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Resolution for first-order logic

Gilmore’s algorithm is correct and complete,
but useless in practice.

We upgrade resolution to make it work for predicate logic.
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Recall: resolution in propositional logic

Resolution step:

{L1, . . . , Ln,A} {L′1, . . . , L′m,¬A}

{L1, . . . , Ln, L′1, . . . , L′m}

Resolution graph:

{¬A,B} {A} {¬B}

{B}

□

A set of clauses is unsatisfiable iff the empty clause can be derived.
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Adapting Gilmore’s Algorithm

Gilmore’s Algorithm:

Let F be a closed formula in Skolem form
and let F1,F2,F3, . . . be an enumeration of E (F ).

n := 0;
repeat n := n + 1
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;

– this can be checked with any calculus for propositional logic
return “unsatisfiable”

“any calculus” ⇝ use resolution for the unsatisfiability test
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Terminology

Literal/clause/CNF is defined as for propositional logic
but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc
that does not contain any variables.

An instance of a term/formula/etc
is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.
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Clause Herbrand expansion

Let F = ∀y1 . . . ∀yn F ∗ be a closed formula in Skolem form with
F ∗ in CNF, and let C1, . . . ,Cm be the clauses of F ∗.

The clause Herbrand expansion of F is the set of ground clauses

CE (F ) =
m⋃
i=1

{Ci [t1/y1] . . . [tn/yn] | t1, . . . , tn ∈ T (F )}

Lemma
CE (F ) is unsatisfiable iff E (F ) is unsatisfiable.

Proof. Informally speaking, “CE (F ) ≡ E (F )”.
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Ground resolution algorithm

Let F be a closed formula in Skolem form with F ∗ in CNF.

Let C1,C2,C3, . . . be an enumeration of CE (F ).

n := 0;
S := ∅;
repeat

n := n + 1;
S := S ∪ {Cn};

until S ⊢Res □

return “unsatisfiable”
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Ground resolution algorithm

Note: For example, CE (F ) can be enumerated according to the
size of the substitutions.

Let F = ∀y1 . . . ∀yn F ∗ and let C1, . . . ,Cm be the clauses of F ∗.
For every s ≥ 0, define

Cs =
m⋃
i=1

Ci [t1/y1] . . . [tn/yn]

∣∣∣∣∣∣
t1, . . . , tn ∈ T (F )

and
|t1|+ · · ·+ |tn| = s



Cs is finite for every s ≥ 0 and CE (F ) =
⋃∞

s=0 Cs .

So CE (F ) can be enumerated by enumerating C0, C1, C2, · · · .

Note: The search for □ can be performed incrementally every time
S is extended, keeping the clauses generated in previous steps.
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Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem
A formula F = ∀y1 . . . ∀yn F ∗ with F ∗ in CNF is unsatisfiable iff
there is a sequence of ground clauses C1, . . . ,Cm = □ such that
for every i = 1, . . . ,m

▶ either Ci is a ground instance of a clause C ∈ F ∗,
i.e. Ci = C [t1/y1] . . . [tn/yn] where t1, . . . , tn ∈ T (F ),

▶ or Ci is a resolvent of two clauses Ca,Cb with a < i and b < i
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Beyond ground resolution: Intuition

Blind enumeration of ground clauses is extremely inefficient

F ∗ = { {P(x)} , {¬P(f (g(b, y))),Q(y)} , {¬Q(g(f (z), f (z)))} }.

The algorithm can derive □ from just three ground clauses:

{P(f (g(b, g(f (a), f (a)))))}

{¬P(f (g(b, g(f (a), f (a))))),Q(g(f (a), f (a)))}

{¬Q(g(f (a), f (a)))}

Blind enumeration will generate the third clause early on, but it will
only generate the first two after many (many!) superfluous clauses.
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Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions

F ∗ = { {P(x)} , {¬P(f (g(b, y))),Q(y)} , {¬Q(g(f (z), f (z)))} }

When resolving the first two clauses, delay the choice of
substitution for x .

Commit only to replacing x by

f (g(b,whatever-y -will-be-later-replaced-by))

For this:

▶ Allow substitutions with variables: [f (g(b, y))/x ].

▶ Apply substitutions only to two clauses that enable a new
resolution step.
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Beyond ground resolution: Intuition

F ∗ = { {P(x)} , {¬P(f (g(b, y))),Q(y)} , {¬Q(g(f (z), f (z)))} }

{P(x)}

[f (g(b,y))/x]

{¬P(f (g(b, y))),Q(y)} {¬Q(g(f (z), f (z)))}

{Q(y)}

[g(f (z),f (z)/y ]

□
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Substitutions as functions

Substitutions are functions from variables to terms:
[t/x ] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x ][t2/y ] first substitutes t1 for x and then substitutes t2 for y .

Example

(P(x , y))[f (y)/x ][b/y ] = (P(f (y), y))[b/y ] = P(f (b), b)

A composition of substitutions is again a substitution. σ1σ2 is the
substitution that applies σ1 first and then σ2.

