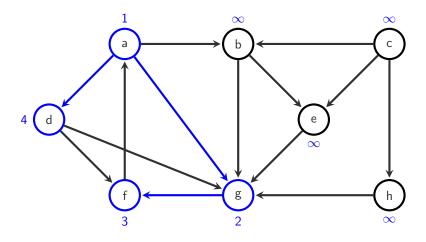
$$\mathcal{S} = [b,d,f]$$



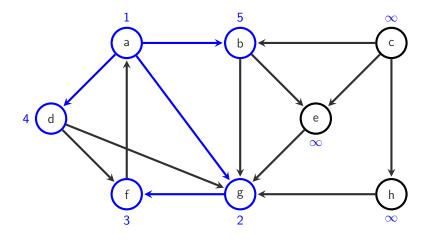
$$\mathcal{S} = [\mathsf{b},\mathsf{d},\mathsf{a}]$$



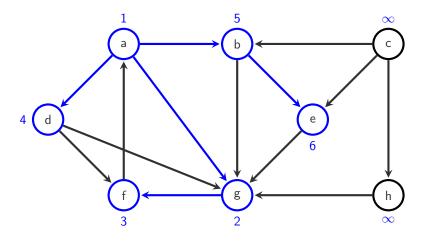
$$\mathcal{S} = [\mathsf{b},\mathsf{d}]$$



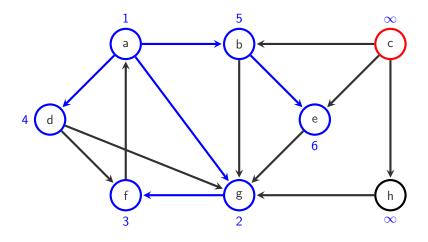
$$\mathcal{S} = [b,f,g]$$



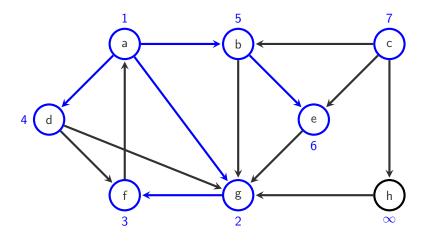
$$S = [e, g]$$



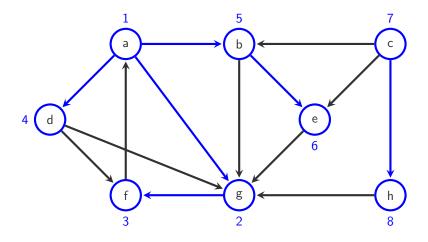
$$S = [g]$$



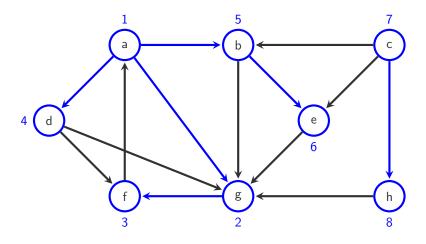
$$S = [c]$$



$$S = [e, h]$$



$$S = [e, g]$$



$$S = []$$

DFS Algorithm

Algorithm 1 Depth First Search

```
Input: Graph G = (V, E)
procedure DFS(G)
for each vertex v \in V do
o(v) \leftarrow \infty
S \leftarrow \text{EmptyStack}()
i \leftarrow 1
for each vertex v \in V do
if o(v) = \infty then
DFSEXPLORE(<math>G, v)
```

```
procedure DFSEXPLORE(G, v)

S.push(v)

while S is not empty do

v = S.pop()

if o(v) = \infty then

o(v) \leftarrow i;

i \leftarrow i + 1

for each u \in vE do

S.push(u)
```

