First-Order Logic Resolution

Resolution for first-order logic

Gilmore's algorithm is correct and complete, but useless in practice.

Resolution for first-order logic

Gilmore's algorithm is correct and complete, but useless in practice.

We upgrade resolution to make it work for predicate logic.

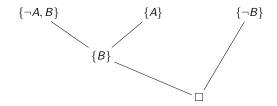
Recall: resolution in propositional logic

Resolution step:

Recall: resolution in propositional logic

Resolution step:

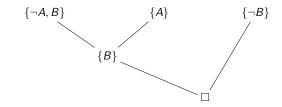
Resolution graph:



Recall: resolution in propositional logic

Resolution step:

Resolution graph:



A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an enumeration of E(F).

$$n := 0;$$

repeat $n := n + 1$
until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;
 $-$ this can be checked with any calculus for propositional logic
return "unsatisfiable"

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an enumeration of E(F).

$$n := 0;$$

repeat $n := n + 1$
until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;
 $-$ this can be checked with any calculus for propositional logic
return "unsatisfiable"

"any calculus" \rightsquigarrow use resolution for the unsatisfiability test

Terminology

Terminology

Literal/clause/CNF is defined as for propositional logic but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc that does not contain any variables.

An instance of a term/formula/etc is the result of applying a substitution to a term/formula/etc.

A ground instance

is an instance that does not contain any variables.

Clause Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form with F^* in CNF, and let C_1, \dots, C_m be the clauses of F^* . The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^{m} \{C_i[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Lemma

CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Clause Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form with F^* in CNF, and let C_1, \dots, C_m be the clauses of F^* .

The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^{m} \{C_i[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Lemma

CE(F) is unsatisfiable iff E(F) is unsatisfiable. **Proof.** Informally speaking, " $CE(F) \equiv E(F)$ ".

Let *F* be a closed formula in Skolem form with F^* in CNF. Let C_1, C_2, C_3, \ldots be an enumeration of CE(F).

> n := 0; $S := \emptyset;$ repeat n := n + 1; $S := S \cup \{C_n\};$ until $S \vdash_{Res} \Box$ return "unsatisfiable"

Note: For example, CE(F) can be enumerated according to the size of the substitutions.

Let $F = \forall y_1 \dots \forall y_n F^*$ and let C_1, \dots, C_m be the clauses of F^* . For every $s \ge 0$, define

$$\mathcal{C}_{s} = \bigcup_{i=1}^{m} \left\{ C_{i}[t_{1}/y_{1}] \dots [t_{n}/y_{n}] \middle| \begin{array}{c} t_{1}, \dots, t_{n} \in \mathcal{T}(F) \\ \text{and} \\ |t_{1}| + \dots + |t_{n}| = s \end{array} \right\}$$

Note: For example, CE(F) can be enumerated according to the size of the substitutions.

Let $F = \forall y_1 \dots \forall y_n F^*$ and let C_1, \dots, C_m be the clauses of F^* . For every $s \ge 0$, define

$$\mathcal{C}_{s} = \bigcup_{i=1}^{m} \left\{ C_{i}[t_{1}/y_{1}] \dots [t_{n}/y_{n}] \middle| \begin{array}{c} t_{1}, \dots, t_{n} \in T(F) \\ \text{and} \\ |t_{1}| + \dots + |t_{n}| = s \end{array} \right\}$$

 \mathcal{C}_s is finite for every $s \ge 0$ and $CE(F) = \bigcup_{s=0}^{\infty} \mathcal{C}_s$.

So CE(F) can be enumerated by enumerating $\mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2, \cdots.$

Note: For example, CE(F) can be enumerated according to the size of the substitutions.

Let $F = \forall y_1 \dots \forall y_n F^*$ and let C_1, \dots, C_m be the clauses of F^* . For every $s \ge 0$, define

$$\mathcal{C}_{s} = \bigcup_{i=1}^{m} \left\{ C_{i}[t_{1}/y_{1}] \dots [t_{n}/y_{n}] \middle| \begin{array}{c} t_{1}, \dots, t_{n} \in T(F) \\ \text{and} \\ |t_{1}| + \dots + |t_{n}| = s \end{array} \right\}$$

 \mathcal{C}_s is finite for every $s \ge 0$ and $CE(F) = \bigcup_{s=0}^{\infty} \mathcal{C}_s$.

