
Algorithms for Programming Contests - Week 02

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

October 21, 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 02
Contents of this Week

Contents of this Week

• Data structures: general considerations
• Binary Search
• Union Find

Algorithms for Programming Contests - Week 02
Graphs

Data structures: Graphs as example

• Known from practically all theoretical courses: G = (V , E).
• Numerous variants: Directed, weighted, labelled, ...
• Implement using different data structures depending on task!

Algorithms for Programming Contests - Week 02
Graphs

Important properties / considerations

• Is the graph sparse or dense?
• Directed or undirected?
• Are node/edge labels/meta-information important?
• Transitive closure or predecessor relation relevant?
• Do we need the whole set of states?

Algorithms for Programming Contests - Week 02
Graphs

Example approaches

Usually represented as some form of adjacency matrix/list:
• Dense, unweighted graph: bool[][]
• Sparse, unweighted graph: set<int>[], int -> set<int>
• Sparse digraph with labels: Node -> set<Edge>
• Dense, weighted graph: double[][]
• . . .

Other possibilities (no access to whole state set):
• Node object with set of successors
• Successor function (on-demand computation)
• . . .

Algorithms for Programming Contests - Week 02
Graphs

Summary

• Representation highly depends on the input format and task!
• Usually, adjacency lists are sufficient
• Sometimes, having objects as graph nodes is really helpful

might not happen in the course

Algorithms for Programming Contests - Week 02
Binary Search

Binary Search

• Widely known approach to search for specific items in O(log(n)) time
• Simple example: Search in an ordered array

Algorithms for Programming Contests - Week 02
Binary Search

Idea

• Input: Sorted array a and object of interest needle
• Naive approach: Linearly scan through array – O(n).
• Array sorted ⇒ if needle < a[4], then needle < a[i] for all i ≥ 4!
• Idea: Check the middle element, compare it to needle:

• Element is larger: Search on left side
• Element is equal: Found it!
• Element is smaller: Search on right side

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Example

a: 3 5 7 12 13 20 21 40 50 90 100
needle: 12

Algorithms for Programming Contests - Week 02
Binary Search

Adaptions

• So far: given x and a sorted array a, return whether x is in a
• Algorithm can easily be adapted to return

• (first) index i where a[i] == x, if such an index exists
• index i where x would need to be inserted to maintain the order of

the array, otherwise (just return the last pivot index)

Algorithms for Programming Contests - Week 02
Binary Search

Generalizations

• Simple, but powerful generalization: instead of finding the first index
i where a[i] == x, find the first index i where f(a[i]) == x,
where f is a monotonically increasing function (actually, only needed
that i 7→ f(a[i]) is monotonically increasing)

• e.g. git bisect to find a bug
• Yet another generalization: instead of searching in an explicitly stored

array a, search in some interval [b, c]
• e.g. to find the square root of an f64
• return once current search interval is small enough (or result is

accurate enough)

Algorithms for Programming Contests - Week 02
Binary Search

Running Time

• Search interval halved every time → at most ⌈log2 n⌉ + 1 iterations,
where n is the size of the search interval

• For f64, this means at most 65 iterations (and one bit of precision
per iteration!)

⇒ fast for such a generic algorithm!

Algorithms for Programming Contests - Week 02
Binary Search

Summary

• Very efficient method to check whether an object is in an array
• Implementations in all major programming languages

• E.g. C++: std::binary_search for std::vector
• E.g. Rust: binary_search for Vec

• Easily generalized to search in an interval

Algorithms for Programming Contests - Week 02
Union Find

Union Find

• Extremely fast approach to maintain a partition of a set
• Given a set X , a partition of X is a set of pairwise disjoint, non-empty

subsets of X , whose union is X
• Partitions can be used to represent equivalence relations, e.g. on

nodes of a graph
• Theoretically interesting: Amortized running time described by Inverse

Ackermann function α1 (when implemented with weighted union and
path compression)

1very very close to constant: α(61) = 3, α(2222216
) ≈ 4

Algorithms for Programming Contests - Week 02
Union Find

Features

• Two core operations:
• union(a, b): Merge the sets of a and b
• find(a): Find the “root” of a (the representative of the set)

. . . and potentially make, adding a new element
• Idea: find(a) = find(b) iff a and b are in the same set
• Extension: Size (or other property that behaves well under union) of

each class, number of classes, . . .

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Example

1

3
2

4

5

1 union(1, 3)

2 find(1) ̸= find(4)

3 union(4, 2)

4 union(2, 1)

5 find(1) = find(4)

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

• Here: Base set integers from 0 to n
• Underlying structures:

• parent : int[n]: Parent of an element
• size : int[n]: Size of the set (needed for weighted union)

• Initialize: parent[i] = i, size[i] = 1

• find(a):
• Follow parent[i] until element is its own parent (=̂ it’s the root)
• Path compression: Set parent[i] = root for all i along the way.

• union(a, b):
• Find roots of a and b
• Set the larger (according to size) of the two as the parent of the

smaller one (weighted union)
• Update size accordingly

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

• Here: Base set integers from 0 to n
• Underlying structures:

• parent : int[n]: Parent of an element
• size : int[n]: Size of the set (needed for weighted union)

• Initialize: parent[i] = i, size[i] = 1
• find(a):

• Follow parent[i] until element is its own parent (=̂ it’s the root)
• Path compression: Set parent[i] = root for all i along the way.

• union(a, b):
• Find roots of a and b
• Set the larger (according to size) of the two as the parent of the

smaller one (weighted union)
• Update size accordingly

Algorithms for Programming Contests - Week 02
Union Find

Implementation overview

• Here: Base set integers from 0 to n
• Underlying structures:

• parent : int[n]: Parent of an element
• size : int[n]: Size of the set (needed for weighted union)

• Initialize: parent[i] = i, size[i] = 1
• find(a):

• Follow parent[i] until element is its own parent (=̂ it’s the root)
• Path compression: Set parent[i] = root for all i along the way.

• union(a, b):
• Find roots of a and b
• Set the larger (according to size) of the two as the parent of the

smaller one (weighted union)
• Update size accordingly

Algorithms for Programming Contests - Week 02
Union Find

Implementation - find(a)

Find root
root = a
while True:

parent = parent [root]
if parent == root:

break
root = parent

Compress path
current = a
while current != root:

next_elem = parent [current]
parent [current] = root
current = next_elem

return root

Algorithms for Programming Contests - Week 02
Union Find

Implementation - union(a, b)

a, b = find(a), find(b)
if a == b: # a and b are already merged

return a

Weighted Union : Update smaller component
a_size , b_size = size[a], size[b]
if a_size < b_size :

a, b = b, a

parent [b] = a
Update size accordingly
size[a] = a_size + b_size

Algorithms for Programming Contests - Week 02
Union Find

Summary

• Practically constant time data structure for (merging) disjoint sets
• Simple to understand and implement

	Contents of this Week
	Graphs
	Binary Search
	Union Find

