First-Order Logic
Resolution

Resolution for first-order logic

Gilmore's algorithm is correct and complete,
but useless in practice.

Resolution for first-order logic

Gilmore's algorithm is correct and complete,
but useless in practice.

We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

{Ly,...,Ln, A} {yy,...,L,,-A}

\ /

(L, Lol L0}

Recall: resolution in propositional logic

Resolution step:

{L1,..., L, A L —AY

\ /

{Li,..., Lo L, .o,

Resolution graph:

{=A B} {A} {-B}

}\D

Recall: resolution in propositional logic

Resolution step:

{L1,..., L, A oL —AY

\ /

{Li,..., Lo L, .o,

Resolution graph:

{-A B} {A} {-B}

}\D

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form
and let Fq, Fp, F3,... be an enumeration of E(F).

n:=0;
repeat n:=n+1
until (F1 A F A... A Fp) is unsatisfiable;
— this can be checked with any calculus for propositional logic
return “unsatisfiable”

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form
and let Fq, Fp, F3,... be an enumeration of E(F).

n:=0;
repeat n:=n+1
until (F1 A F A... A Fp) is unsatisfiable;
— this can be checked with any calculus for propositional logic
return “unsatisfiable”

“any calculus” ~- use resolution for the unsatisfiability test

Terminology

Terminology

Literal /clause/CNF is defined as for propositional logic
but with the atomic formulas of predicate logic.

A ground term /formula/etc is a term/formula/etc
that does not contain any variables.

An instance of a term/formula/etc
is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.

Clause Herbrand expansion

Let F =Vy; ...Vy, F* be a closed formula in Skolem form with
F*in CNF, and let Cy,..., C,, be the clauses of F*.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) = J{Glts/w]. . [ta/yal | 1., tn € T(F)}
i=1

Lemma
CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Clause Herbrand expansion

Let F =Vy; ...Vy, F* be a closed formula in Skolem form with
F*in CNF, and let Cy,..., C,, be the clauses of F*.

The clause Herbrand expansion of F is the set of ground clauses

CE(F) = J{Glts/w]. . [ta/yal | 1., tn € T(F)}
i=1

Lemma
CE(F) is unsatisfiable iff E(F) is unsatisfiable.

Proof. Informally speaking, “CE(F) = E(F)".

Ground resolution algorithm

Let F be a closed formula in Skolem form with F* in CNF.
Let Ci, Gy, Gs, ... be an enumeration of CE(F).

n:=0;

S =0

repeat
n:=n+1;
S:=SU{GC.};

until S Fres O

return “unsatisfiable”

Ground resolution algorithm

Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define

m ti,...,th € T(F)

Cilt1/y1] - - - [tn/yn] and
i=1 [t + -+ |ta] =5

Cs

Ground resolution algorithm

Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define

ti,...,th € T(F)

Cs = J q Gltr/wl. - [tn/ vl and
= [t 4+t =5

Cs is finite for every s > 0 and CE(F) = Jo2, Cs.
So CE(F) can be enumerated by enumerating Co,C1,Co, - - .

Ground resolution algorithm

Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define

ti,...,th € T(F)

Cs = J q Gltr/wl. - [tn/ vl and
= [t 4+t =5

Cs is finite for every s > 0 and CE(F) = Jo2, Cs.
So CE(F) can be enumerated by enumerating Co,C1,Co, - - .

Ground resolution algorithm

Note: For example, CE(F) can be enumerated according to the
size of the substitutions.

Let F=Vy; ...Vy, F* and let Cq, ..., Cy be the clauses of F*.
For every s > 0, define

ti,...,th € T(F)

Cs = J q Gltr/wl. - [tn/ vl and
= [t 4+t =5

Cs is finite for every s > 0 and CE(F) = Jo2, Cs.

So CE(F) can be enumerated by enumerating Co,C1,Co, - - .