Substitutions are functions. Therefore

σ1 = σ2 iff xσ1 = xσ2 for all variables x
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Substitutions as functions

Definition
The domain of a substitution σ is dom(σ) = {x | xσ ̸= x}

Example

dom([a/x ][b/y ]) = {x , y}

Substitutions are defined to have finite domain, and so every
substitution can be written as a

simultaneous substitution [t1/x1, . . . , tn/xn].
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Unifier and most general unifier

Let L = {L1, . . . , Lk} be a set of literals.

A substitution σ is a unifier of L if

L1σ = L2σ = · · · = Lkσ

i.e. if |Lσ| = 1, where Lσ = {L1σ, . . . , Lkσ}.
L is unifiable if it has at least one unifier.

A unifier σ of L is a most general unifier (mgu) of L if
for every unifier σ′ of L there is a substitution δ such that σ′ = σδ.

· ·

·
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Exercise

Unifiable? Yes No

P(f (x)) P(g(y))

P(x) P(f (y))

P(x) P(f (x))

P(x , f (y)) P(f (u), f (z))

P(x , f (x)) P(f (y), y)

P(x , g(x), g2(x)) P(f (z),w , g(w))

P(x , f (y)) P(g(y), f (a)) P(g(a), z)
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Unification algorithm

Input: a set L ̸= ∅ of literals

σ := [] (the empty substitution)

while |Lσ| > 1 do

Find the first position at which two literals L1, L2 ∈ Lσ differ

if none of the two characters at that position is a variable
then return “non-unifiable”
else let x be the variable and t the term starting at that position

if x occurs in t
then return “non-unifiable”
else σ := σ [t/x ]

return σ
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Unification algorithm

Example

¬P(f(z,g(a,y)), h(z)),

¬P(f(f(u,v),w), h(f(a,b)))
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Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x , and so the
number of variables occurring in Lσ decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the
loop normally.
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Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let σ0 = [], for 1 ≤ i ≤ n let σi be the value of σ after the i-th
iteration of the loop.

We prove for every 0 ≤ i ≤ n:

(a) If 1 ≤ i , the i-th iteration does not return “non-unifiable”.

(b) For every unifier σ′ of L there is a substitution δi such that
σ′ = σi δi .

By (a) the algorithm exits the loop normally after n iterations.
By (b) it returns a most general unifier.
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Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i :

Basis (i = 0): For (a) there is nothing to prove.
For (b) take δ0 = σ′.

Step (i ⇒ i + 1)

For (a), since |Lσi | > 1 and Lσi unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let σ′ be a unifier of L. IH: σ′ = σiδi for some δi .
δi must be of the form [t1/x1, . . . , tk/xk , u/x ] where x1, . . . , xk , x
are distinct. Define δi+1 = [t1/x1, . . . , tk/xk ].

Note: u = xδi = tδi = tδi+1 (σiδi is unifier (IH), x not in t)

σi+1 δi+1

= σi [t/x ] δi+1 (algorithm extends σi with [t/x ])
= σi [t1/x1, . . . , tk/xk , tδi+1/x ]
= σi [t1/x1, . . . , tk/xk , u/x ] (u = tδi+1 by note)
= σi δi
= σ′ (IH)
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Renaming

Definition
A substitution ρ is a renaming if for every variable x , xρ is a
variable and ρ is injective on dom(ρ).
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Resolvents for first-order logic

A substitution ρ is a renaming if for every variable x , xρ is a
variable and ρ is injective on dom(ρ).

A clause R is a resolvent of two clauses C1 and C2 iff:

▶ there is a renaming ρ such that
no variable occurs in both C1 and C2 ρ and
ρ is injective on the set of variables in C2;

▶ there are literals L1, . . . , Lm ∈ C1 (m ≥ 1)
and L′1, . . . , L

′
n ∈ C2 ρ (n ≥ 1) such that

L = {L1, . . . , Lm, L′1, . . . , L′n}
is unifiable; and

▶ R = ((C1 − {L1, . . . , Lm}) ∪ (C2 ρ− {L′1, . . . , L′n})) σ
for any mgu σ.

Example

C1 = { P(x), Q(x), P(g(y)) } and C2 = { ¬P(x), R(f (x), a) }
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Exercise

How many resolvents are there?

C1 C2 Resolvents

{P(x),Q(x , y)} {¬P(f (x))}

1

{Q(g(x)),R(f (x))} {¬Q(f (x))} 0

{P(x),P(f (x))} {¬P(y),Q(y , z)} 2
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Why renaming?

Example

∀x(P(x) ∧ ¬P(f (x)))

25



Resolution for first-order logic

As for propositional logic, F ⊢Res C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,

i.e. that there is a sequence of clauses C1, . . . ,Cm = C
such that for every Ci

▶ either Ci ∈ F

▶ or Ci is the resolvent of Ca and Cb where a, b < i .

Questions:

Correctness Does F ⊢Res □ imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply F ⊢Res □?
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Exercise

Derive □ from the following clauses:

1. {¬P(x),Q(x),R(x , f (x))}
2. {¬P(x),Q(x), S(f (x))}
3. {T (a)}
4. {P(a)}
5. {¬R(a, z),T (z)}
6. {¬T (x),¬Q(x)}
7. {¬T (y),¬S(y)}
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Correctness of Resolution for First-Order Logic

Definition
The universal closure of a formula H with free variables x1, . . . , xn:

∀H = ∀x1∀x2 . . . ∀xnH

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F ∗ ⊢Res □ then F is unsatisfiable.
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Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F ∗ ⊢Res □ then F is unsatisfiable.

