First-Order Logic The Classical Decision Problem Validity/satisfiability of arbitrary first-order formulas is undecidable.

What about subclasses of formulas?

Examples $\forall x \exists y \ (P(x) \rightarrow P(y))$ Satisfiable? Resolution? $\exists x \forall y \ (P(x) \rightarrow P(y))$ Satisfiable? Resolution?

The $\exists^* \forall^*$ class

Definition The $\exists^* \forall^*$ class is the class of closed formulas of the form

$$\exists x_1 \ldots \exists x_m \forall y_1 \ldots \forall y_n F$$

where F is a quantifier-free formula that contains no function symbols of arity > 0.

This is also called the Bernays-Schönfinkel class.

Corollary

(Un)satisfiability is decidable for formulas in the $\exists^* \forall^*$ class.

Proof The Herbrand universe of $\exists^* \forall^*$ -formulas is finite.

What if a formula is not in the $\exists^*\forall^*$ class? Try to transform it into the $\exists^*\forall^*$ class!

Example

$$\forall y \exists x (P(x) \to Q(y)) \equiv \exists x \forall y (P(x) \to Q(y))$$

Heuristic transformation procedure (may or may not work):

- 1. Put formula into NNF.
- 2. Push all quantifiers into the formula as far as possible ("miniscoping").
- 3. Pull out \exists first and \forall afterwards.

Miniscoping

Perform the following transformations bottom-up, as long as possible:

•
$$(\exists x F) \equiv F$$
 if x does not occur free in F

$$\blacktriangleright \exists x (F \lor G) \equiv (\exists x F) \lor (\exists x G)$$

▶
$$\exists x (F \land G) \equiv (\exists x F) \land G$$
 if x is not free in G

∃x F where F is a conjunction,
x occurs free in every conjunct,
and the DNF of F is of the form F₁ ∨ · · · ∨ F_n, n ≥ 2:
∃x F ≡ ∃x (F₁ ∨ · · · ∨ F_n).

• dual transformations for \forall of all of the above.

Warning: Complexity!

Miniscoping

Example

- $\exists x \left(P(x) \land \exists y \left(Q(y) \lor R(x) \right) \right)$
- $\equiv \exists x (P(x) \land (\exists y Q(y) \lor \exists y R(x)))$
- $\equiv \exists x \left(P(x) \land (\exists y \ Q(y) \lor R(x)) \right)$
- $\equiv \exists x ((P(x) \land \exists y Q(y)) \lor (P(x) \land R(x)))$
- $\equiv \exists x (P(x) \land \exists y Q(y)) \lor \exists x (P(x) \land R(x))$
- $\equiv (\exists x P(x) \land \exists y Q(y)) \lor \exists x (P(x) \land R(x))$

Definition

A formula is monadic if it contains only unary (monadic) predicate symbols and no function symbol of arity > 0.

Examples

All men are mortal. Socrates is a man. Socrates is mortal.

The monadic class is decidable

Theorem

For every monadic formula, the heuristic transformation procedure yields an equisatisfiable $\exists^* \forall^*$ -formula.

Proof Put into NNF and perform miniscoping.

The result has no nested quantifiers (Exercise!).

First pull out all $\exists,$ then all $\forall,$ and existentially quantify free variables.

The result is in the $\exists^* \forall^*$ class.

Corollary

(Un)satisfiability of monadic formulas is decidable.

The finite model property

Definition

A formula F has the finite model property (for satisfiability) if F has a model iff F has a finite model.

Theorem

If a class of formulas has the finite model property, satisfiability is decidable.

Proof. Two semi-decision procedures, one for unsatisfiability and one for satisfiability. The procedure for satisfiability searches systematically for a model through all structures with finite domain.

The finite model property

Another proof of decidability of satisfiability for monadic formulas:

Theorem

Monadic formulas have the finite model property.

Proof

We show: A satisfiable monadic formula F with k different monadic predicate symbols P_1, \ldots, P_k has a model of size $\leq 2^k$. Given a model A of F and $u, v \in U^{A/\sim}$, define $u \sim v$ iff $P_i^A(u) = P_i^A(v)$ for every $1 \leq i \leq k$.

 \sim is a congruence (immediate consequence of the definition of congruence and the fact that all predicates are monadic).

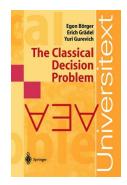
 \mathcal{A}_{\sim} (the quotient of \mathcal{A} w.r.t. \sim) is also a model of F.

 $|U_{\mathcal{A}/\sim}| \leq 2^k$, because an equivalence class $[u]_{\sim}$ is characterized by the bit-vector $(P_1^{\mathcal{A}}(u), \ldots, P_k^{\mathcal{A}}(u))$ of length k.

Classification by quantifier prefix of prenex form

There is a complete classification of decidable and undecidable classes of formulas based on

- the form of the quantifier prefix of the prenex form
- the arity of the predicate and function symbols allowed
- ▶ whether "=" is allowed or not.



A complete classification

Only formulas without function symbols of arity > 0, no restrictions on predicate symbols.

Satisfiability is decidable:

∃*∀* (Bernays, Schönfinkel 1928, Ramsey 1930) ∃*∀∃* (Ackermann 1928) ∃*∀²∃* (Gödel 1932)

Satisfiability is undecidable:

∀³∃ (Surányi 1959) ∀∃∀ (Kahr, Moore, Wang 1962)

Why complete?

Famous mistake by Gödel: $\exists^* \forall^2 \exists^*$ with "=" is undecidable (Goldfarb 1984)