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We upgrade resolution to make it work for predicate logic.



Recall: resolution in propositional logic

Resolution step:

{Ly,...,Ln, A} {yy,...,L,,-A}

\ /

(L, Lol L0}



Recall: resolution in propositional logic

Resolution step:

{L1,..., L, A L —AY

\ /

{Li,..., Lo L, .o,

Resolution graph:

{=A B} {A} {-B}

}\D



Recall: resolution in propositional logic

Resolution step:

{L1,..., L, A oL —AY

\ /

{Li,..., Lo L, .o,

Resolution graph:

{-A B} {A} {-B}

}\D

A set of clauses is unsatisfiable iff the empty clause can be derived.



Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form
and let Fq, Fp, F3,... be an enumeration of E(F).

n:=0;
repeat n:=n+1
until (F1 A F A... A Fp) is unsatisfiable;
— this can be checked with any calculus for propositional logic
return “unsatisfiable”



Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form
and let Fq, Fp, F3,... be an enumeration of E(F).

n:=0;
repeat n:=n+1
until (F1 A F A... A Fp) is unsatisfiable;
— this can be checked with any calculus for propositional logic
return “unsatisfiable”

“any calculus” ~- use resolution for the unsatisfiability test
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Terminology

Literal /clause/CNF is defined as for propositional logic
but with the atomic formulas of predicate logic.

A ground term /formula/etc is a term/formula/etc
that does not contain any variables.

An instance of a term/formula/etc
is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.



Clause Herbrand expansion

Let F =Vy; ...Vy, F* be a closed formula in Skolem form with
F*in CNF, and let Cy,..., C,, be the clauses of F*.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) = J{Glts/w]. . [ta/yal | 1., tn € T(F)}
i=1

Lemma
CE(F) is unsatisfiable iff E(F) is unsatisfiable.



Clause Herbrand expansion

Let F =Vy; ...Vy, F* be a closed formula in Skolem form with
F*in CNF, and let Cy,..., C,, be the clauses of F*.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) = J{Glts/w]. . [ta/yal | 1., tn € T(F)}
i=1

Lemma
CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof. Informally speaking, “CE(F) = E(F)".



Ground resolution algorithm

Let F be a closed formula in Skolem form with F* in CNF.
Let Ci, Gy, Gs, ... be an enumeration of CE(F).

n:=0;

S =0

repeat
n:=n+1;
S:=SU{GC.};

until S Fres O

return “unsatisfiable”
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Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define
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Ground resolution algorithm

Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define

ti,...,th € T(F)

Cs = J q Gltr/wl. - [tn/ vl and
= [t 4+t =5

Cs is finite for every s > 0 and CE(F) = Jo2, Cs.

So CE(F) can be enumerated by enumerating Co,C1,Co, - - .

Note: The search for [ can be performed incrementally every time
S is extended, keeping the clauses generated in previous steps.



Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem
A formula F =Vy1 ... Yy, F* with F* in CNF is unsatisfiable iff
there is a sequence of ground clauses Cy, ..., C, = O such that

foreveryi=1,....m



Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem

A formula F =Vy1 ... Yy, F* with F* in CNF is unsatisfiable iff
there is a sequence of ground clauses Cy, ..., C, = O such that
foreveryi=1,....m

» either C; is a ground instance of a clause C € F*,
ie. G = Clti/y1]...[tn/yn] where t1,... t, € T(F),
» or C; is a resolvent of two clauses C;, Cp with a < i and b < i



Beyond ground resolution: Intuition

Blind enumeration of ground clauses is extremely inefficient
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Beyond ground resolution: Intuition

Blind enumeration of ground clauses is extremely inefficient
Fr={{P()}, {=P(f(g(b,y))), QI¥)}, {~Q(g(f(2), f(2)))} }.

The algorithm can derive L] from just three ground clauses:

{P(f(g(b,g(f(a),f(a))))}
{~P(f(g(b, g(f(a), f(a))))), Qle(f(a), f(a)))}
{-Q(g(f(a),f(a)))}

Blind enumeration will generate the third clause early on, but it will
only generate the first two after many (many!) superfluous clauses.
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substitution for x.

Commit only to replacing x by

f(g(b, whatever-y-will-be-later-replaced-by))
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Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions
Fr={{P()}, {-P(f(g(b,y))), Q(y)}, {~Q(&(f(2),f(2)))} }

When resolving the first two clauses, delay the choice of
substitution for x.