Note: The search for [can be performed incrementally every time
S is extended, keeping the clauses generated in previous steps.

Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem
A formula F =Vy1 ... Yy, F* with F* in CNF is unsatisfiable iff
there is a sequence of ground clauses Cy, ..., C, = O such that

foreveryi=1,....m

Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem

A formula F =Vy1 ... Yy, F* with F* in CNF is unsatisfiable iff
there is a sequence of ground clauses Cy, ..., C, = O such that
foreveryi=1,....m

» either C; is a ground instance of a clause C € F*,
ie. G = Clti/y1]...[tn/yn] where t1,... t, € T(F),
» or C; is a resolvent of two clauses C;, Cp with a < i and b < i

Beyond ground resolution: Intuition

Blind enumeration of ground clauses is extremely inefficient

10

Beyond ground resolution: Intuition

Blind enumeration of ground clauses is extremely inefficient
Fr={{P()}, {=P(f(g(b,y))), QI¥)}, {~Q(g(f(2), f(2)))} }.

The algorithm can derive L] from just three ground clauses:

{P(f(g(b,g(f(a),f(a))))}
{~P(f(g(b, g(f(a), f(a))))), Qle(f(a), f(a)))}
{-Q(g(f(a),f(a)))}

Blind enumeration will generate the third clause early on, but it will
only generate the first two after many (many!) superfluous clauses.

10

Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions

11

Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions

Fr={{P()}, {=P(f(g(b,y))), Q¥)}, {~Q(&(f(2) f(2)))} }

11

Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions
Fr={{P()}, {-P(f(g(b,y))), Q(y)}, {~Q(&(f(2),f(2)))} }

When resolving the first two clauses, delay the choice of
substitution for x.

Commit only to replacing x by

f(g(b, whatever-y-will-be-later-replaced-by))

11

Beyond ground resolution: Intuition

Better: guided search with “lazy” substitutions
Fr={{P()}, {-P(f(g(b,y))), Q(y)}, {~Q(&(f(2),f(2)))} }

When resolving the first two clauses, delay the choice of
substitution for x.

Commit only to replacing x by
f(g(b, whatever-y-will-be-later-replaced-by))
For this:
» Allow substitutions with variables: [f(g(b,y))/x].

P Apply substitutions only to two clauses that enable a new
resolution step.

11

Beyond ground resolution: Intuition

F* = {{P()}, {=P(f(g(b,y))), Q¥)}, {~Qe&(f(2), f(2)))} }

P(x)} {(=P(f(g(b,y))), Q¥)} {=Q(g(f(2), f(2)))}

12

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)

13

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

13

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example

(PO yDIF(v)/X1[b/y] =

13

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example

(POsyDIF(v)/X1[b/y] = (P(f(y), ¥))[b/y] =

13

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example
(PO yDIF(y)/X1[b/y] = (P(f(y),¥))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. oj07 is the
substitution that applies o1 first and then o>.

13

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variables to themselves)
Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t; for x and then substitutes t, for y.

Example
(PO yDIF(y)/X1[b/y] = (P(f(y),¥))[b/y] = P(f(b),b)

A composition of substitutions is again a substitution. oj07 is the
substitution that applies o1 first and then o>.

Substitutions are functions. Therefore

o1 =0y iff xo1 = xop for all variables x

13

Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}

14

Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}

Example
dom([a/x][b/y]) = {x,y}

14

Substitutions as functions

Definition
The domain of a substitution o is dom(c) = {x | xo # x}

Example
dom([a/x][b/y]) = {x,y}

Substitutions are defined to have finite domain, and so every
substitution can be written as a

simultaneous substitution [t1/x1, ..., tn/Xn].

14

Unifier and most general unifier

15

Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
L]_O':Lzo':"‘:LkO'

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.

L is unifiable if it has at least one unifier.

15

Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
Lic =1L =---=Lko

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.

A unifier o of L is a most general unifier (mgu) of L if
for every unifier o’ of L there is a substitution § such that o/ = 0.

