
Algorithms for Programming Contests - Week 01

Prof. Dr. Javier Esparza,
Vincent Fischer,
Jakob Schulz,

conpra@model.cit.tum.de

14. Oktober 2025

mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 01

Content of the Course

General Concept

• Theoretical background about several concepts and algorithms.

• Implementing algorithms is a useful skill, for CS research, other
research, software development. . . sometimes for hobbies.

• Contest-format algorithm implementation practical course.

Algorithms for Programming Contests - Week 01

Content of the Course

The Problem Sets

• Available on judge.db.cit.tum.de

• Usually, 3− 5 problems per week, and at least one problem of every
difficulty level (easy, medium, hard).

• Each problem gives up to N + N points, where usually N ∈ {4, 6, 8}
(more on that later).

• Each week’s problems are (mostly) about the topics, algorithms and
concepts from that week’s lecture.

• There will be hints in the lectures.

Have a Problem with a Problem?

Should difficulties arise: Ask questions! If needed, we can schedule a
meeting in our office.

judge.db.cit.tum.de

Algorithms for Programming Contests - Week 01

Content of the Course

Grading

Your final grade will be determined by how many points you earned, as
well as an oral discussion of the topics learned at the end of the semester.
The oral part will account for 25% of the grade (using rounding to the
nearest). Only one final grade goes on record.
The (tentative) key for grading the problems is the following:

Percentage Grade

≥ 90% 1.0
≥ 85% 1.3
≥ 80% 1.7
≥ 75% 2.0
≥ 70% 2.3
≥ 65% 2.7
≥ 60% 3.0
≥ 55% 3.3
≥ 50% 3.7
≥ 40% 4.0

Algorithms for Programming Contests - Week 01

Content of the Course

Topics (preliminary list)

1 Introduction

2 Data Structures (UF, Binary Search, Graphs)

3 Graphs, Minimum Spanning Trees, DFS, BFS

4 Shortest Paths

5 Maximum Flows

6 Brute Force / Backtracking

7 Greedy

8 Dynamic Programming

9 Number Theory

10 Trees

11 Geometry

12 Contest

13 Conclusion

Algorithms for Programming Contests - Week 01

Judge

Judging system

https://judge.db.cit.tum.de

• Please register!

• We need to give you access to our course, which is invisible at first.

• The AACPP courses are not from us!

https://judge.db.cit.tum.de

Algorithms for Programming Contests - Week 01

Judge

Registration Details

https://judge.db.cit.tum.de

• We will have a scoreboard in our course, where you will be listed
with the names you enter in the registration form. You are free to
use pseudonyms. → the names will appear on our course-scoreboard

• Don’t forget your password! The reset links do not work!

• Send an email to conpra@model.cit.tum.de containing your
username and your real name.

• Afterwards, we will give you access to our ConPra course :)

https://judge.db.cit.tum.de
mailto:conpra@model.cit.tum.de

Algorithms for Programming Contests - Week 01

Judge

Judging system

Once you have access to the ConPra course, you can find it under
”Contests” as ”conpra-2526” / ”ConPra 25/26”.

Algorithms for Programming Contests - Week 01

Judge

Dashboard

Read through the technical regulations once!

Algorithms for Programming Contests - Week 01

Problems

Problem structure

A problem consists of several parts:

• name, abbreviation, difficulty,

• problem author,

• problem statement,

• input format specification,

• output format specification,

• constraints,

• sample input and output.

Algorithms for Programming Contests - Week 01

Problems

Submitting programs

Submitting programs is done on the JudgeDB web interface entirely.

• No files to be sent via e-mail etc.

• Only a single source code file is to be uploaded, no object files,
executables or similar.

Submit

• Only C, C++ or Rust supported.

• Language automatically selected based on file extension (.c, .cpp or
.rs)

• You may need to reload the page to see results (the page does not
reload automatically in most cases, even when it tells you so)

Algorithms for Programming Contests - Week 01

Problems

Judging

JudgeDB

• compiles,

• executes,

• tests

the submission against several test cases.
The submission is treated instantaneously and JudgeDB (usually)
announces its verdict within a few moments.