Commit only to replacing x by
f(g(b, whatever-y-will-be-later-replaced-by))
For this:
» Allow substitutions with variables: [f(g(b,y))/x].

P Apply substitutions only to two clauses that enable a new
resolution step.

11



Beyond ground resolution: Intuition

F* = {{P()}, {=P(f(g(b,y))), Q¥)}, {~Qe&(f(2), f(2)))} }

P(x)} {(=P(f(g(b,y))), Q¥)}  {=Q(g(f(2), f(2)))}

12



Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)
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[t/x] maps x to t (and all other variables to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example
(PO yDIF(y)/X1[b/y] = (P(f(y),¥))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. oj07 is the
substitution that applies o1 first and then o>.

13



Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example
(PO yDIF(y)/X1[b/y] = (P(f(y),¥))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. oj07 is the
substitution that applies o1 first and then o>.

Substitutions are functions. Therefore

o1 =0y iff xo1 = xop for all variables x

13



Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}
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Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}

Example
dom([a/x][b/y]) = {x,y}
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Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}

Example
dom([a/x][b/y]) = {x,y}

Substitutions are defined to have finite domain, and so every
substitution can be written as a

simultaneous substitution [t1/x1, ..., tn/Xn].

14



Unifier and most general unifier
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Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
L]_O':Lzo':"‘:LkO'

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.

L is unifiable if it has at least one unifier.
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Unifier and most general unifier

Let L ={Ly,..., Ly} be a set of literals.
A substitution o is a unifier of L if

Lic=lyo=---=lo

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.
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Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
Lic =1L =---=Lko

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.

A unifier o of L is a most general unifier (mgu) of L if
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Exercise

Yes | No

Unifiable?

P(x; f(y))
P(x, f(x))

P(f(z), w,g(w))

P(g(a), 2)

P(x g(x),8(x))
P(g(y) f(a))

P(x, f(y))

16



Unification algorithm

Input: a set L # () of literals
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Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

if none of the two characters at that position is a variable

then return “non-unifiable”

else let x be the variable and t the term starting at that position
if x occursin t
then return "non-unifiable”
else 0 := o [t/x]
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Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

if none of the two characters at that position is a variable

then return “non-unifiable”
else let x be the variable and t the term starting at that position
if x occursin t
then return "non-unifiable”
else 0 := o [t/x]
return o

17



Unification algorithm
Example

-P(f(z,g(a,y)), h(z)),

—-P(f(f(u,v),w), h(f(a,b)))

18



Correctness of the unification algorithm

Lemma
The unification algorithm terminates.
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Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.
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Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.
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Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the
loop normally.

19



Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).
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Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations

of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th

iteration of the loop.

We prove for every 0 < i < n:

(a) If 1 <, the i-th iteration does not return “non-unifiable”.

(b) For every unifier o’ of L there is a substitution §; such that
o' =o;0;.
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Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th
iteration of the loop.

We prove for every 0 < i < n:

(a) If 1 <, the i-th iteration does not return “non-unifiable”.

(b) For every unifier o’ of L there is a substitution §; such that
o' =o;0;.

By (a) the algorithm exits the loop normally after n iterations.

By (b) it returns a most general unifier.

20



Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:
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Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L.
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= 0j [tl/Xl,...,tk/Xk,u/X] (u: tdiy+1 by note)

= 0id;
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Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
Oiy10i11
= oj[t/x]dis1 (algorithm extends o; with [t/x])
= O'i[tl/X]_,...,tk/Xk,t5,'+1/X]
= 0j [tl/Xl,...,tk/Xk,u/X] (u: tdiy+1 by note)
= 0j0;

— (IH)
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Renaming

Definition
A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).
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Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).
A clause R is a resolvent of two clauses C; and G, iff:

> there is a renaming p such that
no variable occurs in both C; and G, p and
p is injective on the set of variables in (y;

» there are literals Lj,...,.L,e G (m>1)
and Li,...,L, € Gp (n>1) such that

L:{E,...,E,L{l,...,L’n}
is unifiable; and

> R=((CL—{Lis L)) U(Gop— {Lh,oo L) 0
for any mgu o.

Example
G ={P(x), Qx), P(g(y)) } and G ={-P(x), R(f(x),a) }
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Exercise

How many resolvents are there?