So CE(F) can be enumerated by enumerating $\mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2, \cdots.$

Note: For example, CE(F) can be enumerated according to the size of the substitutions.

Let $F = \forall y_1 \dots \forall y_n F^*$ and let C_1, \dots, C_m be the clauses of F^* . For every $s \ge 0$, define

$$\mathcal{C}_{s} = \bigcup_{i=1}^{m} \left\{ C_{i}[t_{1}/y_{1}] \dots [t_{n}/y_{n}] \middle| \begin{array}{c} t_{1}, \dots, t_{n} \in T(F) \\ \text{and} \\ |t_{1}| + \dots + |t_{n}| = s \end{array} \right\}$$

 \mathcal{C}_s is finite for every $s \geq 0$ and $CE(F) = \bigcup_{s=0}^{\infty} \mathcal{C}_s$.

So CE(F) can be enumerated by enumerating $\mathcal{C}_0, \mathcal{C}_1, \mathcal{C}_2, \cdots$.

Note: The search for \Box can be performed incrementally every time *S* is extended, keeping the clauses generated in previous steps.

Ground resolution theorem

The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem

A formula $F = \forall y_1 \dots \forall y_n F^*$ with F^* in CNF is unsatisfiable iff there is a sequence of ground clauses $C_1, \dots, C_m = \Box$ such that for every $i = 1, \dots, m$

Ground resolution theorem

The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem

A formula $F = \forall y_1 \dots \forall y_n F^*$ with F^* in CNF is unsatisfiable iff there is a sequence of ground clauses $C_1, \dots, C_m = \Box$ such that for every $i = 1, \dots, m$

- either C_i is a ground instance of a clause $C \in F^*$, i.e. $C_i = C[t_1/y_1] \dots [t_n/y_n]$ where $t_1, \dots, t_n \in T(F)$,
- or C_i is a resolvent of two clauses C_a , C_b with a < i and b < i

Blind enumeration of ground clauses is extremely inefficient

Blind enumeration of ground clauses is extremely inefficient

 $F^* = \{ \{ P(x) \}, \{ \neg P(f(g(b, y))), Q(y) \}, \{ \neg Q(g(f(z), f(z))) \} \}.$

The algorithm can derive \Box from just three ground clauses:

$$\{P(f(g(b,g(f(a),f(a)))))\} \\ \{\neg P(f(g(b,g(f(a),f(a))))), Q(g(f(a),f(a))))\} \\ \{\neg Q(g(f(a),f(a)))\} \}$$

Blind enumeration will generate the third clause early on, but it will only generate the first two after many (many!) superfluous clauses.

Better: guided search with "lazy" substitutions

Better: guided search with "lazy" substitutions $F^* = \{ \{P(x)\}, \{\neg P(f(g(b, y))), Q(y)\}, \{\neg Q(g(f(z), f(z)))\} \}$

Better: guided search with "lazy" substitutions

 $F^* = \{ \{ P(x) \}, \{ \neg P(f(g(b, y))), Q(y) \}, \{ \neg Q(g(f(z), f(z))) \} \}$

When resolving the first two clauses, delay the choice of substitution for x.

Commit only to replacing x by

f(g(b, whatever-y-will-be-later-replaced-by))

Better: guided search with "lazy" substitutions

 $F^* = \{ \{ P(x) \}, \{ \neg P(f(g(b, y))), Q(y) \}, \{ \neg Q(g(f(z), f(z))) \} \}$

When resolving the first two clauses, delay the choice of substitution for x.

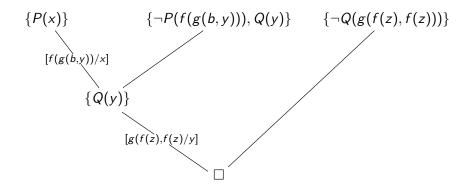
Commit only to replacing x by

```
f(g(b, whatever-y-will-be-later-replaced-by))
```

For this:

- Allow substitutions with variables: [f(g(b, y))/x].
- Apply substitutions only to two clauses that enable a new resolution step.

$$F^* = \{ \{P(x)\}, \{\neg P(f(g(b, y))), Q(y)\}, \{\neg Q(g(f(z), f(z)))\} \}$$



Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y.