Proof Let C1, . . . ,Cm be the sequence of clauses leading to □.
We prove ∀F ∗ |= ∀Cm by induction on m. Trivial if Cm ∈ F ∗.
Let Cm be a resolvent of Ca and Cb (a, b < m). We prove

∀Ca,∀Cb |= ∀Cm (∗)
Thus ∀F ∗ |= ∀Cm because ∀F ∗ |= ∀Ca and ∀F ∗ |= ∀Cb by IH.

Proof of (∗): Assume A(∀Ca) = A(∀Cb) = 1. (∗∗)
We prove A(∀Cm) = 1 by contradiction. Assume A(∀Cm) = 0.
By def. Cm = ((Ca − {L1, . . . }) ∪ (Cbρ− {L′1, . . . }))σ

= (Caσ − {L}) ∪ (Cbρσ − {L})
⇒ A′(Cm) = 0 where A′ = A[u1/x1, . . . ] for some ui ∈ UA
⇒ A′(Caσ − {L}) = A′(Cbρσ − {L}) = 0
⇒ A′(L) = A′(L) = 1 becs. A′(Caσ) = A′(Cbρσ) = 1 becs. (∗∗)
Contradiction
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Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof
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Lifting Lemma

Let C1,C2 be two clauses

and
let C ′

1,C
′
2 be two ground instances

with (propositional) resolvent R ′.

Then there is a resolvent R of C1,C2

such that R ′ is a ground instance of R.

C1 C2

C ′
1 R C ′

2

R ′

→: Substitution
—: Resolution
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Lifting Lemma: example

{¬P(f (x)),Q(x)} {P(f (g(y)))}

{¬P(f (g(a))),Q(g(a))} {Q(g(y))} {P(f (g(a)))}

{Q(g(a))}
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[g(a)/x]
��

{P(f (g(y)))}

[a/y ]
��
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{Q(g(a))}
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Proof of Lifting Lemma.

(1) C ′
1,C

′
2 are ground instances of C1,C2

(2) R ′ is propositional resolvent of C ′
1 and C ′

2

We prove that R ′ is an instance of a resolvent of C1 and C2

(3) Let ρ be a renaming s.t. C1 and C2ρ have no common variables
(1) ⇒ C ′

2 is a ground instance of C2ρ. Thus there are σ1, σ2 s.t.
C ′
1 = C1σ1 and C ′

2 = C2ρσ2 and dom(σ1) ∩ dom(σ2) = ∅
⇒ C ′

1 = C1σ and C ′
2 = C2ρσ where σ = σ1 ∪ σ2

(2) ⇒ R ′ = (C ′
1 − {L}) ∪ (C ′

2 − {L}) where L ∈ C ′
1 and L ∈ C ′

2

⇒ there are {L1, . . . } ⊆ C1 and {L′1, . . . } ⊆ C2ρ
s.t. σ is a unifier of {L1, . . . , L′1, . . . } =: M.
Let σ0 be an mgu of M and let σ = σ0δ for some δ
⇒ A resolvent of C1 and C2:
R := ((C1 − {L1, . . . }) ∪ (C2ρ− {L′1, . . . }))σ0
Rδ = ((C1 − {L1, . . . }) ∪ (C2ρ− {L′1, . . . }))σ
= (C1σ − {L}) ∪ (C2ρσ − {L})
= (C ′

1 − {L}) ∪ (C ′
2 − {L})

= R ′
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Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F is unsatisfiable then F ∗ ⊢Res □.

Proof If F is unsatisfiable, there is a ground resolution proof
C ′
1, . . . ,C

′
n = □. We transform this step by step into a resolution

proof C1, . . . ,Cn = □ such that C ′
i is a ground instance of Ci .

If C ′
i is a ground instance of some clause C ∈ F ∗:

Set Ci = C

If C ′
i is a resolvent of C ′

a,C
′
b (a, b < i):

C ′
a,C

′
b have been transformed already into Ca,Cb s.t. C ′

a,C
′
b are

ground instances of Ca,Cb. By the Lifting Lemma there is a
resolvent R of Ca,Cb s.t. C ′

i is a ground instance of R.
Set Ci = R.
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Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
Then F is unsatisfiable iff F ∗ ⊢Res □.
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A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while □ /∈ S and
there are clauses Ca,Cb ∈ S and resolvent R of Ca and Cb

such that R /∈ S (modulo renaming)
do S := S ∪ {R}

The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:

▶ The algorithm terminates and □ ∈ S
⇒ F is unsatisfiable

▶ The algorithm terminates and □ /∈ S
⇒ F is satisfiable

▶ The algorithm does not terminate
(⇒ F is satisfiable)
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Refinements of resolution

Problems of resolution:

▶ Branching degree of the search space too large

▶ Too many dead ends

▶ Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!
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