First-order Predicate Logic
Theories

Preliminary Definitions

Definition

A signature Σ is a set of predicate and function symbols.

A Σ -formula is a formula that contains only predicate and function symbols from Σ .

A Σ -structure is a structure that interprets all predicate and function symbols from Σ .

Definition

A Σ -sentence is a closed Σ -formula.

Convention: we assume that a signature Σ has been fixed, and drop Σ in Σ -formula, Σ -structure, or Σ -sentence. That is, we silently assume that all formulas, structures, and sentences are over the same fixed signature Σ .

Theories

Definition

A theory is a (finite or infinite) set of sentences S closed under consequence: If $S \models F$ and F is a sentence, then $F \in S$.

Fact

The set A of all sentences is a theory: If $S \models F$ for a sentence F, then in particular F is a sentence and so $F \in S$.

The set V of all valid sentences is a theory: If $V \models F$ for a sentence F, then F is valid and so $F \in V$.

 $V \subseteq S$ hods for every theory S: If F is a valid sentence, then $\models F$. It follows $S \models F$ and, since S is a theory, $F \in S$.

There are two ways to define interesting theories:

- As the set of sentences satisfied by a fixed structure.
- ► As the set of consequences of a fixed set of sentences.

Theories from structures

Definition

Given a structure \mathcal{A} , let $Th(\mathcal{A})$ denote the set of all sentences true in \mathcal{A} . That is, $Th(\mathcal{A}) := \{F \mid F \text{ is a sentence and } \mathcal{A} \models F\}$.

Lemma

For every structure A and sentence $F: A \models F$ iff $Th(A) \models F$.

Proof.

 $"\Rightarrow": \mathcal{A} \models F \Rightarrow F \in Th(\mathcal{A}) \Rightarrow Th(\mathcal{A}) \models F.$

" \Leftarrow ": Assume $Th(\mathcal{A}) \models F$. We prove $\mathcal{A} \models Th(\mathcal{A})$, which, together with $\mathcal{A} \models F$, implies $\mathcal{A} \models F$. To prove $\mathcal{A} \models Th(\mathcal{A})$, let $G \in Th(\mathcal{A})$. We have $\mathcal{A} \models G$ by definition of $Th(\mathcal{A})$.

Corollary Th(A) is a theory.

Proof. Assume $Th(\mathcal{A}) \models F$. By the lemma above, $\mathcal{A} \models F$. From the definition of $Th(\mathcal{A})$ we get $F \in Th(\mathcal{A})$.

Example

Notation: $(\mathbb{Z}, +, \leq)$ denotes the structure with universe \mathbb{Z} and the standard interpretations for the symbols + and \leq .

The same notation is used for other standard structures where the interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

 $Th(\mathbb{Z}, +, \leq)$ is the set of all sentences over the signature $\{+, \leq\}$ that are true in the structure $(\mathbb{Z}, +, \leq)$.

Famous numerical theories

 $Th(\mathbb{R}, +, <, =)$ is called linear real arithmetic. It is decidable.

 $Th(\mathbb{R}, +, *, <, =)$ is called real arithmetic.

It is decidable.

 $Th(\mathbb{Z}, +, <, =)$ is called linear integer arithmetic or Presburger arithmetic.

It is decidable.

 $Th(\mathbb{Z}, +, *, <, =)$ is called integer arithmetic.

It is not even semidecidable (= r.e.).

Decidability via special algorithms.

Theories from axioms

Definition

Let S be a set of sentences. Cn(S) denotes the set of consequences of S: $Cn(S) = \{F \mid F \text{ is a sentence and } S \models F\}$

Examples

 $Cn(\emptyset)$ is the set of valid sentences.

 $Cn(\{\forall x \forall y \forall z \ (x * y) * z = x * (y * z)\})$ is the set of sentences that are true in all semigroups.

Lemma

For every set S of sentences, the set Cn(S) is a theory.

Proof. We show: if F is a sentence and $Cn(S) \models F$ then $F \in Cn(S)$.

By the def. of Cn(S) we have $S \models Cn(S)$. By assumption $Cn(S) \models F$, and so $S \models F$ by transitivity of \models . From the definition of Cn(S) we get $F \in Cn(S)$.

Axioms

Definition

Let S be a set of sentences.

A theory T is axiomatized by S if T = Cn(S).

A theory T is axiomatizable if there is some decidable or recursively enumerable S that axiomatizes T.

A theory T is finitely axiomatizable if there is some finite S that axiomatizes T.

Completeness and elementary equivalence

Definition

A theory T is complete if for every sentence F, $T \models F$ or $T \models \neg F$.

Fact

Th(A) is complete for every structure A. Cn({ $\forall x \forall y \forall z (x * y) * z = x * (y * z)$ }) is incomplete: neither $\forall x \forall y x * y = y * x$ nor its negation belong to it.

Definition

Two structures A and B are elementarily equivalent if Th(A) = Th(B).

Theorem

A theory T is complete iff all its models are elementarily equivalent.

Theorem

A theory T is complete iff all its models are elementarily equivalent.

Proof. We prove that T is incomplete iff two of its models are not elementarily equivalent.

" \Rightarrow :" Assume T is incomplete. Then $T \not\models \neg F$ and $T \not\models F$ for some F. So $\mathcal{A}(\neg F) = 0$ (thus $\mathcal{A}(F) = 1$) for some model \mathcal{A} of T, and $\mathcal{B}(F) = 0$ for some model \mathcal{B} of T.

It follows $F \in Th(\mathcal{A}) \setminus Th(\mathcal{B})$, and so $Th(\mathcal{A}) \neq Th(\mathcal{B})$.

" \Leftarrow :" Assume two models \mathcal{A} and \mathcal{B} of T are not elementarily equivalent. W.l.o.g. $Th(\mathcal{A}) \setminus Th(\mathcal{B}) \neq \emptyset$ and so $\mathcal{A}(F) = 1$ and $\mathcal{B}(F) = 0$ for some F.

We prove $T \not\models F$ and $T \not\models \neg F$. If $T \models F$, then, since $\mathcal{B} \models T$ we have $\mathcal{B} \models F$, contradicting $\mathcal{B}(F) = 0$. If $T \models \neg F$ then, since $\mathcal{A} \models T$, we have $\mathcal{A} \models \neg F$, contradicting $\mathcal{A}(F) = 1$.