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y. Example (P(x,y))[f(y)/x][b/y] =

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y. Example (P(x,y))[f(y)/x][b/y] = (P(f(y),y))[b/y] =

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y. Example (P(x,y))[f(y)/x][b/y] = (P(f(y),y))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. $\sigma_1 \sigma_2$ is the substitution that applies σ_1 first and then σ_2 .

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y. Example (P(x,y))[f(y)/x][b/y] = (P(f(y),y))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. $\sigma_1 \sigma_2$ is the substitution that applies σ_1 first and then σ_2 .

Substitutions are functions. Therefore

 $\sigma_1 = \sigma_2$ iff $x\sigma_1 = x\sigma_2$ for all variables x

Definition The domain of a substitution σ is $dom(\sigma) = \{x \mid x\sigma \neq x\}$

Definition

The domain of a substitution σ is $dom(\sigma) = \{x \mid x\sigma \neq x\}$

Example

 $dom([a/x][b/y]) = \{x, y\}$

Definition

The domain of a substitution σ is $dom(\sigma) = \{x \mid x\sigma \neq x\}$

Example $dom([a/x][b/y]) = \{x, y\}$

Substitutions are defined to have finite domain, and so every substitution can be written as a

simultaneous substitution $[t_1/x_1, \ldots, t_n/x_n]$.

Unifier and most general unifier

Let $\mathbf{L} = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of \mathbf{L} if

$$L_1\sigma = L_2\sigma = \cdots = L_k\sigma$$

i.e. if $|\mathbf{L}\sigma| = 1$, where $\mathbf{L}\sigma = \{L_1\sigma, \dots, L_k\sigma\}$. L is unifiable if it has at least one unifier.

Let $\mathbf{L} = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of \mathbf{L} if

$$L_1\sigma=L_2\sigma=\cdots=L_k\sigma$$

i.e. if $|\mathbf{L}\sigma| = 1$, where $\mathbf{L}\sigma = \{L_1\sigma, \dots, L_k\sigma\}$. L is unifiable if it has at least one unifier.

Let $\mathbf{L} = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of \mathbf{L} if

$$L_1\sigma=L_2\sigma=\cdots=L_k\sigma$$

i.e. if $|\mathbf{L}\sigma| = 1$, where $\mathbf{L}\sigma = \{L_1\sigma, \dots, L_k\sigma\}$. L is unifiable if it has at least one unifier.

$$\cdot \ \overset{\sigma}{\longrightarrow} \ \cdot$$

Let $\mathbf{L} = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of \mathbf{L} if

$$L_1\sigma = L_2\sigma = \cdots = L_k\sigma$$

i.e. if $|\mathbf{L}\sigma| = 1$, where $\mathbf{L}\sigma = \{L_1\sigma, \dots, L_k\sigma\}$. L is unifiable if it has at least one unifier.

Let $\mathbf{L} = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of \mathbf{L} if

$$L_1\sigma=L_2\sigma=\cdots=L_k\sigma$$

i.e. if $|\mathbf{L}\sigma| = 1$, where $\mathbf{L}\sigma = \{L_1\sigma, \dots, L_k\sigma\}$. L is unifiable if it has at least one unifier.

Exercise

Unifiable?			Yes	No
	P(f(x))	P(g(y))		
	P(x)	P(f(y))		
	P(x)	P(f(x))		
	P(x, f(y))	P(f(u), f(z))		
	P(x, f(x))	P(f(y), y)		
	$P(x,g(x),g^2(x))$	P(f(z), w, g(w))		
P(x, f(y))	P(g(y), f(a))	P(g(a), z)		

Input: a set $\mathbf{L} \neq \emptyset$ of literals

Input: a set $\mathbf{L} \neq \emptyset$ of literals $\sigma := []$ (the empty substitution)

Input: a set $\mathbf{L} \neq \emptyset$ of literals $\sigma := []$ (the empty substitution) while $|\mathbf{L}\sigma| > 1$ do