DFS Algorithm

Algorithm 1 Depth First Search

```
Input: Graph G = (V, E)
procedure DFS(G)
for each vertex v \in V do
o(v) \leftarrow \infty
S \leftarrow \text{EmptyStack}()
i \leftarrow 1
for each vertex v \in V do
if o(v) = \infty then
DFSEXPLORE(<math>G, v)
```

```
procedure DFSEXPLORE(G, v)

S.push(v)

while S is not empty do

v = S.pop()

if o(v) = \infty then

o(v) \leftarrow i;

i \leftarrow i + 1

for each u \in vE do

S.push(u)
```

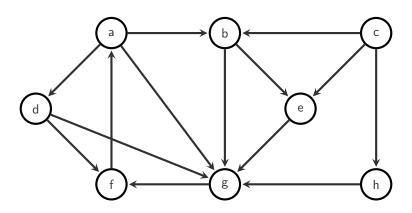
Running time: $\mathcal{O}(|V| + |E|)$

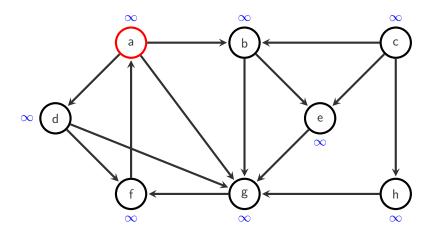
Cycle Detection using DFS

DFS can be modified to detect cycles: return true iff a "back-edge" is found (note that for undirected graphs, this back-edge must not be the edge from the predecessor).

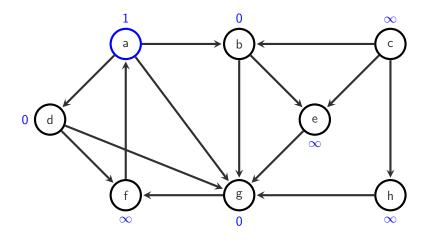
Replacing worklist stack by a queue results in Breadth First Search (BFS).

Breadth First Search

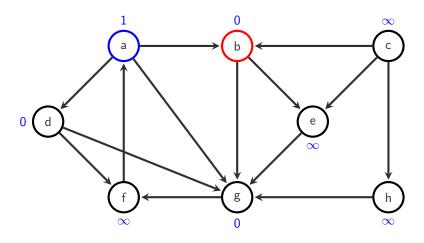




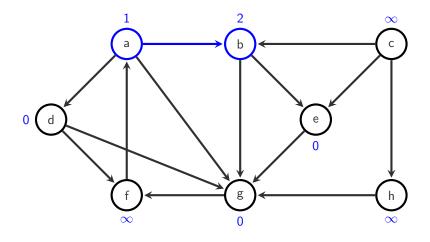
$$S = [a]$$



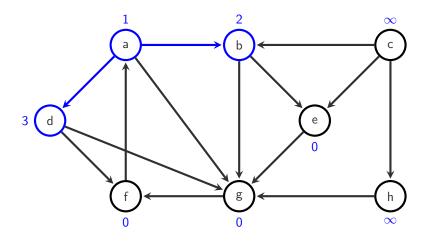
$$\mathcal{S} = [b,d,g]$$



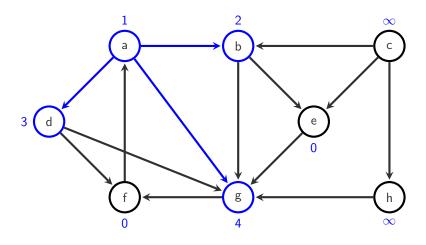
$$\mathcal{S} = [\textbf{b}, \textbf{d}, \textbf{g}]$$



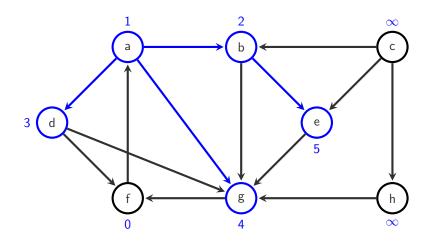
$$\mathcal{S} = [\mathsf{d},\mathsf{g},\mathsf{e}]$$



