First-Order Logic Compactness

[Harrison, Section 3.16]

More Herbrand Theory

Recall Gödel-Herbrand-Skolem:

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff its Herbrand expansion E(F) is (propositionally) satisfiable.

T(S): the set of all terms without variables constructed out of function symbols of S (plus a constant, if S contains none). E(S): set of all propositional formulas constructed by replacing the variables in the matrices of the formulas in S with terms from T(S). We have:

Theorem (1)

Let S be a set of closed formulas in Skolem form. Then S is satisfiable iff E(S) is (propositionally) satisfiable.

Proof: Show first that S is satisfiable iff it has a Herbrand model, and then that it is equivalent to the Herbrand expansion.

Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable Skolem form: close, RPF, skolemize

Theorem (2)

Let S be a countable set of closed formulas. Then we can transform it into an equisatisfiable set T of closed formulas in Skolem form. We call this transformation function skolem.

- ► Can all formulas in *S* be transformed in parallel?
- Why countable?

Transforming sets of formulas

Proof:

1. Put all formulas in S into RPF.

Problem in Skolemization step: How do we generate new function symbols if all of them have been used already in *S*?

2. Rename all function symbols in S: $f_i^k \mapsto f_{2i}^k$

The result: equisatisfiable countable set $\{F_0, F_1, \dots\}$.

Unused symbols: all f_{2i+1}^k

3. Skolemize the F_i one by one using the f_{2i+1}^k not used in the Skolemization of F_0, \ldots, F_{i-1}

Result is equisatisfiable with initial S.

Compactness

Theorem

Let S be a countable set of closed formulas.

If every finite subset of S is satisfiable, then S is satisfiable.

Proof every fin. $F \subseteq S$ is sat. ⇒ every fin. $F \subseteq skolem(S)$ is sat. by Theorem (2) (fin. $F \subseteq skolem(S) \Rightarrow F \subseteq skolem(S_0)$ for some fin. $S_0 \subseteq S$) ⇒ for every fin. $F \subseteq skolem(S)$, E(F) is prop. sat. by Theorem(1) ⇒ every fin. $F' \subseteq E(skolem(S))$ is prop. sat. (there must exist a fin. $F \subseteq skolem(S)$ s.t. $F' \subseteq E(F)$) ⇒ E(skolem(S)) is prop. sat. by prop. compactness ⇒ skolem(S) is sat. by Theorem (1) ⇒ S is sat. by Theorem (2)