Input: a set $\mathbf{L} \neq \emptyset$ of literals $\sigma := []$ (the empty substitution) while $|\mathbf{L}\sigma| > 1$ do Find the first position at which two literals $L_1, L_2 \in \mathbf{L}\sigma$ differ

Input: a set $\mathbf{L} \neq \emptyset$ of literals

 $\sigma := []$ (the empty substitution)

while $|\mathbf{L}\boldsymbol{\sigma}|>1~\mathrm{do}$

Find the first position at which two literals $L_1, L_2 \in \mathbf{L}\sigma$ differ if none of the two characters at that position is a variable then return "non-unifiable"

Input: a set $\mathbf{L} \neq \emptyset$ of literals

```
\sigma := [] (the empty substitution)
```

while $|\mathbf{L}\boldsymbol{\sigma}|>1~\mathrm{do}$

```
Find the first position at which two literals L_1, L_2 \in \mathbf{L}\sigma differ
if none of the two characters at that position is a variable
then return "non-unifiable"
else let x be the variable and t the term starting at that position
if x occurs in t
then return "non-unifiable"
else \sigma := \sigma [t/x]
```

Input: a set $\mathbf{L} \neq \emptyset$ of literals

```
\sigma := [] (the empty substitution)
```

while $|\mathbf{L}\boldsymbol{\sigma}|>1~\mathrm{do}$

```
Find the first position at which two literals L_1, L_2 \in \mathbf{L}\sigma differ

if none of the two characters at that position is a variable

then return "non-unifiable"

else let x be the variable and t the term starting at that position

if x occurs in t

then return "non-unifiable"

else \sigma := \sigma [t/x]

return \sigma
```

Example

 $\neg P(f(z,g(a,y)), h(z)),$ $\neg P(f(f(u,v),w), h(f(a,b)))$

Lemma The unification algorithm terminates.

Lemma

The unification algorithm terminates.

Proof Every iteration of the **while**-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $L\sigma$ decreases by one.

Lemma

The unification algorithm terminates.

Proof Every iteration of the **while**-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $L\sigma$ decreases by one.

Lemma

If ${\sf L}$ is non-unifiable then the algorithm returns "non-unifiable".

Lemma

The unification algorithm terminates.

Proof Every iteration of the **while**-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $L\sigma$ decreases by one.

Lemma

If L is non-unifiable then the algorithm returns "non-unifiable". **Proof** If L is non-unifiable then the algorithm can never exit the loop normally.

Lemma If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Lemma If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations of the loop on input L.

Lemma If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations of the loop on input L.

Let $\sigma_0 = []$, for $1 \le i \le n$ let σ_i be the value of σ after the *i*-th iteration of the loop.

Lemma

If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations of the loop on input L.

Let $\sigma_0 = []$, for $1 \le i \le n$ let σ_i be the value of σ after the *i*-th iteration of the loop.

We prove for every $0 \le i \le n$:

- (a) If $1 \leq i$, the *i*-th iteration does not return "non-unifiable".
- (b) For every unifier σ' of **L** there is a substitution δ_i such that $\sigma' = \sigma_i \, \delta_i$.

Lemma

If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations of the loop on input L.

Let $\sigma_0 = []$, for $1 \le i \le n$ let σ_i be the value of σ after the *i*-th iteration of the loop.

We prove for every $0 \le i \le n$:

- (a) If $1 \leq i$, the *i*-th iteration does not return "non-unifiable".
- (b) For every unifier σ' of **L** there is a substitution δ_i such that $\sigma' = \sigma_i \, \delta_i$.

By (a) the algorithm exits the loop normally after n iterations. By (b) it returns a most general unifier.

Correctness/completeness of the unification algorithm Proof of (a) and (b) by induction on *i*:

Correctness/completeness of the unification algorithm Proof of (a) and (b) by induction on *i*:

Basis (i = 0):

Proof of (a) and (b) by induction on *i*:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$. Step $(i \Rightarrow i + 1)$

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i+1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned.

Proof of (a) and (b) by induction on *i*:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**.

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i .

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct.

Proof of (a) and (b) by induction on *i*:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i .

 δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

Proof of (a) and (b) by induction on *i*:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i+1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

Note: $u = x\delta_i = t\delta_i = t\delta_{i+1} \ (\sigma_i\delta_i \text{ is unifier (IH), } x \text{ not in } t)$

Proof of (a) and (b) by induction on *i*:

Basis
$$(i = 0)$$
: For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i+1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of \mathbf{L} . IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

Note: $u = x\delta_i = t\delta_i = t\delta_{i+1}$ ($\sigma_i\delta_i$ is unifier (IH), x not in t)

$$\sigma_{i+1} \, \delta_{i+1}$$

Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove. For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

Note: $u = x\delta_i = t\delta_i = t\delta_{i+1} \ (\sigma_i\delta_i \text{ is unifier (IH), } x \text{ not in } t)$

$$= \sigma_i [t/x] \delta_{i+1}$$
(algorithm extends σ_i with $[t/x]$)

Proof of (a) and (b) by induction on i:

Basis
$$(i = 0)$$
: For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

$$\begin{array}{l} \sigma_{i+1} \, \delta_{i+1} \\ = & \sigma_i \, [t/x] \, \delta_{i+1} \\ = & \sigma_i \, [t_1/x_1, \dots, t_k/x_k, t \delta_{i+1}/x] \end{array}$$
 (algorithm extends σ_i with $[t/x]$)

Proof of (a) and (b) by induction on i:

Basis (
$$i = 0$$
): For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

$$\begin{array}{l} \sigma_{i+1} \delta_{i+1} \\ = & \sigma_i \left[t/x \right] \delta_{i+1} \\ = & \sigma_i \left[t_1/x_1, \dots, t_k/x_k, t \delta_{i+1}/x \right] \\ = & \sigma_i \left[t_1/x_1, \dots, t_k/x_k, u/x \right] \\ \end{array} \left(u = t \delta_{i+1} \text{ by note} \right) \end{array}$$

Proof of (a) and (b) by induction on i:

Basis (
$$i = 0$$
): For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

$$\sigma_{i+1} \delta_{i+1}$$

$$= \sigma_i [t/x] \delta_{i+1} \qquad (algorithm extends \sigma_i with [t/x])$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, t\delta_{i+1}/x]$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, u/x] \qquad (u = t\delta_{i+1} \text{ by note})$$

$$= \sigma_i \delta_i$$

Proof of (a) and (b) by induction on i:

Basis (
$$i = 0$$
): For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

C

For (a), since $|\mathbf{L}\sigma_i| > 1$ and $\mathbf{L}\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of **L**. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$.

$$\sigma_{i+1} \delta_{i+1}$$

$$= \sigma_i [t/x] \delta_{i+1} \qquad (algorithm extends \sigma_i with [t/x])$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, t\delta_{i+1}/x]$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, u/x] \qquad (u = t\delta_{i+1} \text{ by note})$$

$$= \sigma_i \delta_i$$

$$= \sigma' \qquad (IH)$$

Renaming

Renaming

Definition

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A clause R is a resolvent of two clauses C_1 and C_2 iff:

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A clause R is a resolvent of two clauses C_1 and C_2 iff:

 there is a renaming ρ such that no variable occurs in both C₁ and C₂ ρ and ρ is injective on the set of variables in C₂;

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A clause R is a resolvent of two clauses C_1 and C_2 iff:

 there is a renaming ρ such that no variable occurs in both C₁ and C₂ ρ and ρ is injective on the set of variables in C₂;

► there are literals
$$L_1, \ldots, L_m \in C_1$$
 $(m \ge 1)$
and $L'_1, \ldots, L'_n \in C_2 \rho$ $(n \ge 1)$ such that
 $\mathbf{L} = \{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$

is unifiable; and

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A clause R is a resolvent of two clauses C_1 and C_2 iff:

- there is a renaming ρ such that no variable occurs in both C₁ and C₂ ρ and ρ is injective on the set of variables in C₂;
- ► there are literals $L_1, \ldots, L_m \in C_1$ $(m \ge 1)$ and $L'_1, \ldots, L'_n \in C_2 \rho$ $(n \ge 1)$ such that $\mathbf{L} = \{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$

is unifiable; and

• $R = ((C_1 - \{L_1, ..., L_m\}) \cup (C_2 \rho - \{L'_1, ..., L'_n\})) \sigma$ for any mgu σ .

