
First-order Predicate Logic

Theories
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Preliminary Definitions

Definition
A signature Σ is a set of predicate and function symbols.

A Σ-formula is a formula that contains only predicate and function
symbols from Σ.

A Σ-structure is a structure that interprets all predicate and
function symbols from Σ.

Definition
A Σ-sentence is a closed Σ-formula.

Convention: we assume that a signature Σ has been fixed, and
drop Σ in Σ-formula, Σ-structure, or Σ-sentence. That is, we
silently assume that all formulas, structures, and sentences are over
the same fixed signature Σ.
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Theories

Definition
A theory is a (finite or infinite) set of sentences S closed under
consequence: If S |= F and F is a sentence, then F ∈ S .

Fact
The set A of all sentences is a theory: If S |= F for a sentence F ,
then in particular F is a sentence and so F ∈ S .

The set V of all valid sentences is a theory: If V |= F for a
sentence F , then F is valid and so F ∈ V .

V ⊆ S hods for every theory S : If F is a valid sentence, then |= F .
It follows S |= F and, since S is a theory, F ∈ S .

There are two ways to define interesting theories:

▶ As the set of sentences satisfied by a fixed structure.

▶ As the set of consequences of a fixed set of sentences.
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Theories from structures

Definition
Given a structure A, let Th(A) denote the set of all sentences true
in A. That is, Th(A) := {F | F is a sentence and A |= F}.

Lemma
For every structure A and sentence F : A |= F iff Th(A) |= F .

Proof.

“⇒”: A |= F ⇒ F ∈ Th(A) ⇒ Th(A) |= F .

“⇐”: Assume Th(A) |= F . We prove A |= Th(A), which,
together with A |= F , implies A |= F . To prove A |= Th(A), let
G ∈ Th(A). We have A |= G by definition of Th(A).

Corollary

Th(A) is a theory.

Proof. Assume Th(A) |= F . By the lemma above, A |= F . From
the definition of Th(A) we get F ∈ Th(A).
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Example

Notation: (Z,+,≤) denotes the structure with universe Z and the
standard interpretations for the symbols + and ≤.

The same notation is used for other standard structures where the
interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

Th(Z,+,≤) is the set of all sentences over the signature {+,≤}
that are true in the structure (Z,+,≤).
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Famous numerical theories

Th(R,+, <,=) is called linear real arithmetic.

It is decidable.

Th(R,+, ∗, <,=) is called real arithmetic.

It is decidable.

Th(Z,+, <,=) is called linear integer arithmetic or Presburger
arithmetic.

It is decidable.

Th(Z,+, ∗, <,=) is called integer arithmetic.

It is not even semidecidable (= r.e.).

Decidability via special algorithms.
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Theories from axioms

Definition
Let S be a set of sentences. Cn(S) denotes the set of
consequences of S : Cn(S) = {F | F is a sentence and S |= F}

Examples

Cn(∅) is the set of valid sentences.

Cn({∀x∀y∀z (x ∗ y) ∗ z = x ∗ (y ∗ z)}) is the set of sentences
that are true in all semigroups.

Lemma
For every set S of sentences, the set Cn(S) is a theory.

Proof. We show: if F is a sentence and Cn(S) |= F then
F ∈ Cn(S).

By the def. of Cn(S) we have S |= Cn(S). By assumption
Cn(S) |= F , and so S |= F by transitivity of |=. From the
definition of Cn(S) we get F ∈ Cn(S).
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Axioms

Definition
Let S be a set of sentences.

A theory T is axiomatized by S if T = Cn(S).

A theory T is axiomatizable if there is some decidable or
recursively enumerable S that axiomatizes T .

A theory T is finitely axiomatizable if there is some finite S that
axiomatizes T .
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Completeness and elementary equivalence

Definition
A theory T is complete if for every sentence F , T |= F or T |= ¬F .

Fact
Th(A) is complete for every structure A.

Cn({∀x∀y∀z (x ∗ y) ∗ z = x ∗ (y ∗ z)}) is incomplete: neither
∀x∀y x ∗ y = y ∗ x nor its negation belong to it.

Definition
Two structures A and B are elementarily equivalent if
Th(A) = Th(B).

Theorem
A theory T is complete iff all its models are elementarily
equivalent.
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Theorem
A theory T is complete iff all its models are elementarily
equivalent.

Proof. We prove that T is incomplete iff two of its models are not
elementarily equivalent.

“⇒:” Assume T is incomplete. Then T ̸|= ¬F and T ̸|= F for
some F . So A(¬F ) = 0 (thus A(F ) = 1) for some model A of T ,
and B(F ) = 0 for some model B of T .

It follows F ∈ Th(A) \ Th(B), and so Th(A) ̸= Th(B).

“⇐:” Assume two models A and B of T are not elementarily
equivalent. W.l.o.g. Th(A) \ Th(B) ̸= ∅ and so A(F ) = 1 and
B(F ) = 0 for some F .

We prove T ̸|= F and T ̸|= ¬F . If T |= F , then, since B |= T we
have B |= F , contradicting B(F ) = 0. If T |= ¬F then, since
A |= T , we have A |= ¬F , contradicting A(F ) = 1.
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