Chair for Foundations of Software Reliability and Theoretical Computer Science School of Computation, Information and Technology Technical University of Munich

Esolution

Place student sticker here

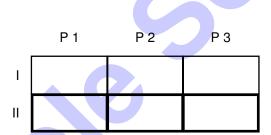
Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Petrinetze

Exam: IN2052 / Endterm **Date:** Thursday 1st August, 2024

Examiner: Prof. Javier Esparza **Time:** 11:30 – 12:45



Left room	from	to	-
	from	to	-
Early submission	at		
Notos			
Notes			

Samole

Endterm

Petrinetze

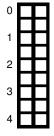
Prof. Javier Esparza
Chair for Foundations of Software Reliability and Theoretical Computer Science
School of Computation, Information and Technology
Technical University of Munich

Thursday 1st August, 2024 11:30 – 12:45

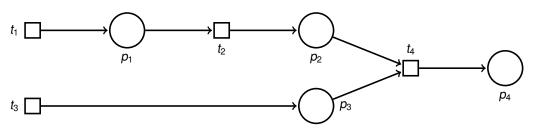
Working instructions

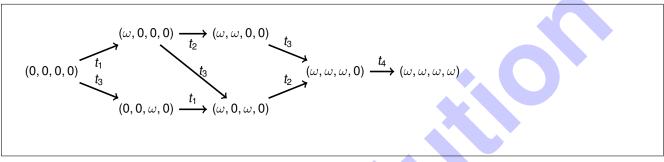
- This exam consists of 4 pages with a total of 3 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 43 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English ↔ native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

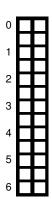
Problem 1 Coverability Graphs (10 credits)



a)* Construct the coverability graph of the following Petri net (\mathcal{N}, M_0) , where $M_0 = \mathbf{0}$, that is, the initial marking puts zero tokens in all places.







b)* Prove that the coverability graph of a Petri net (\mathcal{N}, M_0) with $M_0 = \mathbf{0}$ contains at most 2^n nodes, where n is the number of places of \mathcal{N} .

We will prove that all nodes v of the coverability graph are labelled with 0 and ω only. Then the given bound follows immediately.

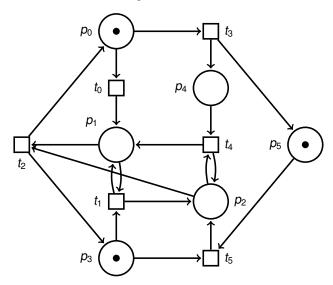
We will prove this by induction on the distance d of v from the root node labeled $M_0 = \mathbf{0}$. For distance d = 0 we have $v = M_0$, which fulfills this.

 $d \to d$ + 1: Let v be a node at distance d + 1. Then there exists a node w at distance d from the root, and such that $w \to v$ via a transition t. By induction hypothesis, w is labelled with 0 and ω only.

Since t is enabled at w, no place $p \in {}^{\bullet}t$ is unmarked at w. Then it follows that every $p \in {}^{\bullet}t$ is marked with ω . It follows that t does not decrease any places $(\omega - 1 = \omega)$, i.e. we have $v \ge w$. This means that every place $p \in t^{\bullet}$ will be marked with ω in v. Places which are not in t^{\bullet} do not change their marking, hence v again only has 0 and ω as values.

Problem 2 Analyzing a Petri Net (15 credits)

Consider the following net \mathcal{N} :



Answer the following questions about the Petri net $\ensuremath{\mathcal{N}}.$

If the object exists, it is enough to give one, otherwise prove that such an object cannot exist.

a)* Is there an S-invariant I with $I(p_0) > 0$?

X True

False

Yes, $I(p_0) = I(p_1) = I(p_4) = 1$, with I(p) = 0 for all other p.

b)* Is there an S-invariant I with $I(p_5) > 0$?

True

X False

No, from t_5 and t_1 we obtain $I(p_5) + I(p_3) = I(p_2)$ and $I(p_3) = I(p_2)$ respectively. We can subtract these equations to obtain $I(p_5) = 0$.

c)* Is there a positive T-invariant?

X True

False

Yes, both the parikh mappings of $t_3t_4t_5t_2$ and $t_0t_1t_2$ are *T*-invariants. Therefore their sum, which is positive on every coordinate, is again a *T*-invariant.

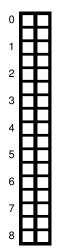
d)* Give a smallest siphon containing p_5 . (That is, a siphon containing p_5 that does not properly contain any other siphon P'' with $p_5 \in P''$.)

Because of t_3 , we have to contain p_0 . Because of t_2 we then contain either p_1 or p_2 . A further case distinction gives the possibilities $\{p_0, p_1, p_2, p_5\}, \{p_0, p_1, p_4, p_5\}$ and $\{p_0, p_2, p_3, p_5\}$.

e)* Fact: Every minimal proper siphon of (\mathcal{N}, M_0) is an initially marked trap. (You do not have to prove this fact.) Using this fact, prove that (\mathcal{N}, M_0) is deadlock-free.

By the lecture, if every proper siphon contains an initially marked trap, then the net is deadlock-free. Every proper siphon contains a minimal proper siphon, which by the fact is an initially marked trap.

