Algorithms for Programming Contests - Week 02

Prof. Dr. Javier Esparza,
Vincent Fischer,

Jakob Schulz,
conpra@model.cit.tum.de

October 21, 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 02

Contents of this Week

Contents of this Week

® Data structures: general considerations
® Binary Search
® Union Find

Algorithms for Programming Contests - Week 02

Graphs

Data structures: Graphs as example

® Known from practically all theoretical courses: G = (V, E).
® Numerous variants: Directed, weighted, labelled, ...

® Implement using different data structures depending on task!

Algorithms for Programming Contests - Week 02

Graphs

Important properties / considerations

® |s the graph sparse or dense?

® Directed or undirected?

® Are node/edge labels/meta-information important?
® Transitive closure or predecessor relation relevant?

® Do we need the whole set of states?

Algorithms for Programming Contests - Week 02

Graphs

Example approaches

Usually represented as some form of adjacency matrix/list:
® Dense, unweighted graph: bool[] []
® Sparse, unweighted graph: set<int>[], int -> set<int>
® Sparse digraph with labels: Node -> set<Edge>
® Dense, weighted graph: double[][]
e ..
Other possibilities (no access to whole state set):
® Node object with set of successors

® Successor function (on-demand computation)

Algorithms for Programming Contests - Week 02

Graphs

® Representation highly depends on the input format and task!
® Usually, adjacency lists are sufficient

® Sometimes, having objects as graph nodes is really helpful
might not happen in the course

Algorithms for Programming Contests - Week 02

Binary Search

Binary Search

® Widely known approach to search for specific items in O(log(n)) time

® Simple example: Search in an ordered array

Algorithms for Programming Contests - Week 02

Binary Search

® |nput: Sorted array a and object of interest needle

® Naive approach: Linearly scan through array — O(n).

® Array sorted = if needle < a[4], then needle < a[i] for all i > 4!
Idea: Check the middle element, compare it to needle:

® Element is larger: Search on left side
® Element is equal: Found it!
® Element is smaller: Search on right side

Algorithms for Programming Contests - Week 02

Binary Search

ar| 3| 5 | 7 |12 13|20 | 21|40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

ar| 3 |5 | 7 12|13 | 21| 40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

a3 | 5 | 7 | 12|13] 20 | 21 | 40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

a3 5 | 12| 13| 20 | 21 | 40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

ar| 3 | 5 | 7 [[12] 13] 20 | 21 | 40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

ar| 3 | 5 | 7 |28 13| 20 | 21 | 40 | 50 | 90 | 100 |
needle: 12

Algorithms for Programming Contests - Week 02

Binary Search

Adaptions

® So far: given x and a sorted array a, return whether x is in a
® Algorithm can easily be adapted to return

® (first) index i where a[i] == x, if such an index exists
® index i where x would need to be inserted to maintain the order of
the array, otherwise (just return the last pivot index)

Algorithms for Programming Contests - Week 02

Binary Search

Generalizations

® Simple, but powerful generalization: instead of finding the first index
i where a[i] == x, find the first index i where f(a[i]) == x,
where f is a monotonically increasing function (actually, only needed
that i — f(ali]) is monotonically increasing)
® ec.g. git bisect to find a bug

® Yet another generalization: instead of searching in an explicitly stored
array a, search in some interval [b, c]
® ec.g. to find the square root of an £64
® return once current search interval is small enough (or result is
accurate enough)

Algorithms for Programming Contests - Week 02

Binary Search

® Search interval halved every time — at most [log, n| + 1 iterations,
where n is the size of the search interval

® For £64, this means at most 65 iterations (and one bit of precision
per iteration!)

= fast for such a generic algorithm!