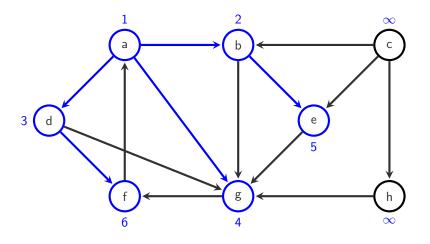
$$S = [g, e, f]$$



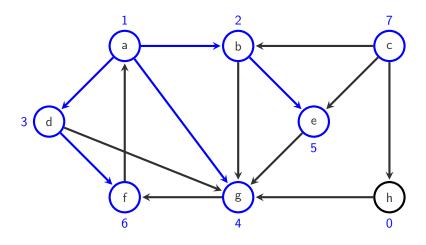
$$S = [e, f]$$



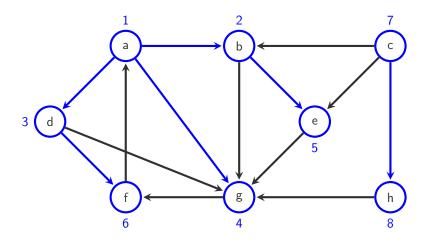
$$S = [f]$$



$$S = []$$



$$S = [h]$$



$$S = []$$

BFS Algorithm

Algorithm 2 Breadth First Search

```
\begin{array}{l} \textbf{Input: Graph } G = (V, E) \\ \textbf{procedure } \mathrm{BFS}(G) \\ \textbf{for each vertex } v \in V \textbf{ do} \\ o(v) \leftarrow \infty \\ S \leftarrow \mathrm{EmptyQueue}() \\ i \leftarrow 1 \\ \textbf{for each vertex } v \in V \textbf{ do} \\ \textbf{if } o(v) = \infty \textbf{ then} \\ \mathrm{BFSEXPLORE}(G, v) \end{array}
```

```
procedure \operatorname{BFSEXPLORE}(G, v)

S.\operatorname{enqueue}(v)

while S is not empty do

v = S.\operatorname{dequeue}()

o(v) \leftarrow i;

i \leftarrow i + 1

for each u \in vE do

if o(u) = \infty then

o(u) \leftarrow 0;

S.\operatorname{enqueue}(u)
```

BFS Algorithm

Algorithm 2 Breadth First Search

```
Input: Graph G = (V, E)
procedure \operatorname{BFS}(G)
for each vertex v \in V do
o(v) \leftarrow \infty
S \leftarrow \operatorname{EmptyQueue}()
i \leftarrow 1
for each vertex v \in V do
if o(v) = \infty then
\operatorname{BFSEXPLORE}(G, v)
```

```
procedure BFSEXPLORE(G, v)

S.enqueue(v)

while S is not empty do

v = S.dequeue()

o(v) \leftarrow i;

i \leftarrow i + 1

for each u \in vE do

if o(u) = \infty then

o(u) \leftarrow 0;

S.enqueue(u)
```

Running time: $\mathcal{O}(|V| + |E|)$

BFS: Remarks

- Note that vertices in worklist are automatically ordered by distance to source state.
- One can also keep track of the distances to the source state explicitly.
- The shortest paths can be obtained by keeping track of predecessors.
- Well-known generalization for directed graphs with non-negative weights: Dijkstra (essentially priority queue instead of FIFO queue for worklist)

Topological sort (TS)

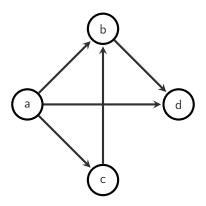
Topological order

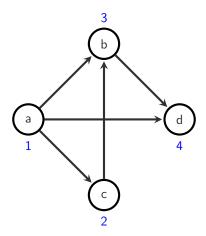
For a directed graph G = (V, E), a topological order is an assignment $o: V \to \mathbb{N}$ such that for all $(u, v) \in E$, we have o(u) < o(v).

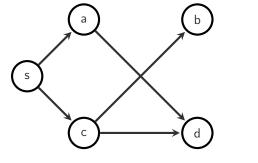
- Topological order exists if and only if graph is acyclic (i.e. a DAG).
- Topological order may not be unique.
- Topological sort: Problem of finding a topological order.