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

A clause R is a resolvent of two clauses C_1 and C_2 iff:

 there is a renaming ρ such that no variable occurs in both C₁ and C₂ ρ and ρ is injective on the set of variables in C₂;

► there are literals
$$L_1, \ldots, L_m \in C_1$$
 $(m \ge 1)$
and $L'_1, \ldots, L'_n \in C_2 \rho$ $(n \ge 1)$ such that
 $\mathbf{L} = \{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$

is unifiable; and

• $R = ((C_1 - \{L_1, ..., L_m\}) \cup (C_2 \rho - \{L'_1, ..., L'_n\})) \sigma$ for any mgu σ .

Example

 $C_1 = \{ P(x), Q(x), P(g(y)) \}$ and $C_2 = \{ \neg P(x), R(f(x), a) \}$

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	1

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	1
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	1
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	0

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	1
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	0
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	1
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	0
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	2

Why renaming?

Example $\forall x(P(x) \land \neg P(f(x)))$

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps,

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

• either $C_i \in F$

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where a, b < i.

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where a, b < i.

Questions:

Correctness Does $F \vdash_{Res} \Box$ imply that F is unsatisfiable?

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where a, b < i.

Questions:

Correctness Does $F \vdash_{Res} \Box$ imply that F is unsatisfiable? Completeness Does unsatisfiability of F imply $F \vdash_{Res} \Box$?

Derive \Box from the following clauses:

}

1.
$$\{\neg P(x), Q(x), R(x, f(x))\}$$

2. $\{\neg P(x), Q(x), S(f(x))\}$
3. $\{T(a)\}$
4. $\{P(a)\}$
5. $\{\neg R(a, z), T(z)\}$
6. $\{\neg T(x), \neg Q(x)\}$
7. $\{\neg T(y), \neg S(y)\}$

Correctness of Resolution for First-Order Logic

Definition The universal closure of a formula H with free variables x_1, \ldots, x_n : $\forall H = \forall x_1 \forall x_2 \ldots \forall x_n H$

Correctness of Resolution for First-Order Logic

Definition The universal closure of a formula H with free variables x_1, \ldots, x_n : $\forall H = \forall x_1 \forall x_2 \ldots \forall x_n H$ Theorem Let E be a closed formula in Skolem form with matrix E^* in CNE

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box .

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on *m*. Trivial if $C_m \in F^*$.

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on *m*. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH.

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on m. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH. Proof of (*): Assume $\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$. (**) We prove $\mathcal{A}(\forall C_m) = 1$ by contradiction. Assume $\mathcal{A}(\forall C_m) = 0$.

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on m. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH. Proof of (*): Assume $\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$. (**) We prove $\mathcal{A}(\forall C_m) = 1$ by contradiction. Assume $\mathcal{A}(\forall C_m) = 0$. By def. $C_m = ((C_a - \{L_1, \dots\}) \cup (C_b \rho - \{L'_1, \dots\}))\sigma$ $= (C_a \sigma - \{L\}) \cup (C_b \rho \sigma - \{\overline{L}\})$ Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on m. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH. Proof of (*): Assume $\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$. (**) We prove $\mathcal{A}(\forall C_m) = 1$ by contradiction. Assume $\mathcal{A}(\forall C_m) = 0$. By def. $C_m = ((C_a - \{L_1, ...\}) \cup (C_b \rho - \{L'_1, ...\}))\sigma$ $= (C_a \sigma - \{L\}) \cup (C_b \rho \sigma - \{\overline{L}\})$

 $\Rightarrow \mathcal{A}'(\mathcal{C}_m) = 0$ where $\mathcal{A}' = \mathcal{A}[u_1/x_1, \dots]$ for some $u_i \in U_{\mathcal{A}}$