Algorithms for Programming Contests - Week 02

Binary Search

® \ery efficient method to check whether an object is in an array
® |mplementations in all major programming languages

® Eg C++: std::binary_search for std: :vector
® E.g. Rust: binary_search for Vec

® Easily generalized to search in an interval

Algorithms for Programming Contests - Week 02
Union Find

Union Find

® Extremely fast approach to maintain a partition of a set
® Given a set X, a partition of X is a set of pairwise disjoint, non-empty
subsets of X, whose union is X
® Partitions can be used to represent equivalence relations, e.g. on
nodes of a graph
® Theoretically interesting: Amortized running time described by Inverse
Ackermann function a! (when implemented with weighted union and

path compression)

516
Lvery very close to constant: a(61) = 3, 04(222)~ 4

Algorithms for Programming Contests - Week 02
Union Find

Features

® Two core operations:

® union(a, b): Merge the sets of a and b
e find(a): Find the “root” of a (the representative of the set)

. and potentially make, adding a new element
® |dea: find(a) = £find(b) iff a and b are in the same set

® Extension: Size (or other property that behaves well under union) of
each class, number of classes, ...

Algorithms for Programming Contests - We
u

nion Find

Example

Algorithms for Programming Contests - Week 02
u

nion Find

Example

o >
D S

® union(1, 3)

Algorithms for Programming Contests - Week 02
Union Find

Example

® union(1, 3)

Algorithms for Programming Contests - Week 02
Union Find

&

® union(1, 3)
@ find(1) # £ind(4)

Algorithms for Programming Contests - Week 02
Union Find

&

® union(1, 3)
@ find(1) # £ind(4)
© union(4, 2)

Algorithms for Programming Contests - Week 02
Union Find

&

® union(1, 3)
® find(1) # find(4)
© union(4, 2)

Algorithms for Programming Contests - Week 02
Union Find

&

® union(1, 3)
® find(1) # find(4)
© union(4, 2)
@O union(2, 1)

Algorithms for Programming Contests - Week 02
Union Find

&>

@® union(1, 3)
® find(1) # find(4)
© union(4, 2)
® union(2, 1)

Algorithms for Programming Contests - Week 02
Union Find

&>

@® union(1, 3)
® find(1) # find(4)
© union(4, 2)
® union(2, 1)
@ find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

® Here: Base set integers from 0 to n
® Underlying structures:

® parent : int[n]: Parent of an element
® size:int[n]: Size of the set (needed for weighted union)

® |nitialize: parent[i] = i, size[i] = 1

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

Here: Base set integers from 0 to n
Underlying structures:

® parent : int[n]: Parent of an element
® size:int[n]: Size of the set (needed for weighted union)

Initialize: parent[i] = i, size[i]
find(a):

® Follow parent [i] until element is
® Path compression: Set parent [i]

=1

its own parent (£ it's the root)
= root for all i along the way.

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

Here: Base set integers from 0 to n

® Underlying structures:
® parent : int[n]: Parent of an element
® size:int[n]: Size of the set (needed for weighted union)
® |nitialize: parent[i] = i, size[i] = 1
find(a):
® Follow parent [i] until element is its own parent (= it's the root)
® Path compression: Set parent[i] = root for all i along the way.

® union(a, b):
® Find roots of a and b
® Set the larger (according to size) of the two as the parent of the
smaller one (weighted union)
® Update size accordingly

Algorithms for Programming Contests - Week 02
u

nion Find

Implementation - find(a)

Find root
root = a
while True:
parent = parent[root]
if parent == root:
break
root = parent

Compress path

current = a

while current != root:
next_elem = parent[current]
parent [current] = root
current = next_elem

return root

Algorithms for Programming Contests - Week 02
u

nion Find

Implementation - union(a, b)

a, b = find(a), find(b)
if a == b: # a and b are already merged
return a

Weighted Union: Update smaller component
a_size, b_size = sizel[a], sizel[b]
if a_size < b_size:

a, b = b, a

parent [b] = a
Update size accordingly
sizel[a]l] = a_size + b_size

Algorithms for Programming Contests - Week 02
Union Find

® Practically constant time data structure for (merging) disjoint sets

® Simple to understand and implement

	Contents of this Week
	Graphs
	Binary Search
	Union Find