15

Unifier and most general unifier

Let L ={Ly,..., Ly} be a set of literals.
A substitution o is a unifier of L if

Lic=lyo=---=lo

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.

A unifier o of L is a most general unifier (mgu) of L if
for every unifier o’ of L there is a substitution § such that o/ = 0.

ez

s

15

Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
Lic =1L =---=Lko

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.

A unifier o of L is a most general unifier (mgu) of L if
for every unifier o’ of L there is a substitution § such that o/ = 0.

<

15

Unifier and most general unifier

Let L={Ly,...,Lx} be a set of literals.

A substitution o is a unifier of L if
Lic =1L =---=Lko

i.e. if |lLo| =1, where Lo = {Ljo,...,Lxo}.
L is unifiable if it has at least one unifier.

A unifier o of L is a most general unifier (mgu) of L if
for every unifier o’ of L there is a substitution § such that o/ = 0.

15

Exercise

Yes | No

Unifiable?

P(x; f(y))
P(x, f(x))

P(f(z), w,g(w))

P(g(a), 2)

P(x g(x),8(x))
P(g(y) f(a))

P(x, f(y))

16

Unification algorithm

Input: a set L # () of literals

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

if none of the two characters at that position is a variable
then return “non-unifiable”

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

if none of the two characters at that position is a variable

then return “non-unifiable”

else let x be the variable and t the term starting at that position
if x occursin t
then return "non-unifiable”
else 0 := o [t/x]

17

Unification algorithm

Input: a set L # () of literals
o =[] (the empty substitution)
while |Lo| > 1 do
Find the first position at which two literals L1, L, € Lo differ

if none of the two characters at that position is a variable

then return “non-unifiable”
else let x be the variable and t the term starting at that position
if x occursin t
then return "non-unifiable”
else 0 := o [t/x]
return o

17

Unification algorithm
Example

-P(f(z,g(a,y)), h(z)),

—-P(f(f(u,v),w), h(f(a,b)))

18

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

19

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

19

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

19

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x, and so the
number of variables occurring in Lo decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the
loop normally.

19

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

20

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

20

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th
iteration of the loop.

20

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations

of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th

iteration of the loop.

We prove for every 0 < i < n:

(a) If 1 <, the i-th iteration does not return “non-unifiable”.

(b) For every unifier o’ of L there is a substitution §; such that
o' =o;0;.

20

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let o9 =[], for 1 < i < n let o; be the value of o after the i-th
iteration of the loop.

We prove for every 0 < i < n:

(a) If 1 <, the i-th iteration does not return “non-unifiable”.

(b) For every unifier o’ of L there is a substitution §; such that
o' =o;0;.

By (a) the algorithm exits the loop normally after n iterations.

By (b) it returns a most general unifier.

20

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0):

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist

and x does not occur in t, and so “non-unifiable” is not returned.

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L.

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take dp = o’.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist

and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.
d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct.

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:
Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.
Step (i = i+1)
For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.
d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:
Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.
Step (i = i+1)
For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.
For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.
d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.
Step (i = i+1)
For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].

Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)

Oi+10i+1

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:
Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.
Step (i = i+1)
For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.
For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.
d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
Oit10it1
= oi[t/x]dit1 (algorithm extends o; with [t/x])

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
Oi110i41
= oj[t/x]dis1 (algorithm extends o; with [t/x])

= oj[t/x1, ..t/ Xk, tdjy1/X]

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
i1 0j4+1
= oi[t/x]dit1 (algorithm extends o; with [t/x])
= ojlti/x1,. .., t/xi, tdig1/X]

= oi[ti/x1,. . te/xK, u/x] (u = tdjt1 by note)

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
Oiy10i11
= oj[t/x]dis1 (algorithm extends o; with [t/x])
= O'i[tl/X]_,...,tk/Xk,t5,'+1/X]
= 0j [tl/Xl,...,tk/Xk,u/X] (u: tdiy+1 by note)

= 0id;

21

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i:

Basis (i = 0): For (a) there is nothing to prove.
For (b) take 0 = o”.

