
First-Order Logic

Compactness
[Harrison, Section 3.16]
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More Herbrand Theory

Recall Gödel-Herbrand-Skolem:

Theorem
Let F be a closed formula in Skolem form. Then F is satisfiable iff
its Herbrand expansion E (F ) is (propositionally) satisfiable.

T (S): the set of all terms without variables constructed out of
function symbols of S (plus a constant, if S contains none).
E (S): set of all propositional formulas constructed by replacing the
variables in the matrices of the formulas in S with terms from
T (S).
We have:

Theorem (1)

Let S be a set of closed formulas in Skolem form.
Then S is satisfiable iff E (S) is (propositionally) satisfiable.

Proof: Show first that S is satisfiable iff it has a Herbrand model,
and then that it is equivalent to the Herbrand expansion.
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Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable
Skolem form: close, RPF, skolemize

Theorem (2)

Let S be a countable set of closed formulas. Then we can
transform it into an equisatisfiable set T of closed formulas in
Skolem form. We call this transformation function skolem.

▶ Can all formulas in S be transformed in parallel?

▶ Why countable?
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Transforming sets of formulas

Proof:

1. Put all formulas in S into RPF.

Problem in Skolemization step: How do we generate new
function symbols if all of them have been used already in S?

2. Rename all function symbols in S : f ki 7→ f k2i

The result: equisatisfiable countable set {F0,F1, . . . }.

Unused symbols: all f k2i+1

3. Skolemize the Fi one by one using the f k2i+1 not used in the
Skolemization of F0, . . . ,Fi−1

Result is equisatisfiable with initial S .
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Compactness

Theorem
Let S be a countable set of closed formulas.
If every finite subset of S is satisfiable, then S is satisfiable.

Proof every fin. F ⊆ S is sat.
⇒ every fin. F ⊆ skolem(S) is sat. by Theorem (2)

(fin. F ⊆ skolem(S) ⇒ F ⊆ skolem(S0) for some fin. S0 ⊆ S)
⇒ for every fin. F ⊆ skolem(S), E (F ) is prop. sat. by Theorem(1)
⇒ every fin. F ′ ⊆ E (skolem(S)) is prop. sat.

(there must exist a fin. F ⊆ skolem(S) s.t. F ′ ⊆ E (F ))
⇒ E (skolem(S)) is prop. sat. by prop. compactness
⇒ skolem(S) is sat. by Theorem (1)
⇒ S is sat. by Theorem (2)
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