Algorithms for Programming Contests - Week 01

Problems

Judging

The following report codes can occur:

OK

The submission successfully solved all the test cases.

WRONG ANSWER

The submission’s output is incorrect.
Possible reasons:

• The answer is just wrong.

• The answer does not conform to the output format specification
given on the problem set.

• The answer is not exact enough (e.g. with floating point answers
with a desired precision).

Algorithms for Programming Contests - Week 01

Problems

Judging

TIME LIMIT EXCEEDED

The submission runs longer than the maximal allowed time and was
terminated.
Possible reasons:

• The submission runs in an endless loop.

• The submission is not efficient enough.

MEMORY LIMIT EXCEEDED

Used more memory than the allowed memory limit.

RUNTIME ERROR

The program returned a non-zero exit code.

Algorithms for Programming Contests - Week 01

Problems

Judging

RULES VIOLATION

The program attempts illegal syscalls or tries to tamper with the sandbox.

SYSTEM ERROR

Not your fault. Report this to the system administrator Mateusz
Gienieczko (giem@in.tum.de).

Algorithms for Programming Contests - Week 01

Problems

Limits

Number of submissions 100 (default), can be increased case-by-case
File size 10KiB
Compilation time 30s
Executable size 5MiB
Execution time limit depending on task
Execution memory limit depending on task
Architecture 32-bit x86

• No networking, no file system access, no manipulating file
descriptors (except stout/stdin), no multithreading.

• In case of any problems: contact us! If you refer to your submission,
always include the unique submission number.

Algorithms for Programming Contests - Week 01

Problems

Points

• The number N of points achievable depends on the task (usually, 4
for easy, 6 for medium, and 8 for hard problems)

• In the first week after the lecture, you only receive partial feedback
(report code, and the achieved score, but no feedback on the
violated test cases)

• After the first week, results are published, and you receive x points,
where x is the best submission score.

• From then on, a second phase starts, where you can still upload new
submissions to improve your score.

• In this second phase, you get immediate feedback.
• Finally, you are awarded x + y points, where y is the achieved score
after the second phase. (y ≥ x always holds, so you don’t need to
reupload submissions without change just to get points)

• Examples:
• You uploaded a correct submission in the first phase. You will get

N + N points.
• You uploaded a submission with 3 points in the first phase, and

improved to N in the second phase. You get 3 + N points.

Algorithms for Programming Contests - Week 01

zulip

zulip

Sometimes you want to discuss with other students.
Please discuss problem statements, corner cases, algorithms and
approaches. The code should be your own.

You are welcome to use our zulip channels!

Algorithms for Programming Contests - Week 01

Sample source code

C++ Submission
#include <iostream >

#include <stdio.h>

int main() {

// loop over all test cases

int t;

scanf("%d", t);

for(int i = 1; i <= t; i++) {

// read several types of input

int j;

std:: string s1;

char s2 [101];

// use the possibility you like more

std::cin >> j >> s1;

scanf("%d␣%100s", &j, s2);

// output: use the possibility you like more

std::cout << "Case␣#" << i << ":␣" << s1 << std::endl;

printf("Case␣#%d:␣%s␣%d", i, s2, j);

}

return 0;

}

Algorithms for Programming Contests - Week 01

Sample source code

Rust submission

fn main () -> Result <(), Box <dyn std:: error::Error >> {

let stdin = std::io::stdin ();

let mut buffer = String ::new();

stdin.read_line (&mut buffer)?;

let n = buffer.trim_end (). parse::<usize >()?;

for k in 1..n+1 {

buffer = String ::new();

stdin.read_line (&mut buffer)?;

let value: isize = std::iter::Sum::sum(

buffer.split_ascii_whitespace ().

map(|x| x.parse::<isize >().

unwrap_or_default ()));

println !("Case␣#{}:␣{}", k, value);

}

return Ok (());

}

Algorithms for Programming Contests - Week 01

Hints for Solving Problems

Understanding Problems

• Read the problem statement very carefully.