Problem 3 Reductions (18 credits)



a)* Let $\mathcal{N} = (S, T, F)$ be a net with $T = \{t_1, \dots, t_m\}$. A sequence $\sigma \in T^*$ is *ordered* if σ belongs to the language of the regular expression $t_1^*t_2^* \cdots t_m^*$. For example, t_2t_3 and $t_1t_1t_2t_4t_4t_4$ are ordered, but t_2t_1 is not ordered.

The *ordered* reachability problem is defined as follows: Given a net $\mathcal{N} = (S, T, F)$ with a set $T = \{t_1, ..., t_m\}$ of transitions, and two markings M_0 , M of \mathcal{N} , is there an ordered firing sequence σ such that $M_0 \stackrel{\sigma}{\to} M$?

Prove that the ordered reachability problem can be reduced in polynomial time to the reachability problem. Describe the reduction in detail, and *sketch* the proof that the reduction is correct.

Let $\mathcal{N} = (S, T, F)$ be a net with $T = \{t_1, \dots, t_m\}$, and M_0, M two markings.

We create a Petri net $\mathcal{N}' = (S', T', F')$ and new markings M'_0, M' as follows:

The idea is to have m "phases" p'_i , such that in the i-th phase only the i-th transition can be used.

Formally, we define $S' := S \cup \{p'_1, \dots, p'_m\}$, where p'_1, \dots, p'_m are new places, i.e. $S \cap \{p'_1, \dots, p'_m\} = \emptyset$.

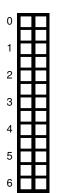
We define $T' := T \cup \{t'_1, \dots, t'_{m-1}\}$, where again t'_1, \dots, t'_{m-1} are new transitions, i.e. $T \cap \{t'_1, \dots, t'_{m-1}\} = \emptyset$.

We define $F' := F \cup \{(p'_i, t_i), (t_i, p'_i) \mid 1 \le i \le m\} \cup \{(p'_i, t'_i), (t'_i, p'_{i+1}) \mid 1 \le i \le m-1\}.$

We finish by defining $M'_0 := M_0 + \{p'_1\}$ and $M' := M + \{p'_m\}$.

Correctness Sketch: \Rightarrow : To simulate an ordered transition sequence $t_1^{r_1}t_2^{r_2}\dots t_m^{r_m}$ from $M_0\to_{\mathcal{N}}^*M$, we can fire $t_1^{r_1}t_1^{r_2}t_2^{r_2}\dots t_{m-1}^{r_m}t_m^{r_m}$ in \mathcal{N}' . Observe in particular that the new arcs to and from the t_i do not change the effect of t_i , they only cause it to be firable "in phase i only".

 \Leftarrow : On the other hand, by construction of \mathcal{N}' , any transition sequence of \mathcal{N}' ending with a token at p'_m has to be of the form $t_1^{r_1}t_1't_2^{r_2}t_2'\dots t_{m-1}'t_m''$ for some numbers $r_i \in \mathbb{N}$, from which we can read of a firing sequence $t_1^{r_1}t_2^{r_2}\dots t_m^{r_m}$ of \mathcal{N} .



b)* Let \mathcal{N} be a net without weights and let M_0 , M be two markings of \mathcal{N} satisfying M_0 , $M \ge 1$, that is, satisfying that $M_0(s) \ge 1$ and $M(s) \ge 1$ hold for every place s of \mathcal{N} .

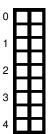
Prove: If the marking equation $M = M_0 + N \cdot X$ has a nonnegative integer (i.e. \mathbb{N}) solution X, then there exists a natural number $\lambda \in \mathbb{N}_{>0}$ such that λM is reachable from λM_0 .

Hint: Let σ have parish vector X, and prove $i \cdot M_0 + (\lambda - i)M \xrightarrow{\sigma} (i - 1) \cdot M_0 + (\lambda - i + 1)M$ for all $1 \le i \le \lambda$.

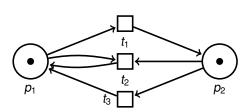
Define $\lambda := ||X||_1$ to be the number of transitions of X. We claim $\lambda M_0 \to^* \lambda M$.

To prove the claim, let σ be any transition sequence with parikh vector X. It suffices to show that for all $1 \le i \le \lambda$ we have $i \cdot M_0 + (\lambda - i)M \xrightarrow{\sigma} (i - 1)M_0 + (\lambda - i + 1)M$.

To see this, observe that $i \cdot M_0 + (\lambda - i)M \ge i \cdot 1 + (\lambda - i) \cdot 1 = \lambda \cdot 1 = ||X||_1 \cdot 1$. Since no transition consumes more than 1 token from any place, and σ only contains $||X||_1$ many transitions, we do not run out of tokens on any place when trying to fire σ . Hence σ is firable at $i \cdot M_0 + (\lambda - i)M$, and since its parikh vector X is a solution to the marking equation, it leads to the claimed marking.



c)* Prove that the assumption $M \ge 1$ is necessary, by giving a net \mathcal{N} without weights and two markings M_0 , M such that $M_0 \ge 1$ and the marking equation $M = M_0 + N \cdot X$ has a nonnegative integer solution, but there does not exist a natural number $\lambda \in \mathbb{N}_{>0}$ such that λM is reachable from λM_0 .



We let $M := \mathbf{0}$. The marking equation has the solution $t_1 \mapsto 1$, $t_2 \mapsto 2$, $t_3 \mapsto 0$. However, $P = \{p_1, p_2\}$ is a trap, hence $\lambda M = M$ cannot be reachable from any non-zero marking.

Samole

Samole