Step (i = i+1)

For (a), since |Lo;| > 1 and Lo; unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let o’ be a unifier of L. IH: ¢/ = o;; for some §;.

d; must be of the form [t1/x1, ..., tx/xk, u/x] where x1, ..., xk, x
are distinct. Define d;41 = [t1/x1, ..., tk/xk].
Note: u = x0; = td; = td;1+1 (0;0; is unifier (IH), x not in t)
Oiy10i11
= oj[t/x]dis1 (algorithm extends o; with [t/x])
= O'i[tl/X]_,...,tk/Xk,t5,'+1/X]
= 0j [tl/Xl,...,tk/Xk,u/X] (u: tdiy+1 by note)
= 0j0;

— (IH)

21

Renaming

22

Renaming

Definition
A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).

22

Resolvents for first-order logic

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).

A clause R is a resolvent of two clauses C; and G, iff:

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).

A clause R is a resolvent of two clauses C; and G, iff:

> there is a renaming p such that
no variable occurs in both C; and G, p and
p is injective on the set of variables in (y;

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).
A clause R is a resolvent of two clauses C; and G, iff:

> there is a renaming p such that
no variable occurs in both C; and G, p and
p is injective on the set of variables in (y;

» there are literals Lj,...,.L,e G (m>1)
and Li,...,L, e Gp (n>1) such that
L={L1,....L;m LY. L0}
is unifiable; and

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).
A clause R is a resolvent of two clauses C; and G, iff:

> there is a renaming p such that
no variable occurs in both C; and G, p and
p is injective on the set of variables in (y;

» there are literals Lj,...,.L,e G (m>1)
and Li,...,L, e Gp (n>1) such that
L={L1,....L;m LY. L0}
is unifiable; and

> R=((CL—{Lis L)) U(Gop— {Lh,oo L) 0
for any mgu o.

23

Resolvents for first-order logic

A substitution p is a renaming if for every variable x, xp is a
variable and p is injective on dom(p).
A clause R is a resolvent of two clauses C; and G, iff:

> there is a renaming p such that
no variable occurs in both C; and G, p and
p is injective on the set of variables in (y;

» there are literals Lj,...,.L,e G (m>1)
and Li,...,L, € Gp (n>1) such that

L:{E,...,E,L{l,...,L’n}
is unifiable; and

> R=((CL—{Lis L)) U(Gop— {Lh,oo L) 0
for any mgu o.

Example
G ={P(x), Qx), P(g(y)) } and G ={-P(x), R(f(x),a) }

23

Exercise

How many resolvents are there?

G

G

Resolvents

{P(x), Q(x,y)}

{(=P(f(x))}

24

Exercise

How many resolvents are there?

G

G

Resolvents

{P(x), Q(x,y)}

{(=P(f(x))}

1

24

Exercise

How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Q(g(x)), R(F(x))} | {—Q(F(x))}

24

Exercise

How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Q(g(x)), R(F(x))} | {—Q(F(x))} 0

24

Exercise

How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Q(g(x)), R(F(x))} | {—Q(F(x))} 0

{P(x), P(f(x))}

{_'P()/)a Q(y,z)}

24

Exercise

How many resolvents are there?

G G Resolvents
{P(x), Q(x,y)} {=P(f(x))} 1
{Qg(x)), R(F(x))} | {~Q(f(x))} 0
{P(x), P(f(x))} | {=P(y), Qly,2)} 2

24

Why renaming?

Example
Vx(P(x) A =P(f(x)))

25

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

» either C; € F

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C
such that for every C;

» either C; € F

» or C; is the resolvent of C, and Cp, where a, b < i.

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

» either C; € F
» or C; is the resolvent of C, and Cp, where a, b < i.

