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Arithmetic and notation
We consider formulas over the signature Σ = {+, ∗, <,=}.
Arithmetic is the set of all Σ-sentences that are true in the
interpretation with universe N and where +, ∗, <,= are interpreted
in the standard way.
(We substitute N for Z for convenience, it is an inessential detail.)

We denote the set of all sentences of arithmetic by W .

F (x1, . . . , xk) denotes a formula in which at most the variables
x1, . . . , xk occur free.

If n1, . . . , nk ∈ N then F (n1, . . . , nk) is the result of substituting
n1, . . . , nk for the free occurrences of x1, . . . , xk .

Example

F (x , y) = (x = y ∧ ∃x . x = y)

F (5, 7) = (5 = 7 ∧ ∃x . x = 7)
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Arithmetically representable functions and relations
Formulas with free variables can represent functions and relations.

The formula
F (x , y) = (∃z . y = x + z + 1)

represents the relation “x < y”

The formula

F (x , y , z) = (∃k . x = k ∗ y + z ∧ z < y)

represents the relation “z = x mod y”.

Definition
A k-ary relation R ⊆ Nk is arithmetically representable iff there is
a formula F (x1, . . . , xk) s.t. for all n1, . . . , nk ∈ N:

(n1, . . . , nk) ∈ R iff F (n1, . . . , nk , ) ∈ W

We call F a representation of R.
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Representing the transition relation of Turing machines

Given a deterministic Turing machine M with states {0, . . . , n}
over the tape alphabet {0, 1}, we encode a configuration c of M as
a tuple c = (l , q, r) ∈ N3 where

▶ q encodes the state of M;

▶ l encodes the left-string: the string to the left of the head,
read as a binary number with an additional leading 1;

▶ r encodes the right-string: the string including the square
where the head is, and extending to the right, read in reverse
as a binary number with an additional leading 1.

Definition
The transition relation of M is the relation TM ⊆ N6 given by

TM = {(c1, c2) | c2 is the successor configuration of c1} .
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Representing the transition relation of Turing machines

Lemma
For every Turing machine M the relation TM is arithmetically
representable.

Proof idea: Let c1
q,a−−→ c2 denote that c1 is a configuration with

state q where the head reads a and c2 is the successor of c1

For every state q and symbol a of M define

T q,a
M := {(c1, c2) | c1

q,a−−→ c2}

and define an arithmetic representation of F
(q,a)
M .

For example, if δ(3, 0) = (5, 1,R) then define

F 3,0
M (l1, q1, r1, l2, q2, r2)

=: (q1 = 3 ∧ q2 = 5 ∧ l2 = l1 ∗ 2 + 1 ∧ r1 = r2 ∗ 2)

The formula FM :=
∨

q∈QM ,a∈ΣM

F q,a
M is a representation of TM
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Representing the reachability relation of Turing machines

Lemma
For every Turing machine M the transitive closure T ∗

M of TM is
arithmetically representable.

We only sketch the proof of a weaker result.

Given a formula F (x , y) of arithmetic representing a binary relation
R we can effectively construct a formula F ∗(x , y) of arithmetic
with exponentiation representing R∗.

A full proof of the lemma requires to express exponentiation in
arithmetic and extend the result to formulas F (x⃗ , y⃗).

Key idea of the proof: encode a sequence
an, an−1, . . . , a0 ∈ (N \ {0})∗ of arbitrary length as a pair
(t, p) ∈ N2 where

▶ p > ai for all 0 ≤ i ≤ n and

▶ the word an . . . a1a0 ∈ [p]∗ is the p-ary representation of t.
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Representing the reachability relation of Turing machines

Represent the relation “y = a0” by the formula

Last(t, p, y) = y < p ∧ ∃x (t = x ∗ p + y)

Represent “x = an” by

First(t, p, x) = x < p ∧ ∃z ∃w (t = x ∗ pz + w ∧ w < pz)

Represent “v comes after u” by

Next(t, p, u, v) = u < p ∧ v < p ∧
∃i ∃y ∃z

(
t = y ∗ pi+2 + u ∗ pi+1 + v ∗ pi + z

∧ z < px ∧ y + u > 0
)

Take

F ∗(x , y) = ∃t ∃p
(
First(t, p, x) ∧ Last(t, p, y) ∧

∀u ∀v (Next(t, p, u, v) → F (u, v)
)
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Arithmetic is not semi-decidable

Theorem
W is not semi-decidable.

Proof. By reduction from the set of all pairs (M, x) where M is a
Turing machine, x is an input for M, and M does not halt on x .
This set is known to not be semi-decidable.

Let M be a Turing machine with states {0, . . . , n} and let x be an
input for M. Assume n is the only final state.

Let FM be a representation of the transition relation TM of M. Let
c0 be the initial configuration of M on input x .

Define
NHM,x = ¬∃l ∃q ∃r (F ∗

M(c0, l , q, r) ∧ q = n)

Wehave : NHM,x ∈ W iff M does not halt on input x .
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Proof systems

What is a proof system? Minimal requirement: It must be
decidable if a given text is a proof of a given formula.

We encode texts as natural numbers.

Definition
Let S be the set of all sentences over the signature of arithmetic.
A proof system for arithmetic is a decidable predicate

Prf : N× S → {0, 1}

(Read Prf (p,F ) as ”‘p is a proof of F”’.)

A proof system Prf is correct or sound iff Prf (p,F ) implies
F ∈ W . (“Everything provable is true.”)

A proof system Prf is complete iff for every F ∈ W there exists a
proof p such that Prf (p,F ). (“Everything true is provable.”)
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Gödel’s Incompleteness Theorem

Theorem (Gödel)

There is no correct and complete proof system for arithmetic.

Proof. Assume there exists a correct and complete proof system.
The following procedure semi-decides W :

Input: sentence F

p := 0;
while Prf (p,F ) = 0 do p := p + 1;
output(“F ∈ W ”)

Corollary

For every correct proof system for arithmetic there exists a
sentence F such that neither F nor ¬F can be proved.
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Hilbert’s 10th Problem

Given a diophantine equation: To devise a process accord-
ing to which it can be determined by a finite number of
operations whether the equation is solvable in integers.

Hilbert, ICM, Paris, 1900

Theorem (Matiyasevich, Robinson, Davis, Putnam, 1949-1970)

It is undecidable if a diophantine equation has a solution.
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