
Quantifier Elimination
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Helpful lemmas

Recall that ∀F := ∀x1 . . . ∀xn F where x1, . . . , xn are the free
variables of F .

Lemma
Let S be a set of sentences. S |= F iff S |= ∀F

Proof. Exercise.

Lemma
Let S be a set of sentences. If S |= F ↔ G then
S |= H ↔ H[G/F ].

Proof. By structural induction on H. Exercise.
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Quantifier elimination

Definition
Let T be a set of formulas. We say that F and F ′ are
T -equivalent if T |= F ↔ F ′

Definition
A theory T admits quantifier elimination if for every formula F
there is a quantifier-free T -equivalent formula G such that
fv(G ) ⊆ fv(F ). We call G a quantifier-free T -equivalent of F .

Examples

Find quantifier-free equivalent formulas in linear real arithmetic for:

∃x∃y (3 ∗ x + 5 ∗ y = 7) ↔ ?

∃y (x < y ∧ y < z) ↔ ?

∀y (x < y ∧ y < z) ↔ ?
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Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set
of formulas F is an algorithm that computes for every formula of
F a quantifier-free T -equivalent.

Lemma
Let T be a theory such that

▶ T has a QEP for all formulas and

▶ T |= G or T |= ¬G for all ground formulas G (quantifier-free
formula without occurrences of variables), and it is decidable
which is the case.

Then T is decidable and complete.
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Quantifier elimination

Proof. Decidability.

This algorithm decides whether T |= F for given F (sentence or
not):

Compute a quantifier-free T -equivalent G of ∀F .
Decide whether T |= G or T |= ¬G .
If T |= G then answer T |= F , otherwise T ̸|= F .

Correctness of the algorithm:

T |= F iff T |= ∀F iff T |= G

where we have made use of the lemmas.

Completeness. Exercise.
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Simplifying quantifier elimination: one ∃

Fact
If T has a QEP for all formulas of the form ∃x F , where F is
quantifier-free,
then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single ∃

Construction:

Given: a QEP qe1 for formulas of the form ∃x F where F is
quantifier-free

Define: a QEP for all formulas
Method: Eliminate quantifiers bottom-up by qe1, use ∀ ≡ ¬∃¬
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Simplifying quantifier elimination: ∃x
∧
literals

Fact
If T has a QEP for all ∃x F where F is a conjunction of literals,
all of which contain x ,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1c for formulas of the form ∃x (L1 ∧ · · · ∧ Ln)
where each Li is a literal that contains x

Define: qe1(∃x F ) where F is quantifier-free
Method: Put F in DNF. Distribute ∃ over ∨. Apply qe1c.

This is the end of the generic part of quantifier elimination.
The rest is theory specific.

7



Simplifying quantifier elimination: Eliminating “¬”
(Motivation: ¬x < y ↔ y < x ∨ y = x for linear orderings)

Fact
Assume that there is a computable function aneg that maps every
negated atom to a quantifier-free and negation-free T -equivalent
formula.

If T has a QEP for all ∃x F where F is a conjunction of atoms,
all of which contain x ,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1ca for formulas of the form ∃x (A1 ∧ · · · ∧ An)
where each atom Ai contains x

Define: qe1(∃x F ) where F quantifier-free
Method: Put F into NNF. Apply aneg . Put F in DNF. Distribute
∃ over ∨. Apply qe1ca.
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Quantifier Elimination

Dense Linear Orders
Without Endpoints
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Dense Linear Orders Without Endpoints

Definition
Let Σ = {<,=}. The theory of dense linear order without
endpoints (DLO) is the set of Σ-sentences that are consequences
of the following set of axioms:

∀x∀y∀z (x < y ∧ y < z → x < z)

∀x ¬(x < x)

∀x∀y (x < y ∨ x = y ∨ y < x)

∀x∀z (x < z → ∃y (x < y ∧ y < z)

∀x∃y x < y

∀x∃y y < x

Models of DLO?

Theorem
All countable models of DLO are isomorphic.
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Elimination of “¬”

Fact
DLO has a computable function aneg that maps every negated
atom to a quantifier-free and negation-free DLO-equivalent
formula.