Questions:

Correctness Does F Fges L1 imply that F is unsatisfiable?

26

Resolution for first-order logic

As for propositional logic, F Fres C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses Cy,...,C, = C

such that for every C;

» either C; € F
» or C; is the resolvent of C, and Cp, where a, b < i.

Questions:
Correctness Does F Fges L1 imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply F Fges (17

26

Exercise

Derive [from the following clauses:
1.

No oA wDd

{=P(x), Q(x), R(x, f(x))}
{=P(x), Q(x), S(f(x))}
{T(a)}

{P(a)}

{=R(a,2), T(2)}
{=T(x),~Q(x)}

{=T(), =S}

27

Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables xg, . ..

VH = V¥xiVx...Vx,H

» Xn:

28

Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables x1, ..., x,:
VH = Vx3Vxa...VxpH

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres L then F is unsatisfiable.

28

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres LI then F is unsatisfiable.

29

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres LI then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.

29

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres LI then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* Fres LI then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.

We prove VF* |= VCp, by induction on m. Trivial if G, € F*.

Let Cp, be a resolvent of C, and Cp (a, b < m). We prove
VC,,VCpy = Vi (%)

Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.
By def. G =((Co—{L1,---})U(Cop—{L1,...}))o
= (Goo = {L}) U (Cppo — {L})

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.
By def. G =((Co—{L1,---})U(Cop—{L1,...}))o

= (Goo = {L}) U (Cppo — {L})
= A'(Cp) = 0 where A" = Afui/xq, ...] for some u; € Ug

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.
By def. G =((Co—{L1,---})U(Cop—{L1,...}))o
= (Goo = {L}) U (Cppo — {L})
= A'(Cp) = 0 where A" = Afui/xq, ...] for some u; € Ug
= A'(Cyo — {L}) = A'(Cppo — {L}) =0

29

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F* FRres L then F is unsatisfiable.

Proof Let Ci,..., C, be the sequence of clauses leading to [.
We prove VF* |= VCp, by induction on m. Trivial if G, € F*.
Let Cp, be a resolvent of C, and Cp (a, b < m). We prove

VC,,VCp = Vi (%)
Thus VF* = VC,, because VF* =V, and VF* |=VCp by IH.
Proof of (x): Assume A(VG,) = A(VC,) = 1. (%)

We prove A(VC,,) = 1 by contradiction. Assume A(VCy,) = 0.
By def. G =((Co—{L1,---})U(Cop—{L1,...}))o

= (Goo = {L}) U (Cppo — {L})
= A'(Cp) = 0 where A" = Afui/xq, ...] for some u; € Ug
= A'(Cyo — {L}) = A'(Cppo — {L}) =0
= A'(L) = A(L) =1 becs. A'(Co0) = A (Cppo) =1 becs. (k)
Contradiction

29

Completeness: The idea

Simulate ground resolution because that is complete

30

Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof

30

Lifting Lemma

31

Lifting Lemma

Let G, Gy be two clauses

G

G

31

Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances

G G
G G

—: Substitution

31

Lifting Lemma

G G

Let Ci, G be two clauses and l l

let C;, C be two ground instances c s

with (propositional) resolvent R'. 1 \ / 2
R/

—: Substitution
—: Resolution

31

Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances
with (propositional) resolvent R’.

Then there is a resolvent R of Gy, G

—: Substitution
—: Resolution

31

Lifting Lemma

Let Ci, G be two clauses and
let C;, C be two ground instances
with (propositional) resolvent R’.

Then there is a resolvent R of Gy, G

such that R is a ground instance of R.

