
First-Order Logic

Undecidability
[Cutland, Computability, Section 6.5.]

1

▶ Aim:
Show that validity of first-order formulas is undecidable

▶ Method:
Reduce the halting problem for register machines to validity of
formulas by expressing “program behaviour” as formulas

Logical formulas can talk about computations!

2

Register machine programs (RMPs)
A register machine program is a sequence of instructions I1, . . . , It .
The instructions manipulate registers Ri (i = 1, 2, . . . , r) that
contain (unbounded!) natural numbers.

There are 4 types of instructions:

Ri := 0

Ri := Ri + 1

Ri := Rj

IF Ri = Rj GOTO p

Assumption: all jumps in a program go to 1, . . . , t + 1, and
execution terminates when the PC (the number of the next
instruction to be executed) is t + 1.

The state of P during execution can be described by a tuple of
r + 1 natural numbers

(n1, . . . , nr , k)

where ni is the content of Ri and k is the value of the PC.
3

Undecidability

Theorem (Undecidability of the halting problem for RMPs)

It is undecidable if a given register machine program terminates
when started in state (0, . . . , 0, 1).

We reduce the halting problem for RMPs to the validity problem
for first-order formulas.

Notation:
P(0) ↓ = “RMP P started in state (0, . . . , 0, 1) terminates”

Theorem
Given an RMP P we can effectively construct a closed formula φP

such that P(0) ↓ iff |= φP .

4

Proof by construction of φP from P = I1, . . . , It .

Funct. symb.: z , s. Abbr.: 0 = z , 1 = s(z), 2 = s(s(z)), . . .
Pred. symb.: R (arity: r + 1). (Think “reachable”.)

Aim: if R(n1, . . . nr , k) then (0, . . . , 0, 1)
P
⇝ (n1, . . . , nr , k).

1) For every Ii construct closed formula Ψi :

Ii = (Rn := 0): Ψi := ∀x1 . . . xr (R(x1, . . . , xn, . . . , xr , i) →
R(x1, . . . , z , . . . , xr , i + 1))

Ii = (Rn := Rn + 1): same except s(xn) instead of z

Ii = (Rn := Rm): same except xm instead of z

Ii = (IF Rm = Rn GOTO p):
Ψi := ∀x1 . . . xr (R(x1, . . . , xr , i) → (xm = xn → R(x1, . . . , xr , p))∧

(xm ̸= xn → R(x1, . . . , xr , i + 1)))

2) Define ΨP := Ψ ∧ R(z , . . . , z , s(z)) ∧Ψ1 ∧ · · · ∧Ψt where
Ψ := ∀x∀y(s(x) = s(y) → x = y) ∧ ∀x(z ̸= s(x)).
Ψ enforces that every model is “similar enough” to N.
3) Define φP := ΨP → τ where τ := ∃x1 . . . xr R(x1, . . . , xr , s(t)).

5

Claim: P(0) ↓ iff |= φP , that is, P(0) ↓ iff |= ΨP → τ .

“⇒”: Assume P(0) ↓. We show: for every A, if A |= ΨP then
A |= τ . Assume A |= ΨP .

Lemma
If (0, . . . , 0, 1)

P
⇝ (n1, . . . , nr , k) then A |= R(n1, . . . , nr , k)

Proof by induction on the length of the execution using A |= ΨP .

Thus A |= τ because P(0) ↓.

“⇐”: Assume |= ΨP → τ . We show P(0) ↓.
We have N |= ΨP → τ for the structure N given by

UN := N zN := 0 sN (n) := n + 1 .

In this structure RN := {s | (0, . . . , 0, 1) P
⇝ s} and so N |= ΨP .

From N |= ΨP and N |= ΨP → τ we get N |= τ , which implies
P(0) ↓.

6