DLO |= ¬(x = y) ↔ x < y ∨ y < x

DLO |= ¬(x < y) ↔ x = y ∨ y < x

aneg(¬(x = y)) = x < y ∨ y < x

aneg(¬(x < y)) = x = y ∨ y < x
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Quantifier elimination for conjunctions of atoms
We define a QEP for formulas of the form ∃x (A1 ∧ · · · ∧ An),
where x occurs in every Ai .

qe1ca(∃x (A1 ∧ · · · ∧ An):

▶ If some Ai is of the form x = y (x and y different), apply:

∃x (x = t ∧ F ) ≡ F [t/x ] (x does not occur in t)

and return F [y/x ].

▶ Drop all Ai of the form y = y . If no Ai left return ⊤.

▶ If some Ai is of the form y < y , return ⊥.

▶ Separate the Ai into lower and upper bounds for x .
If no lower and/or no upper bounds, return ⊤. Otherwise use

DLO |= ∃x

 m∧
i=1

li < x ∧
n∧

j=1

x < uj

 ↔
m∧
i=1

n∧
j=1

li < uj

and return
∧m

i=1

∧n
j=1 li < uj .

12



Quantifier elimination for conjunctions of atoms

Example

∃x (x < z ∧ y < x ∧ x < w) ≡DOL y < z ∧ y < w

∀x ∀y (x < y) ≡DOL ∀x ¬∃y ¬(x < y)
≡DOL ∀x ¬∃y (y < x ∨ x = y)
≡DOL ∀x ¬(∃y y < x ∨ ∃y x = y)
≡DOL ∀x ¬(⊤ ∨ x = x)
≡DOL ∀x ⊥
≡DOL ⊥

∃x ∃y ∃z (x < y ∧ y < z ∧ z < x) ≡DOL ∃x ∃y (x < y ∧ y < x)
≡DOL ∃x x < x
≡DOL ⊥
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Complexity

Quadratic blow-up with each elimination step

Therefore, eliminating all ∃ from

∃x1 . . . ∃xm F

where F has length n needs O(n2
m
) time and space, assuming F is

DNF.

More efficient algorithms exist.
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Consequences

▶ DLO has quantifier elimination.

▶ DLO is decidable and complete.

▶ All models of DLO (for example (Q, <) and (R, <)) are
elementarily equivalent:

We cannot distinguish models of DLO by first-order formulas.
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Quantifier Elimination

Linear real arithmetic
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Linear real arithmetic

Definition
Let R+ = (R, 0, 1,+, <,=). Linear real arithmetic is the theory
R+ = Th(R+).

We allow the following additional function symbols:

For every c ∈ Q:

▶ c is a constant symbol

▶ c ·, multiplication with c , is a unary function symbol

Example

∀x ∃y
(
2.1x − y < 4.6 ∧ ∀z (7.3 < 2z + 4.7y ∨ 3.25z > 2x)

)
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Linear real arithmetic

Fact
Every formula with these additional function symbols can be
effectively transformed into an R+-equivalent formula of R+.

For example:

2.1(x − y) < 4.6

is R+-equivalent to

(x + · · ·+ x)︸ ︷︷ ︸
21 times

< 1 + · · ·+ 1︸ ︷︷ ︸
46 times

+ y + · · ·+ y︸ ︷︷ ︸
21 times

18



Linear real arithmetic

Definition
A term t is in normal form if t = c1 · x1 + . . .+ cn · xn + c
where ci ̸= 0 and xi ̸= xj for every 1 ≤ i ̸= j ≤ n.

An atom A is in normal form (NF) if A = 0 ▷◁ t for some term t in
normal form, where ▷◁∈ {<,=}.
An atom is solved for x if it is of the form x < t, x = t or t < x ,
where x does not occur in t.

Fact
Every atom is R+-equivalent to an atom in normal form.

Any atom in normal form that contains x can be effectively
transformed into a R+-equivalent atom solved for x .

We let solx(A) denote the result of solving an atom A for x .
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Elimination of “¬”

Fact
R+ has a computable function aneg that maps every negated atom
to a quantifier-free and negation-free R+-equivalent formula.