R/

—: Substitution
—: Resolution

31

Lifting Lemma: example

{=P(f(x)), Q(x)}

{P(f(e(»)))}

32

Lifting Lemma: example

{=P(F(x)), @)}
l[g(a)/X]

{P(f(e(»)))}

l[a/ vl

32

Lifting Lemma: example

{=P(f(x)), Q(x)}
J[g(a)/X]
{=P(f(g(a))), Qlg(a))}

{P(f(e(1)))}

l[a/ v

{P(f(g(a))}

32

Lifting Lemma: example

{=P(f(x)), Q(x)} {P(flg(¥)}
J[g(a)/X] l[a/ﬂ
{=P(f(g(a))), Qlg(a))} {P(f(g(a)))}

\/

{Q(g(a))}

32

Lifting Lemma: example

{=P(f(x)), Q(x)}

J[g(a /X]\

{=P(f(g(a))) Qg(a)

\

{P(f(e(n)))}

/ l[a/y]
g(a))}
/

32

Lifting Lemma: example

{=P(f(x)), Q(x)} {P(f(e())}
J[g(a/x]\ l[a/y]
{=P(f(g(2))), Qg(a) g(a)))}

e

{Q(g(a))}

32

Proof of Lifting Lemma.

33

Proof of Lifting Lemma.
(1) C{, C} are ground instances of Cy, Co

33

Proof of Lifting Lemma.
(1) C{, C} are ground instances of Cy, Co
(2) R’ is propositional resolvent of C; and Cj}

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C} is a ground instance of Cyp.

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables

(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
¢ = Go

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables

(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
C{ = C101 and Cé = C2p(72

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
C{ = (101 and Cé = Cypoy and dom(al) N dom(a2) =0

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
C{ = (101 and Cé = Cypoy and dom(al) N dom(a2) =0

= C{ = Co

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
C{ Cio1 and Cé Copoa and dom(al) N dom(a2) =0

= (] = Go and G = Gpo

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
C{ Cio1 and Cé Copoa and dom(al) N dom(a2) =0

= C{ = Gio and C) = Copo where 0 = 01 U 02

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) 0

= C{ = Gio and C) = Copo where 0 = 01 U 02

(2) = R = (G - {LHu(G —{L})

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) 0

= C{ = Gio and C) = Copo where 0 = 01 U 02

(2) = R =(C] —{L})U(C,—{L}) where L€ C] and L € C}

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) 0

= C{ = Gio and C) = Copo where 0 = 01 U 02

(2) = R =(C] —{L})U(C,—{L}) where L€ C] and L € C}

= there are {L1,...} C Gy and {L7,...} C Cop

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) 0

= C{ = Gio and C) = Copo where 0 = 01 U 02

(2) = R =(C] —{L})U(C,—{L}) where L€ C] and L € C}

= there are {L1,...} C Gy and {L7,...} C Cop

s.t. o is a unifier of {Ly,...,L},...}

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of (; and G:

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of (; and G:

R = ((Cl — {Ll, - }) U (CQ,O — {Lll, - }))0'0

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}
= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of (; and G:

R = ((Cl — {Ll, - }) U (CQ,O — {Lll, - }))0'0

Ro

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of (; and G:

R = ((Cl — {Ll, - }) U (CQ,O — {Lll, - }))0'0
RS = (Ci = {L1,...) U(Cop— {L},... }))o

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(a2) =0

= ({ = Goand G = Cgpa where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of (; and G:

R = ((Cl — {Ll, - }) U (CQ,O — {Lll, - }))0'0
R6 = ((CL—{L1,...) U(Gop — {L},... D)o
= (Go —{L}) U(Gpo —{L})

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(az) =0

= ({ = Goand G = C2p0' where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of C; and Gs:

R = ((Cl — {Ll, .. }) U (CQ,O — {Lll, - }))0'0
R6 = ((CL—{L1,...) U(Gop — {L},... D)o
= (Go —{L}) U(Gpo —{L})

= (G —{LHu(G—A{L})

33

Proof of Lifting Lemma.

