First-Order Logic Equality

Predicate logic with equality

Predicate logic + distinguished predicate symbol "=" of arity 2

Semantics: A structure A of predicate logic with equality always maps the predicate symbol = to the identity relation.

 $\mathcal{A}(\texttt{=}) = \{(d,d) \mid d \in U_{\mathcal{A}}\}$

Expressivity

Fact

A structure is model of $\exists x \forall y x=y$ iff its universe is a singleton.

Theorem

Every satisfiable formula of predicate logic has a countably infinite model.

Proof Let *F* be satisfiable. Assume w.l.o.g. $F = \forall x_1 \dots \forall x_n F^*$ and the variables occurring in F^* are exactly x_1, \dots, x_n . (Bring *F* in closed Skolem form if needed.) Consider two cases:

n = 0. Exercise.

n > 0. Let $G = \forall x_1 \dots \forall x_n F^*[f(x_1)/x_1]$, where f does not occur in F^* . G is satisfiable (why?), and if G has a model M with universe U, then F has a model with universe $\{f^M(u) \mid u \in U\}$. By the fundamental theorem, G has a model with universe T(G), which is countable infinite. So F also has a model with countably infinite universe.

Modeling equality

We assign to every formula F of predicate logic with equality a formula E_F of predicate logic.

Let Eq be a predicate symbol that does not occur in F. E_F is the conjunction of the following formulas:

 $\forall x Eq(x,x)$

 $\forall x \,\forall y \,(Eq(x,y) \to Eq(y,x))$

 $\forall x \,\forall y \,\forall z \,((\textit{Eq}(x,y) \land \textit{Eq}(y,z)) \rightarrow \textit{Eq}(x,z))$

For every function symbol f in F of arity n and every $1 \le i \le n$: $\forall x_1 \dots \forall x_n \forall y (Eq(x_i, y) \rightarrow i)$

 $Eq(f(x_1,\ldots,x_i,\ldots,x_n),f(x_1,\ldots,y,\ldots,x_n)))$

For every predicate symbol *P* in *F* of arity *n* and every $1 \le i \le n$: $\forall x_1 \dots \forall x_n \forall y (Eq(x_i, y) \rightarrow (P(x_1, \dots, x_i, \dots, x_n) \leftrightarrow P(x_1, \dots, y, \dots, x_n)))$

 E_F expresses that Eq is a congruence (relation) on the symbols of the formula F.

Quotient structure

Definition

Let \mathcal{A} be a structure and let \sim be an equivalence relation on $U_{\mathcal{A}}$ that is a congruence for all the predicate and function symbols defined by $I_{\mathcal{A}}$. The quotient structure $\mathcal{A}/_{\sim}$ is defined as follows:

►
$$U_{\mathcal{A}/\sim} = \{[u]_{\sim} \mid u \in U_{\mathcal{A}}\}$$
 where $[u]_{\sim} = \{v \in U_{\mathcal{A}} \mid u \sim v\}$

For every function symbol
$$f$$
 defined by $I_{\mathcal{A}}$:
 $f^{\mathcal{A}/\sim}([d_1]_{\sim}, \dots, [d_n]_{\sim}) = [f^{\mathcal{A}}(d_1, \dots, d_n)]_{\sim}$

▶ For every variable x defined by I_A : $x^{A/\sim} = [x^A]_{\sim}$

Lemma $\mathcal{A}/_{\sim}(t) = [\mathcal{A}(t)]_{\sim}$ and $\mathcal{A}/_{\sim}(F) = \mathcal{A}(F)$

Theorem

The formulas F and $E_F \wedge F[Eq/=]$ are equisatisfiable.

Proof

(\Leftarrow): If $E_F \wedge F[Eq/=]$ is satisfiable, then F is satisfiable. Assume $\mathcal{A} \models E_F \wedge F[Eq/=]$. Then $Eq^{\mathcal{A}}$ is a congruence. Define $\mathcal{B} = \mathcal{A}/_{Eq^{\mathcal{A}}}$ (extended with = interpreted as identity). We prove $\mathcal{B}(F) = 1$. Claim 1: $\mathcal{B} \models F[Eq/=]$. Follows from the Lemma. Claim 2: $Eq^{\mathcal{B}}$ is the identity.

 $Eq^{\mathcal{B}}([a]_{Eq^{\mathcal{A}}}, [a']_{Eq^{\mathcal{A}}})$ $= Eq^{\mathcal{A}}(a, a') \qquad (\text{Def. of quotient structure})$ $= ([a]_{Eq^{\mathcal{A}}} = [a']_{Eq^{\mathcal{A}}}) \qquad (\text{Def. of equivalence class})$ We have: $\mathcal{B}(F) \stackrel{(2)}{=} \mathcal{B}(F[Eq/=]) \stackrel{(1)}{=} 1.$ (\Leftarrow) : If F is satisfiable., then $E_F \wedge F[Eq/=]$ is satisfiable. Any model of F yields a model of $E_F \wedge F[Eq/=]$ by interpreting Eq as equality.