Incompleteness of (Integer) Arithmetic

[Schöning, van Glabbeek]

Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. 1931.

Kurt Gödel

1906 — 1978 Brünn Princeton

Arithmetic and notation

We consider formulas over the signature $\Sigma = \{+, *, <, =\}$.

Arithmetic is the set of all Σ -sentences that are true in the interpretation with universe $\mathbb N$ and where +,*,<,= are interpreted in the standard way.

(We substitute \mathbb{N} for \mathbb{Z} for convenience, it is an inessential detail.)

We denote the set of all sentences of arithmetic by W.

 $F(x_1, \ldots, x_k)$ denotes a formula in which at most the variables x_1, \ldots, x_k occur free.

If $n_1, \ldots, n_k \in \mathbb{N}$ then $F(n_1, \ldots, n_k)$ is the result of substituting n_1, \ldots, n_k for the free occurrences of x_1, \ldots, x_k .

Example

$$\begin{array}{rcl} F(x,y) &=& (x=y \ \land \ \exists x.\, x=y) \\ F(5,7) &=& (5=7 \ \land \ \exists x.\, x=7) \end{array}$$

Arithmetically representable functions and relations

Formulas with free variables can represent functions and relations.

The formula

$$F(x,y) = (\exists z. \ y = x + z + 1)$$

represents the relation "x < y"

The formula

$$F(x, y, z) = (\exists k. \ x = k * y + z \land z < y)$$

represents the relation " $z = x \mod y$ ".

Definition

A k-ary relation $R \subseteq \mathbb{N}^k$ is arithmetically representable iff there is a formula $F(x_1, \ldots, x_k)$ s.t. for all $n_1, \ldots, n_k \in \mathbb{N}$:

$$(n_1,\ldots,n_k)\in R$$
 iff $F(n_1,\ldots,n_k,)\in W$

We call F a representation of R.

Representing the transition relation of Turing machines

Given a deterministic Turing machine M with states $\{0, \ldots, n\}$ over the tape alphabet $\{0, 1\}$, we encode a configuration c of M as a tuple $\underline{c} = (I, q, r) \in \mathbb{N}^3$ where

- q encodes the state of M;
- I encodes the left-string: the string to the left of the head, read as a binary number with an additional leading 1;
- r encodes the right-string: the string including the square where the head is, and extending to the right, read *in reverse* as a binary number with an additional leading 1.

Definition

The transition relation of M is the relation $T_M \subseteq \mathbb{N}^6$ given by

$$\mathcal{T}_{\mathcal{M}} = \{(\underline{c}_1, \underline{c}_2) \mid c_2 ext{ is the successor configuration of } c_1\}$$
 .

Representing the transition relation of Turing machines

Lemma

For every Turing machine M the relation T_M is arithmetically representable.

Proof idea: Let $c_1 \xrightarrow{q,a} c_2$ denote that c_1 is a configuration with state q where the head reads a and c_2 is the successor of c_1 For every state q and symbol a of M define

$$T_M^{q,a} := \{ (\underline{c}_1, \underline{c}_2) \mid c_1 \xrightarrow{q,a} c_2 \}$$

and define an arithmetic representation of $F_M^{(q,a)}$. For example, if $\delta(3,0) = (5,1,R)$ then define

> $F_{M}^{3,0}(l_{1}, q_{1}, r_{1}, l_{2}, q_{2}, r_{2})$ =: $(q_{1} = 3 \land q_{2} = 5 \land l_{2} = l_{1} * 2 + 1 \land r_{1} = r_{2} * 2)$

The formula $F_M := \bigvee_{q \in Q_M, a \in \Sigma_M} F_M^{q,a}$ is a representation of T_M

Representing the reachability relation of Turing machines

Lemma

For every Turing machine M the transitive closure T_M^* of T_M is arithmetically representable.

We only sketch the proof of a weaker result.

Given a formula F(x, y) of arithmetic representing a binary relation R we can effectively construct a formula $F^*(x, y)$ of arithmetic with exponentiation representing R^* .

A full proof of the lemma requires to express exponentiation in arithmetic and extend the result to formulas $F(\vec{x}, \vec{y})$.

Key idea of the proof: encode a sequence $a_n, a_{n-1}, \ldots, a_0 \in (\mathbb{N} \setminus \{0\})^*$ of arbitrary length as a pair $(t, p) \in \mathbb{N}^2$ where

• $p > a_i$ for all $0 \le i \le n$ and

▶ the word $a_n \ldots a_1 a_0 \in [p]^*$ is the *p*-ary representation of *t*.

Representing the reachability relation of Turing machines

Represent the relation " $y = a_0$ " by the formula

$$Last(t, p, y) = y$$

Represent " $x = a_n$ " by

First(t, p, x) = x

Represent "v comes after u" by

$$Next(t, p, u, v) = u
$$\exists i \exists y \exists z (t = y * p^{i+2} + u * p^{i+1} + v * p^{i} + z \land z < p^{x} \land y + u > 0)$$$$

Take

$$F^{*}(x,y) = \exists t \exists p \left(First(t,p,x) \land Last(t,p,y) \land \\ \forall u \forall v \left(Next(t,p,u,v) \rightarrow F(u,v) \right) \right)$$

Arithmetic is not semi-decidable

Theorem

W is not semi-decidable.

Proof. By reduction from the set of all pairs (M, x) where M is a Turing machine, x is an input for M, and M does not halt on x. This set is known to not be semi-decidable.

Let *M* be a Turing machine with states $\{0, \ldots, n\}$ and let *x* be an input for *M*. Assume *n* is the only final state.

Let F_M be a representation of the transition relation T_M of M. Let c_0 be the initial configuration of M on input x.

Define

 $NH_{M,x} = \neg \exists I \exists q \exists r (F_M^*(\underline{c}_0, I, q, r) \land q = n)$

We have : $NH_{M,x} \in W$ iff M does not halt on input x.

Proof systems

What is a *proof system*? Minimal requirement: It must be decidable if a given text is a proof of a given formula.

We encode texts as natural numbers.

Definition

Let S be the set of all sentences over the signature of arithmetic. A proof system for arithmetic is a decidable predicate

$$Prf: \mathbb{N} \times S \rightarrow \{0,1\}$$

(Read Prf(p, F) as "'p is a proof of F"'.)

A proof system Prf is correct or sound iff Prf(p, F) implies $F \in W$. ("Everything provable is true.")

A proof system Prf is complete iff for every $F \in W$ there exists a proof p such that Prf(p, F). ("Everything true is provable.")

Gödel's Incompleteness Theorem

Theorem (Gödel)

There is no correct and complete proof system for arithmetic.

Proof. Assume there exists a correct and complete proof system. The following procedure semi-decides W:

Input: sentence F p := 0; while Prf(p, F) = 0 do p := p + 1; output(" $F \in W$ ")

Corollary

For every correct proof system for arithmetic there exists a sentence F such that neither F nor \neg F can be proved.

Hilbert's 10th Problem

Given a diophantine equation: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in integers.

Hilbert, ICM, Paris, 1900

Theorem (Matiyasevich, Robinson, Davis, Putnam, 1949-1970) It is undecidable if a diophantine equation has a solution.