R+ |= ¬(t = t ′) ↔ t < t ′ ∨ t ′ < t

R+ |= ¬(t < t ′) ↔ t = t ′ ∨ t ′ < t

aneg(¬(t = t ′)) = t < t ′ ∨ t ′ < t

aneg(¬(t < t ′)) = t = t ′ ∨ t ′ < t
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Fourier-Motzkin Elimination

We define a QEP for formulas of the form ∃x (A1 ∧ · · · ∧ An),
where all Ai are atoms in NF and x occurs in every Ai .

qe1ca(∃x (A1 ∧ · · · ∧ An):

▶ Let S = {solx(A1), . . . , solx(An)}
▶ If (x = t) ∈ S for some t, apply:

∃x (x = t ∧ F ) ≡ F [t/x ] (x does not occur in t)

and return F [y/x ].

▶ Separate the Ai into lower and upper bounds for x .
If no lower and/or no upper bounds, return ⊤. Otherwise

return
∧

(l<x)∈S

∧
(x<u)∈S

l < u

All returned formulas are implicitly put into NF.
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Fourier-Motzkin Elimination

Examples

∃x ∃y (3x + 5y < 7 ∧ 2x − 3y < 2)
≡R+ ∃x ∃y (2/3x − 2/3 < y ∧ y < 7/5 − 3/5x)
≡R+ ∃x (2/3x − 2/3 < 7/5 − 3/5x)
≡R+ ∃x (x < 31/19)
≡R+ ⊤

∃x ∀y (3y ≤ x ∨ x ≤ 2y)
≡R+ ∃x ¬∃y ¬(3y ≤ x ∨ x ≤ 2y)
≡R+ ∃x ¬∃y ¬(x < 3y ∧ 2y < x)
≡R+ ∃x ¬∃y

(
1/3x < y ∧ y ≤ 1/2x)

)
≡R+ ∃x ¬(1/3x < 1/2x)
≡R+ ∃x (1/3x ≥ 1/2x)
≡R+ ∃x (x ≤ 0)
≡R+ ⊤
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Can DNF (recall miniscoping) be avoided?
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Ferrante and Rackoff’s theorem

Theorem
Let F be quantifier-free and negation-free (not necessarily in
DNF!) and assume all atoms that contain x are solved for x . Let

L = {l | (l < x) ∈ Sx}
U = {u | (x < u) ∈ Sx}

E = {t | (x = t) ∈ Sx}

where Sx is the set of atoms in F that contain x . Then:

R+ |= ∃x F ↔ F [−∞/x ] ∨ F [∞/x ] ∨
∨
t∈E

F [t/x ] ∨∨
l∈L

∨
u∈U

F [0.5(l + u)/x ]

where F [−∞/x ] (F [∞/x ]) is the result of applying this
transformation to all solved atoms in F :

x < t 7→ ⊤ (⊥) t < x 7→ ⊥ (⊤) x = t 7→ ⊥ (⊥)
24



Ferrante-Rackoff Procedure

qe1(∃x F ):

1. Put F into NNF, eliminate all negations,
put all atoms into normal form,
solve those atoms for x that contain x .

2. Apply Ferrante and Rackoff’s theorem.

Theorem
Eliminating all quantifiers with Ferrante and Rackoff’s procedure
from a formula of size n takes space O(2cn) and time O(22

dn
).

25



Quantifier Elimination

Presburger Arithmetic
See [Harrison] or [Enderton] under “Presburger”
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Presburger Arithmetic

Definition
Let Z+ := (Z,+, 0, 1,≤). Linear integer arithmetic is the theory
Z+ = Th(Z+).

We allow additional function symbols as for linear arithmetic:

For every c ∈ Z:

▶ c is a constant symbol

▶ c ·, multiplication with c , is a unary function symbol

Fact
Linear integer arithmetic does not have quantifier elimination

Proof. Show that no quantifier-free formula is Z+-equivalent to
∃x x + x = y .
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Presburger Arithmetic

Definition
Let P := (Z,+, 0, 1,≤, 2 |, 3 |, . . .), where k | is a unary predicate
symbol interpreted as “k divides . . .”.
Presburger Arithmetic is the theory P := Th(P).

Definition
An atom A is in normal form if

A = 0 ≤ c1 · x1 + . . .+ cn · xn + c or

A = k | c1 · x1 + . . .+ cn · xn + c

where ci ∈ Z \ {0} and k ≥ 1

Where necessary, atoms are put into normal form

Fact
Every atom is P-equivalent to an atom in normal form.