• Also the constraints, think about special cases:
• E.g. if there are negative values or 0 allowed, then there is probably a

test case for that.
• E.g. special characters or a space when dealing with strings.
• ...

Algorithms for Programming Contests - Week 01

Hints for Solving Problems

Solving Problems

• Code efficiently.
• Think about which data types to use.
• Sometimes arrays might not have to be two- or three-dimensional.
• Sometimes objects add runtime overhead without making code

clearer.
• Implement algorithms given in the lecture with their amortized

running times.

• Look carefully at the input and output specifications and let your
program be conform to those!

• Remove all debug messages before submitting.

• Write comments!

Algorithms for Programming Contests - Week 01

Hints for Solving Problems

Code from the Internet

• You are allowed to download and include a library, but you need to
cite the correct source.

• Do this by putting a comment in your code stating the url or similar.
please configure any bundlers/formatters not to lose the

reference!

• Including other people’s published code without a reference, or using
other students’ code, is a rule violation

• However, we advise you to code on your own as it improves the
understanding about the algorithms involved. You probably need this
in subsequent problems anyway.

Algorithms for Programming Contests - Week 01

Hints for Solving Problems

Debugging your programs

• RUNTIME ERROR supersedes WRONG ANSWER

• For C++ and memory corruption: Valgrind

• Generating completely random input can be faster than waiting for
us to answer
. . . do not only write tests by hand, write a generator

• Shortest possible input?

• If you get TIME LIMIT EXCEEDED, look at your program and try
constructing its worst input

• Small function mean less variables in scope (more mistakes become
compile-time errors)
. . . and small functions can be tested separately

• We may omit the very worst test cases — so if optimisation is useful
almost always, use it

• If someting is formally allowed to be zero, we might have such a case

Algorithms for Programming Contests - Week 01

Hints for Solving Problems

Debugging your programs: using a testcase

• Generating completely random input can be faster than waiting for
us to answer
. . . do not only write tests by hand, write a generator

• Might be able to write really slow but reliable solution to compare

• Check internal assumptions
Can find mistakes without knowing correct answer

• Print intermediate values and look at them

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

Big Inputs / Outputs

• Some problems require you to read/write a substantial amount of
input/output.

• Even without doing anything else, this can take longer than the
allowed time limit when not handled correctly!

Speed up your code easily!

Use the faster readers / writers when handling big data.

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

C++ - Input

cin
#include <iostream.h>

...

int n;

double d;

cin >> n >> d;

scanf
int n;

double d;

scanf ("%d %i", &n, &d);

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

C++ - Input

Input Size cin scanf
5 Mio Integers 1887 ms 552 ms
50 Mio Integers 18789 ms 5467 ms

cin synchronizes with stdio buffers.
Turning this off can make it even faster than scanf.

std:: ios_base :: sync_with_stdio(false);

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

C++ - Output

cout
#include <iostream.h>

...

cout << "Case #" << i << ": " << x << endl;

printf

printf ("Case #%d: %i\n", i, x);

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

C++ - Output

Output Size cout printf
5 Mio Integers 11927 ms 492 ms
50 Mio Integers - 4919 ms

Again, cout can be improved by using the following line.

std:: ios_base :: sync_with_stdio(false);

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

Rust

For Rust: you might need to lock standard IO streams

You can switch languages even between submissions to the same problem

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

That’s it!

Questions?

Algorithms for Programming Contests - Week 01

Big Inputs / Outputs

Until next week:

Homework:

• Register on https://judge.db.cit.tum.de and send me your
username and real name

• Check out the problem in APC-26-test to try the submission process
and code restrictions (cf. technical regulations)

Also:

• Slides will be uploaded to
https://www.cs.cit.tum.de/en/tcs/lehre/ws25/conpra/

• Keep an eye on zulip, all relevant announcements will be made there

https://judge.db.cit.tum.de
https://www.cs.cit.tum.de/en/tcs/lehre/ws25/conpra/

	Content of the Course
	Judge
	Problems
	zulip
	Sample source code
	Hints for Solving Problems
	Big Inputs / Outputs