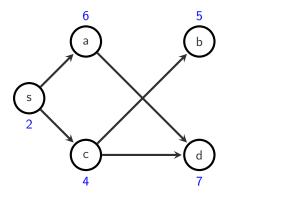
Usages

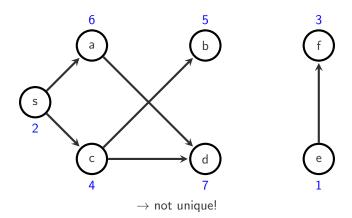
- Resolving dependencies.
- Instruction/task scheduling.
- Detecting cycles.
- Find shortest paths from a source in some weighted DAG in linear time.





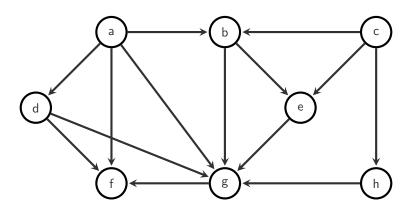


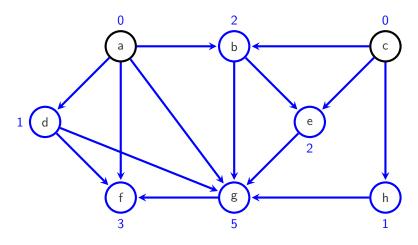




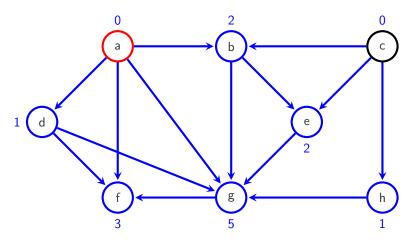
Idea:

- For every node, store the number of predecessors.
- **2** Choose a node with 0 predecessors and remove it from the graph.
- 3 Repeat until no nodes with 0 predecessors left.
- $\mathbf{4} \Rightarrow \mathsf{The} \mathsf{ order} \mathsf{ in} \mathsf{ which} \mathsf{ the} \mathsf{ nodes} \mathsf{ are} \mathsf{ removed} \mathsf{ is} \mathsf{ topological}$

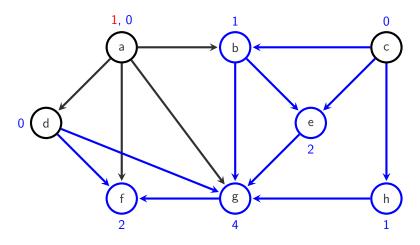




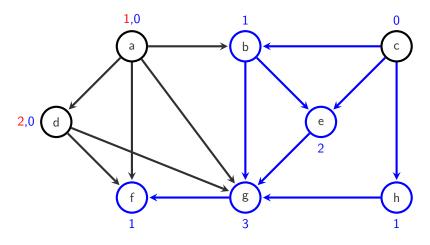
$$\mathcal{S} = [\mathsf{a},\mathsf{c}]$$



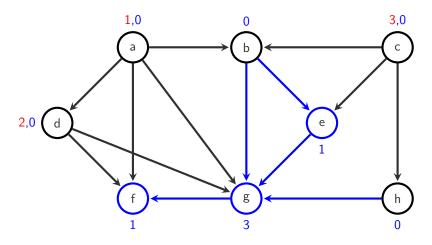
$$S = [\mathbf{a}, \mathbf{c}]$$



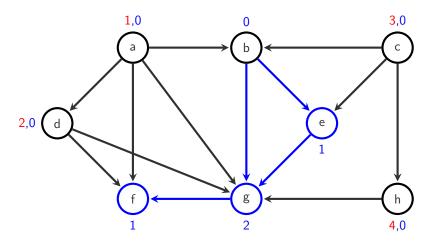
$$S = [c, d]$$



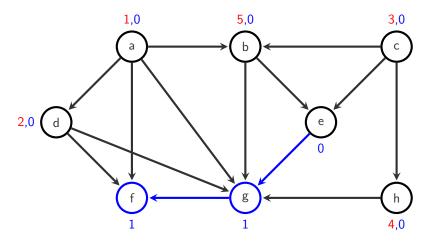
S = [c]