28



Elimination of “¬”

Fact
P has a computable function aneg that maps every negated atom
to a quantifier-free and negation-free P-equivalent formula.

P |= ¬(s ≤ t) ↔ t + 1 ≤ s

P |= ¬(k | t) ↔ k | t + 1 ∨ k | t + 2 ∨ · · · ∨ k | t + (k − 1)

aneg(¬(s ≤ t)) = t + 1 ≤ s

aneg(¬(k | t)) = k | t + 1 ∨ k | t + 2 ∨ · · · ∨ k | t + (k − 1)
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Quantifier Elimination for P

We define a QEP for formulas of the form ∃x (A1 ∧ · · · ∧ An),
where all Ai are atoms in NF and x occurs in every Ai .

qe1ca(∃x (A1 ∧ · · · ∧ An)) proceeds in two steps.

Let F = A1 ∧ · · · ∧ An.

Step 1: Set all coeffs of x in F to 1 or -1:

1. Set all coeffs of x in F to the lcm m of all coeffs of x

2. Set all coeffs of x to 1 or -1 and add ∧m | x

Step 2: Separate into upper and lower bounds, with some new
reasoning because of the k | t atoms.
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Quantifier Elimination for P : Step 1

The result of Step 1 is

R := coeff 1(A1) ∧ · · · ∧ coeff 1(Al) ∧m | x

where

▶ m is the (positive) lcm of all coefficients of x in F
(e.g. lcm {−6, 9} = 18), and

▶ coeff 1(0 ≤ Σn
i=1cixi + c) = (0 ≤ Σn

i=1c
′
i xi + c ′) and

coeff 1(d | Σn
i=1cixi + c) = (d ′ | Σn

i=1c
′
i xi + c ′)

where, assuming x is the k-th variable xk and letting
m′ = m/|ck | we set:

c ′i = m′ · ci if i ̸= k c ′k = if ck > 0 then 1 else − 1
c ′ = m′ · c d ′ = m′ · d

Lemma P |= (∃x F ) ↔ (∃x R)
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Quantifier Elimination for P : Step 2

The result of Step 2 is the quantifier-free formula

R ′ := if L = ∅ then
m−1∨
i=0

∧
D[i/x ] else

m−1∨
i=0

∨
l∈L

R[l + i/x ]

where

L := {−t | (0 ≤ x + t) ∈ R}
U := {t | (0 ≤ −x + t) ∈ R}
D := {(d | t) ∈ R}
m := (positive) lcm of {d | (d | t) ∈ D for some t}

The correctness of tis step follows from the

Lemma (Periodicity Lemma)

If A ∈ D, i.e. A = (d | x + t) and x /∈ fv(t), and i ≡ j (mod d)
then P |= A[i/x ] ↔ A[j/x ].
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Example

We eliminate the existential quantifier of

∃x (3x − y + 1 > 0) ∧ (2x − 6 < z) ∧ (4 | 5x + 1)

We set all coefficients of x to 1. With lcm{3, 2, 5} = 30 we get:

∃x (30x − 10y + 10 > 0) ∧ (30x − 90 < 15z) ∧ (24 | 30x + 6)

We rescale x := 30x adding the atom (30 | x) and split the
inequalities in lower and upper bounds:

∃x (10y − 10 < x) ∧ (x < 90 + 15z) ∧ (24 | x + 6) ∧ (30 | x)
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Example
Periodicity: if (24 | x + 6) ∧ (30 | x) holds for some x , then it also
holds for every x + k · lcm{24, 30} = x + k · 120 where k ∈ Z.

Therefore: (10y − 10 < x) ∧ (x < 90 + 15z) is satisfied by x iff it
is satisfied by 10y − 10 + i for some 1 ≤ i ≤ 120.

So ∃x (10y − 10 < x < 90 + 15z) ∧ (24 | x + 6) ∧ (30 | x) is
P-equivalent to

120∨
i=1

 10y − 10 < 10y − 10 + i < 90 + 15z
∧

(24 | 10y − 10 + i + 6) ∧ (30 | 10y − 10 + i)


and so P-equivalent to:

120∨
i=1

 (10y + i < 100 + 15z)
∧

(24 | 10w − 4 + i) ∧ (30 | 10w − 10 + i)


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