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on m. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH. Proof of (*): Assume $\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$. (**) We prove $\mathcal{A}(\forall C_m) = 1$ by contradiction. Assume $\mathcal{A}(\forall C_m) = 0$. By def. $C_m = ((C_a - \{L_1, \ldots\}) \cup (C_b \rho - \{L'_1, \ldots\}))\sigma$ $= (C_a \sigma - \{L\}) \cup (C_b \rho \sigma - \{\overline{L}\})$ $\Rightarrow \mathcal{A}'(C_m) = 0$ where $\mathcal{A}' = \mathcal{A}[u_1/x_1, \ldots]$ for some $u_i \in U_A$

$$\Rightarrow \mathcal{A}'(C_a\sigma - \{L\}) = \mathcal{A}'(C_b\rho\sigma - \{\overline{L}\}) = 0$$

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . We prove $\forall F^* \models \forall C_m$ by induction on m. Trivial if $C_m \in F^*$. Let C_m be a resolvent of C_a and C_b (a, b < m). We prove $\forall C_a, \forall C_b \models \forall C_m$ (*)

Thus $\forall F^* \models \forall C_m$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH. Proof of (*): Assume $\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$. (**) We prove $\mathcal{A}(\forall C_m) = 1$ by contradiction. Assume $\mathcal{A}(\forall C_m) = 0$. By def. $C_m = ((C_a - \{L_1, ...\}) \cup (C_b \rho - \{L'_1, ...\}))\sigma$ $= (C_a \sigma - \{L\}) \cup (C_b \rho \sigma - \{\overline{L}\})$

 $\Rightarrow \mathcal{A}'(C_m) = 0 \text{ where } \mathcal{A}' = \mathcal{A}[u_1/x_1, \dots] \text{ for some } u_i \in U_{\mathcal{A}}$ $\Rightarrow \mathcal{A}'(C_a \sigma - \{L\}) = \mathcal{A}'(C_b \rho \sigma - \{\overline{L}\}) = 0$ $\Rightarrow \mathcal{A}'(L) = \mathcal{A}'(\overline{L}) = 1 \text{ becs. } \mathcal{A}'(C_a \sigma) = \mathcal{A}'(C_b \rho \sigma) = 1 \text{ becs. } (**)$ Contradiction Completeness: The idea

Simulate ground resolution because that is complete

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof

 C_2

 C_1

Let C_1, C_2 be two clauses

Let C_1, C_2 be two clauses and let C'_1, C'_2 be two ground instances

 C_2

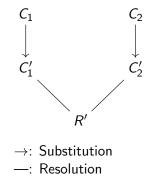
↓ C'a

 C_1

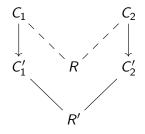
 $\overset{+}{C'_1}$

\rightarrow : Substitution

Let C_1 , C_2 be two clauses and let C'_1 , C'_2 be two ground instances with (propositional) resolvent R'.

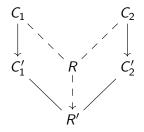


Let C_1 , C_2 be two clauses and let C'_1 , C'_2 be two ground instances with (propositional) resolvent R'. Then there is a resolvent R of C_1 , C_2



 \rightarrow : Substitution —: Resolution

Let C_1 , C_2 be two clauses and let C'_1 , C'_2 be two ground instances with (propositional) resolvent R'. Then there is a resolvent R of C_1 , C_2 such that R' is a ground instance of R.