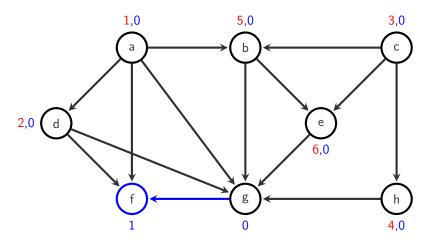
$$\mathcal{S} = [\mathsf{b},\mathsf{h}]$$



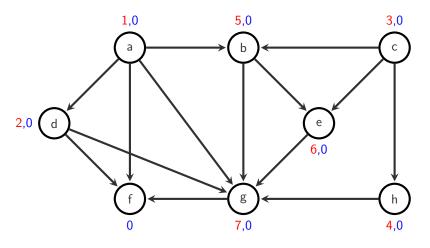
$$S = [b]$$



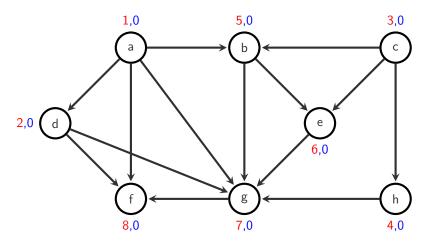
$$S = [e]$$



$$S = [g]$$



$$S = [f]$$



Algorithm 3 Topological sort

```
Input: Directed graph G = (V, E)
  procedure TS(G)
      for each vertex v \in V do
          o(v) \leftarrow \infty
          pre(v) \leftarrow |\{u \mid v \in uE\}|
      S \leftarrow \text{EmptyQueue}()
      i \leftarrow 1
      for each vertex v \in V do
          if pre(v) = 0 then
              TSExplore(G, v)
```

procedure $\mathrm{TSEXPLORE}(G, v)$ if $o(v) = \infty$ then $S.\mathrm{push}(v)$ while S is not empty do $v = S.\mathrm{pop}()$ $o(v) \leftarrow i; i \leftarrow i + 1$ for each $u \in vE$ do $\mathit{pre}(u) \leftarrow \mathit{pre}(u) - 1$ if $\mathit{pre}(u) = 0$ then $S.\mathrm{push}(u)$

Algorithm 3 Topological sort

```
Input: Directed graph G = (V, E)
  procedure TS(G)
      for each vertex v \in V do
          o(v) \leftarrow \infty
          pre(v) \leftarrow |\{u \mid v \in uE\}|
      S \leftarrow \text{EmptyQueue}()
      i \leftarrow 1
      for each vertex v \in V do
          if pre(v) = 0 then
             TSExplore(G, v)
```

procedure
$$\mathrm{TSEXPLORE}(G, v)$$

if $o(v) = \infty$ then
 $S.\mathrm{push}(v)$
while S is not empty do
 $v = S.\mathrm{pop}()$
 $o(v) \leftarrow i; i \leftarrow i + 1$
for each $u \in vE$ do
 $pre(u) \leftarrow pre(u) - 1$
if $pre(u) = 0$ then
 $S.\mathrm{push}(u)$

The graph is cyclic iff unvisited vertices $(v \in V \text{ with } o(v) = \infty)$ remain