G

G

Resolvents

{P(x), Q(x,y)}

{(=P(f(x))}
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How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Q(g(x)), R(F(x))} | {—Q(F(x))} 0

{P(x), P(f(x))}

{_'P()/)a Q(y,z)}
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Exercise

How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Qg(x)), R(F(x))} |  {~Q(f(x))} 0
{P(x), P(f(x))} | {=P(y), Qly,2)} 2
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Why renaming?

Example
Vx(P(x) A =P(f(x)))
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Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
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such that for every C;

» either C; € F
» or C; is the resolvent of C, and Cp, where a, b < i.
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Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

» either C; € F
» or C; is the resolvent of C, and Cp, where a, b < i.

Questions:
Correctness Does F Fges L1 imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply F Fges (17
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Exercise

Derive [ from the following clauses:
1.

No oA wDd

{=P(x), Q(x), R(x, f(x))}
{=P(x), Q(x), S(f(x))}
{T(a)}

{P(a)}

{=R(a,2), T(2)}
{=T(x),~Q(x)}

{=T(), =S}

27



Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables xg, . ..

VH = V¥xiVx...Vx,H

» Xn:
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Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables x1, ..., x,:
VH = Vx3Vxa...VxpH

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres L then F is unsatisfiable.
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Let Cp, be a resolvent of C, and Cp (a, b < m). We prove
VC,,VCpy = Vi (%)

Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
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Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.
By def. G =((Co—{L1,---})U(Cop—{L1,...}))o

= (Goo = {L}) U (Cppo — {L})
= A'(Cp) = 0 where A" = Afui/xq, ...] for some u; € Ug
= A'(Cyo — {L}) = A'(Cppo — {L}) =0
= A'(L) = A(L) =1 becs. A'(Co0) = A (Cppo) =1 becs. (k)
Contradiction
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Completeness: The idea

Simulate ground resolution because that is complete
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Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof
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Lifting Lemma
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Lifting Lemma

Let G, Gy be two clauses

G

G
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Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances

G G
G G

—: Substitution
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Lifting Lemma

G G

Let Ci, G be two clauses and l l

let C;, C be two ground instances c s

with (propositional) resolvent R'. 1 \ / 2
R/

—: Substitution
—: Resolution
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Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances
with (propositional) resolvent R’.

Then there is a resolvent R of Gy, G

—: Substitution
—: Resolution
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Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances
with (propositional) resolvent R’.

Then there is a resolvent R of Gy, G

such that R is a ground instance of R.

R/

—: Substitution
—: Resolution
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Lifting Lemma: example

{=P(f(x)), Q(x)}

{P(f(e(»)))}
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Lifting Lemma: example

{=P(F(x)), @)}
l[g(a)/X]

{P(f(e(»)))}

l[a/ vl
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Lifting Lemma: example

{=P(f(x)), Q(x)}
J[g(a)/X]
{=P(f(g(a))), Qlg(a))}

{P(f(e(1)))}

l[a/ v

{P(f(g(a))}
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Lifting Lemma: example

{=P(f(x)), Q(x)} {P(flg(¥)}
J[g(a)/X] l[a/ﬂ
{=P(f(g(a))), Qlg(a))} {P(f(g(a)))}

\/

{Q(g(a))}
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Lifting Lemma: example

{=P(f(x)), Q(x)}

J[g(a /X]\

{=P(f(g(a))) Qg(a)

\

{P(f(e(n)))}

/ l[a/y]
g(a))}
/
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Lifting Lemma: example

{=P(f(x)), Q(x)} {P(f(e())}
J[g(a/x]\ l[a/y]
{=P(f(g(2))), Qg(a) g(a)))}

e

{Q(g(a))}
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Proof of Lifting Lemma.
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Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpes L.
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Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.
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If C/ is a resolvent of C}, C; (a,b < i):

Cl, C/ have been transformed already into C,, Cp s.t. C}, C} are
ground instances of C,, Cp. By the Lifting Lemma there is a

resolvent R of C,, Cp s.t. C! is a ground instance of R.
Set C; = R.
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Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
Then F is unsatisfiable iff F* pes .
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A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses
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A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable
» The algorithm terminates and O ¢ S
= F is satisfiable

» The algorithm does not terminate
(= F is satisfiable)
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Problems of resolution:
» Branching degree of the search space too large
» Too many dead ends
» Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!
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