(1) C{, C} are ground instances of Cy, Co

(2) R’ is propositional resolvent of C; and Cj}

We prove that R’ is an instance of a resolvent of C; and G

(3) Let p be a renaming s.t. C; and Cyp have no common variables
(1) = C}is a ground instance of Cop. Thus there are 01,07 s.t.
Cl Cio1 and C2 Copoa and dom(al) N dom(az) =0

= ({ = Goand G = C2p0' where 0 = o1 U oy

(2) = R = (¢ —{L}) U(Cy—{L}) where L€ C] and L € C}

= there are {Ll,...} cG and {L},...} C Gp

s.t. o is a unifier of {Ly,...,L},...} =M

Let og be an mgu of M and let o = ggd for some ¢

= A resolvent of C; and Gs:

R = ((Cl — {Ll, - }) U (CQ,O — {Lll, - }))0'0
RS = ((Gi — {L1,.- DU(Gop— (L4, D)o
(C10 —{LHu (Czpff; {L})
(—{LHu(G-{L})

33

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpes L.

34

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.

If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
q,....C =0

34

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof

Ci,...,C, = 0. We transform this step by step into a resolution
proof C1,...,C, =01

34

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof

Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

34

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:

34

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:
Set G;=C

34

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:
Set G;=C

If C/ is a resolvent of C}, C; (a,b < i):

34

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:

Set G;=C

If C/ is a resolvent of C}, C; (a,b < i):

Cl, C/ have been transformed already into C,, Cp s.t. C}, C} are
ground instances of C,, Cp.

34

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:

Set G;=C

If C/ is a resolvent of C}, C; (a,b < i):

Cl, C/ have been transformed already into C,, Cp s.t. C}, C} are
ground instances of C,, Cp. By the Lifting Lemma there is a
resolvent R of C,, Cp s.t. C! is a ground instance of R.

34

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
If F is unsatisfiable then F* Fpges L.

Proof If F is unsatisfiable, there is a ground resolution proof
Ci,...,C, = 0. We transform this step by step into a resolution
proof Ci,...,C, = O such that C,-’ is a ground instance of C;.

If C/ is a ground instance of some clause C € F*:

Set G;=C

If C/ is a resolvent of C}, C; (a,b < i):

Cl, C/ have been transformed already into C,, Cp s.t. C}, C} are
ground instances of C,, Cp. By the Lifting Lemma there is a

resolvent R of C,, Cp s.t. C! is a ground instance of R.
Set C; = R.

34

Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F* in CNF.
Then F is unsatisfiable iff F* pes .

35

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while 0 ¢ S

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R¢ S

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)

do S:=SU{R}

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)

do S:=SU{R}

The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)

do S:=SU{R}

The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:

» The algorithm terminates and (0 € S
= F is unsatisfiable

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable
» The algorithm terminates and O ¢ S

36

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable
» The algorithm terminates and O ¢ S
= F is satisfiable

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)

do S:=SU{R}

The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable

» The algorithm terminates and O ¢ S
= F is satisfiable

» The algorithm does not terminate

36

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while OJ ¢ S and
there are clauses C,, Cp, € S and resolvent R of C, and C,
such that R ¢ S (modulo renaming)
do S:=SU{R}
The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:
» The algorithm terminates and (0 € S
= F is unsatisfiable
» The algorithm terminates and O ¢ S
= F is satisfiable

» The algorithm does not terminate
(= F is satisfiable)

36

Refinements of resolution

37

Refinements of resolution

Problems of resolution:

» Branching degree of the search space too large

37

Refinements of resolution

Problems of resolution:
» Branching degree of the search space too large

» Too many dead ends

37

Refinements of resolution

Problems of resolution:
» Branching degree of the search space too large
» Too many dead ends

» Combinatorial explosion of the search space

37

Refinements of resolution

Problems of resolution:
» Branching degree of the search space too large
» Too many dead ends
» Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

37

Refinements of resolution

Problems of resolution:
» Branching degree of the search space too large
» Too many dead ends
» Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!

37