Algorithm 3 Topological sort

```
Input: Directed graph G = (V, E)
procedure TS(G)
for each vertex v \in V do
o(v) \leftarrow \infty
\triangleright \text{ count predecessors}
pre(v) \leftarrow |\{u \mid v \in uE\}|
S \leftarrow \text{EmptyQueue}()
i \leftarrow 1
for each vertex v \in V do
if pre(v) = 0 then
TSEXPLORE(G, v)
```

```
procedure \mathrm{TSEXPLORE}(G, v)

if o(v) = \infty then

S.\mathrm{push}(v)

while S is not empty do

v = S.\mathrm{pop}()

o(v) \leftarrow i; i \leftarrow i + 1

for each u \in vE do

pre(u) \leftarrow pre(u) - 1

if pre(u) = 0 then

S.\mathrm{push}(u)
```

```
Running time: \mathcal{O}(|V| + |E|)
(For that, need to count predecessors in linear time...)
```

TS: Remarks

Another possible way of implementing TS (again in linear time) is using DFS:

- Run modified version, where instead of the discovery time, the finish time of each vertex is returned
- A node finished if all its successors have been removed from the FIFO queue

SCC Discovery

SCC Discovery

SCC Discovery

Not in the scope of our course, but still worth mentioning:

SCC Discovery

```
Given a graph G = (V, E), return
```

- 1 all SCCs and
- 2 (optionally) a topological order on the SCCs
- This problem can still be solved in $\mathcal{O}(|V| + |E|)$
- One algorithm: Tarjan's SCC Discovery
- Another algorithm:
 - 1 Run DFS, recording finish times
 - **2** Run DFS in G^T , where G^T is G but with all edges reversed, and in the main loop (where DFSExplore is called) consider vertices in decreasing finish time order of first DFS
 - The SCCs are the vertices of each tree explored in the second DFS search

- Minimum spanning trees

Minimum spanning trees

Minimum spanning trees (MST)

Let G = (V, E) be a graph. A graph (V', E') with $V' \subseteq V$, $E' \subseteq E$ is called *subgraph* of G. It is *spanning* if V' = V. Sometimes, we identify a spanning subgraph (V, E') with its edge set E'.

Spanning tree

For an undirected graph G = (V, E), a spanning tree of G is a spanning subgraph which is a tree.

Weighted graphs

We now consider graphs with a weight function $w: E \to \mathbb{R}$ on the edges. For a subset of edges $E' \subseteq E$, we define $w(E') := \sum_{e \in E'} w(e)$.

Minimum (weight) spanning tree

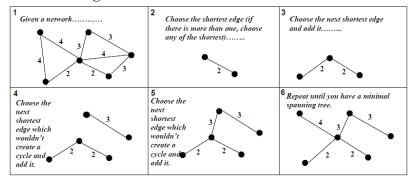
For an undirected graph G=(V,E) with a weight function $w:E\to R$, a *minimum spanning tree* (MST) is a spanning tree S of G such that for all spanning trees T of G, we have $w(S)\leq w(T)$.

Minimum spanning trees (MST)

- Spanning trees only exist for connected graphs.
- Otherwise, a spanning tree exists for each connected component.
- All spanning trees of a graph have the same number of edges.
- Negative weights can be avoided by adding a constant to all weights.
- Maximum spanning tree can be obtained with w'(e) = -w(e).

Kruskal and Prim

Kruskal's Algorithm



Algorithm 4 Kruskal's algorithm

```
Input: Undirected graph G = (V, E)
  procedure Kruskal(G)
     S \leftarrow \emptyset
                                                  L \leftarrow \text{List of edges } e \in E \text{ sorted in increasing order by } w(e)
     U \leftarrow \text{Union-Find structure initialized over set } V
     for each edge (u, v) in L in order do
         if U.find(u) \neq U.find(v) then
            ▷ If yes, add edge to MST and merge components
             U.union(u, v)
            S \leftarrow S \cup \{e\}
```

Iff vertices in different components remain, the graph is not connected. (Note that in that case, a minimum spanning *forest* is constructed.)

Remark: Kruskal's algorithm is an instance of a *greedy algorithm*. Greedy algorithms can be shown to be correct for (and only for) *matroids*.

