First-Order Logic Undecidability

[Cutland, Computability, Section 6.5.]

Aim:

Show that validity of first-order formulas is undecidable

Method:

Reduce the halting problem for register machines to validity of formulas by expressing "program behaviour" as formulas

Logical formulas can talk about computations!

Register machine programs (RMPs)

A register machine program is a sequence of instructions I_1, \ldots, I_t . The instructions manipulate registers R_i $(i = 1, 2, \ldots, r)$ that contain (unbounded!) natural numbers.

There are 4 types of instructions:

$$R_i := 0$$

 $R_i := R_i + 1$
 $R_i := R_j$
IF $R_i = R_j$ GOTO p

Assumption: all jumps in a program go to $1, \ldots, t + 1$, and execution terminates when the PC (the number of the next instruction to be executed) is t + 1.

The state of *P* during execution can be described by a tuple of r + 1 natural numbers

$$(n_1,\ldots,n_r,k)$$

where n_i is the content of R_i and k is the value of the PC.

Undecidability

Theorem (Undecidability of the halting problem for RMPs) It is undecidable if a given register machine program terminates when started in state (0, ..., 0, 1).

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation: $P(0) \downarrow =$ "RMP *P* started in state (0,...,0,1) terminates"

Theorem

Given an RMP P we can effectively construct a closed formula φ_P such that $P(0) \downarrow iff \models \varphi_P$.

Proof by construction of φ_P from $P = I_1, \ldots, I_t$. Funct. symb.: z, s. Abbr.: $\overline{0} = z$, $\overline{1} = s(z)$, $\overline{2} = s(s(z))$, ... Pred. symb.: R (arity: r + 1). (Think "reachable".) Aim: if $R(\overline{n_1}, \ldots, \overline{n_r}, \overline{k})$ then $(0, \ldots, 0, 1) \stackrel{P}{\rightsquigarrow} (n_1, \ldots, n_r, k)$. 1) For every I_i construct closed formula Ψ_i : $I_i = (R_n := 0): \Psi_i := \forall x_1 \dots x_r \ (R(x_1, \dots, x_n, \dots, x_r, \overline{i})) \rightarrow$ $R(x_1,\ldots,z,\ldots,x_r,\overline{i+1}))$ $I_i = (R_n := R_n + 1)$: same except $s(x_n)$ instead of z $I_i = (R_n := R_m)$: same except x_m instead of z $I_i = (IF R_m = R_n GOTO p)$: $\Psi_i := \forall x_1 \dots x_r \left(R(x_1, \dots, x_r, \overline{i}) \to (x_m = x_n \to R(x_1, \dots, x_r, \overline{p}) \right) \wedge$ $(x_m \neq x_n \rightarrow R(x_1, \ldots, x_r, \overline{i+1})))$

2) Define $\Psi_P := \Psi \land R(z, ..., z, s(z)) \land \Psi_1 \land \dots \land \Psi_t$ where $\Psi := \forall x \forall y (s(x) = s(y) \rightarrow x = y) \land \forall x (z \neq s(x)).$ Ψ enforces that every model is "similar enough" to \mathbb{N} . 3) Define $\varphi_P := \Psi_P \rightarrow \tau$ where $\tau := \exists x_1 ... x_r R(x_1, ..., x_r, s(\overline{t})).$ Claim: $P(0) \downarrow \text{iff} \models \varphi_P$, that is, $P(0) \downarrow \text{iff} \models \Psi_P \rightarrow \tau$.

" \Rightarrow ": Assume $P(0) \downarrow$. We show: for every \mathcal{A} , if $\mathcal{A} \models \Psi_P$ then $\mathcal{A} \models \tau$. Assume $\mathcal{A} \models \Psi_P$.

Lemma

If $(0, ..., 0, 1) \stackrel{P}{\leadsto} (n_1, ..., n_r, k)$ then $\mathcal{A} \models R(\overline{n_1}, ..., \overline{n_r}, \overline{k})$ Proof by induction on the length of the execution using $\mathcal{A} \models \Psi_P$. Thus $\mathcal{A} \models \tau$ because $P(0) \downarrow$.

" \Leftarrow ": Assume $\models \Psi_P \rightarrow \tau$. We show $P(0) \downarrow$. We have $\mathcal{N} \models \Psi_P \rightarrow \tau$ for the structure \mathcal{N} given by

$$U_{\mathcal{N}} := \mathbb{N} \quad z^{\mathcal{N}} := 0 \quad s^{\mathcal{N}}(n) := n+1$$
 .

In this structure $R^{\mathcal{N}} := \{ s \mid (0, ..., 0, 1) \stackrel{P}{\rightsquigarrow} s \}$ and so $\mathcal{N} \models \Psi_P$. From $\mathcal{N} \models \Psi_P$ and $\mathcal{N} \models \Psi_P \rightarrow \tau$ we get $\mathcal{N} \models \tau$, which implies $P(0) \downarrow$.