 \rightarrow : Substitution —: Resolution

$$\{\neg P(f(x)), Q(x)\}$$

 $\{P(f(g(y)))\}$

$$\{\neg P(f(x)), Q(x)\} \\ \downarrow^{[g(a)/x]}$$

$$\{P(f(g(y)))\}$$

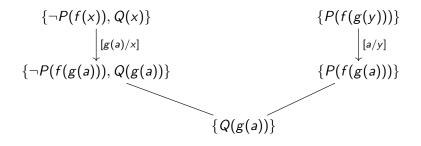
$$\downarrow^{[a/y]}$$

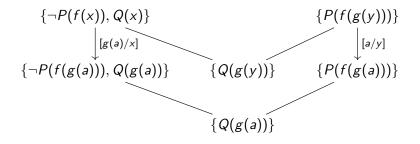
$$\{\neg P(f(x)), Q(x)\}$$

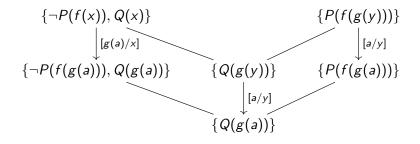
$$\downarrow^{[g(a)/x]}$$

$$\{\neg P(f(g(a))), Q(g(a))\}$$

 $\{P(f(g(y)))\}$ $\downarrow^{[a/y]}$ $\{P(f(g(a)))\}$







Proof of Lifting Lemma. (1) C'_1, C'_2 are ground instances of C_1, C_2

Proof of Lifting Lemma. (1) C'_1, C'_2 are ground instances of C_1, C_2 (2) R' is propositional resolvent of C'_1 and C'_2

- (1) C'_1, C'_2 are ground instances of C_1, C_2
- (2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables $(1) \Rightarrow C'_2$ is a ground instance of $C_2\rho$.

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables $(1) \Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t.

- (1) C'_1, C'_2 are ground instances of C_1, C_2
- (2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$

- (1) C'_1, C'_2 are ground instances of C_1, C_2
- (2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$

- (1) C'_1, C'_2 are ground instances of C_1, C_2
- (2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$

- (1) C'_1, C'_2 are ground instances of C_1, C_2
- (2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\}$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$.

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0\delta$ for some δ

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0\delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 :

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1\sigma_1$ and $C'_2 = C_2\rho\sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C'_1 = C_1\sigma$ and $C'_2 = C_2\rho\sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ (2) $\Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2\rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0\delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \ldots\}) \cup (C_2\rho - \{L'_1, \ldots\}))\sigma_0$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma_0$ Rδ

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2 \rho - \{L'_1, \dots\}))\sigma_0$ $R\delta = ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2 \rho - \{L'_1, \dots\}))\sigma_0$ $R\delta = ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma$ $= (C_1 \sigma - \{L\}) \cup (C_2 \rho \sigma - \{\overline{L}\})$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2 \rho - \{L'_1, \dots\}))\sigma_0$ $R\delta = ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma$ $= (C_1 \sigma - \{L\}) \cup (C_2 \rho \sigma - \{\overline{L}\})$ $= (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2 \rho - \{L'_1, \dots\}))\sigma_0$ $R\delta = ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma$ $= (C_1 \sigma - \{L\}) \cup (C_2 \rho \sigma - \{\overline{L}\})$ $= (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ = R'

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$.

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i .

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$:

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$ If C'_i is a resolvent of C'_a, C'_b (a, b < i):

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$ If C'_i is a resolvent of C'_a, C'_b (a, b < i):

 C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a, C_b .

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If *F* is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \Box$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$ If C'_i is a resolvent of C'_a, C'_b (a, b < i):

 C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a, C_b . By the Lifting Lemma there is a resolvent R of C_a, C_b s.t. C'_i is a ground instance of R.

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If F is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \square$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$ If C'_i is a resolvent of C'_a , C'_b (a, b < i): C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a , C_b . By the Lifting Lemma there is a resolvent R of C_a , C_b s.t. C'_i is a ground instance of R. Set $C_i = R$.

Resolution Theorem for First-Order Logic

Theorem Let F be a closed formula in Skolem form with matrix F^* in CNF. Then F is unsatisfiable iff $F^* \vdash_{Res} \Box$.

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and

there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and

there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and

there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming)

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

```
while \Box \notin S and
there are clauses C_a, C_b \in S and resolvent R of C_a and C_b
such that R \notin S (modulo renaming)
do S := S \cup \{R\}
```

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

Three possible behaviours:

• The algorithm terminates and $\Box \in S$

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

Three possible behaviours:

The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

- The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable
- The algorithm terminates and $\Box \notin S$

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

- The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable
- The algorithm terminates and □ ∉ S ⇒ F is satisfiable

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

- The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable
- The algorithm terminates and □ ∉ S ⇒ F is satisfiable
- The algorithm does not terminate

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

- The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable
- The algorithm terminates and □ ∉ S ⇒ F is satisfiable
- The algorithm does not terminate (⇒ F is satisfiable)

Problems of resolution:

Branching degree of the search space too large

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!