Analysis of Kruskal's algorithm

Running time

- Sorting of edges: $\mathcal{O}(|E| \log |E|)$
- With α as the inverse Ackermann function, i.e. $\alpha = f^{-1}$ with f(n) = A(n, n):
- 2|E| find operations: $\mathcal{O}(|E|\alpha(|V|))$
- |V| union operations: $\mathcal{O}(|V|\alpha(|V|))$
- In total: $\mathcal{O}(|E| \log |E|)$

Proof of correctness for Kruskal's algorithm

Lemma

Let $T \subseteq E$ be a set of edges such that there is a minimum spanning tree S of G with $T \subseteq S$.

Let $e \in E \setminus T$ be an edge such that $T \cup \{e\}$ does not create a cycle, with e having minimal weight among all of these edges.

Then, there is a minimum spanning tree S' of G such that $T \cup \{e\} \subseteq S'$.

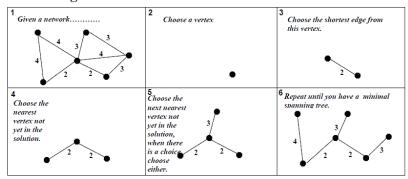
Proof.

When $e \in S$, then S' := S fulfills the requirement.

When $e \notin S$, then $S \cup \{e\}$ has a cycle c, and there is an edge $f \neq e$ in c that is not in T (otherwise adding e to T would create a cycle). Then $S' := S \setminus \{f\} \cup \{e\}$ is a also a spanning tree, and $w(S') \leq w(S)$, as $w(e) \leq w(f)$. Hence, as S is a minimum spanning tree, S' is also a minimum spanning tree.

Kruskal and Prim

Prim's Algorithm



Prim: Implementation

- Use 3 colors for the vertices:
 - black (finished node already part of the MST)
 - grey (discovered node at least one connection to a black node)
 - white (unknown node no connection to initial node found yet)
- Start at a single node, keep track of encountered nodes.
- Choose a grey node that is closest to any black node, color it black and all its white neighbors grey.
- 3 Repeat until no grey nodes are left.

Algorithm 5 Prim's algorithm

```
procedure PRIMVISIT(v)
Input: Graph G = (V, E)
   procedure PRIM(G)
                                               visited(v) \leftarrow true
       S \leftarrow \emptyset
                                               for each u \in vE do
       for each vertex v \in V do
                                                   if not visited(u) then
           visited(v) \leftarrow false
                                                       if w(v, u) < c(u) then
           c(v) \leftarrow \infty
                                                            pre(u) \leftarrow v
                                                            c(u) \leftarrow w(v, u)
       PQ \leftarrow PriorityQueue over V
                                                            if u in PQ then
       s \leftarrow \text{any } v \in V
                                                                PQ.decreaseKev(u, c(u))
       PRIMVISIT(s)
                                                            else
       while PQ is not empty do
                                                                PQ.insert(u, c(u))
           v \leftarrow PQ.deleteMin()
           S \leftarrow S \cup \{\{pre(v), v\}\}
           PRIMVISIT(v)
```

If not all vertices were visited, the graph is not connected.

Analysis of Prim's algorithm

Running time

- Graph exploration without priority queue: $\mathcal{O}(|V| + |E|)$
- With Fibonacci heap as priority queue:
- |V| insert operations: $\mathcal{O}(|V|)$
- |E| decreaseKey operations: $\mathcal{O}(|E|)$
- |V| deleteMin operations: $\mathcal{O}(|V| \log |V|)$
- In total: $O(|E| + |V| \log |V|)$

Note: Fibonacci Heaps not part of the standard library of C++/Rust. However, libraries exist, e.g. the fibonacci_heap crate (remember to cite the correct source when using it!).

Prim vs. Kruskal

Which one to choose?

- Prim: $\mathcal{O}(|E| + |V| \log |V|)$
- Kruskal: $\mathcal{O}(|E|\log|E|)$
- Prim looks asymptotically better
- However, in practice, usually Kruskal is faster, unless the graph is large and dense

Remark: Sometimes, people write Kruskal's running time as $\mathcal{O}(|E|\log|V|)$. Why?