First-Order Logic
Herbrand Theory



Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form
is the set of all terms that can be constructed using the function
symbols in F (including the constants!).

In the special case that F contains no constants, we first pick an
arbitrary constant, say a, and then construct the terms.
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The Herbrand universe T(F) of a closed formula F in Skolem form
is the set of all terms that can be constructed using the function
symbols in F (including the constants!).

In the special case that F contains no constants, we first pick an
arbitrary constant, say a, and then construct the terms.

Formally, T(F) is inductively defined as follows:

» All constants occurring in F belong to T(F); if no constant
occurs in F, then a € T(F) for an arbitrary constant a.

» For every n-ary function symbol f occurring in F,
if t1,t2,...,tn € T(F) then f(t1,t2,...,tn) € T(F).
Note: All terms in T(F) are variable-free by construction!

Example

T(VxVy P(f(x),&(c,y))) = {c, f(c) &(c, ¢), f(g(c, €)), - .}



Herbrand structure

Let F be a closed formula in Skolem form. A structure A suitable
for F is a Herbrand structure for F if it satisfies the following
conditions:
> UA = T(F), and
» for every n-ary function symbol f occurring in F
and every t1,...,t, € T(F): fA(ty,... ty) = f(tr,..., to).

Fact
If A is a Herbrand structure, then A(t) = t for all t € U4,

A Herbrand model of F is a Herbrand structure suitable for F that
is model of F.



Matrix of a formula

Definition
The matrix of a formula F is the result of removing all quantifiers
(all ¥x and 3x) from F. The matrix is denoted by F*.



Fundamental theorem of predicate logic

Theorem

A closed formula in Skolem form is satisfiable iff it has a Herbrand
model.

Proof («<): If a formula has a model then it is satisfiable.
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Claim: T is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form that contains
the same function and predicate symbols as F, if A = G
then T = G

Proof By induction on the number n of universal quantifiers of G.

Basis: n=0. Then G has no quantifiers at all.
Hence, G is a boolean combination of atomic formulas without

variables.
So A(G) = T(G) (why?), and we are done.
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Step: n> 0. Let G =VxH.

4ol

A

AEG
for every u € UA: Alu/x](H) =1
for every u € U4 s.t. u = A(t)
for some t € T(F): Alu/x](H) =

(F): A[A(t )/X](H) =
for every t € T(F): A(H[t/x]) =1 (Subst. Lemma)
for every t € T(F): T(H[t/x]) =1 (IH)

(F): T[T(t)/x](H)=1 (Subst. Lemma)

(F) (

(

for every t € T(F):

for every t € T(F):
T[t/x](H) =1 T is Herbrand struct.)

U7 = T(F))

for every t € T(F):
T(vx H) =
TEG



Example

Let F and A be given by
F = Vx(x>0—=3x(x>yAy>0))

ut = Q
04 =0
p>tqg e p>gq

A is a model of F. The Skolem form of F is
G=Vx(x>0—=(x>"f(x)Af(x)>0)).

Extending A with e.g. fA(p) = p/2 makes A a model of G.



Example

Let F and A be given by
F =9x(x>0—3x(x>yAy>0)
ut = Q
04 =0
p>tqg e p>gq
A is a model of F. The Skolem form of F is
G=Vx(x>0—=(x>"f(x)Af(x)>0)).

Extending A with e.g. fA(p) = p/2 makes A a model of G.

Which is the Herbrand structure 7 given by the proof of the
fundamental theorem?
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Example

The Herbrand structure 7T is given by:
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Example

The Herbrand structure 7T is given by:

u” = T(6) = {0,£(0),£(f(0)),...} = {f*(0) | k > 0}
fFT(F4(0)) = f(£*(0)) = F**1(0)

F4(0) >7 £(0) = (F4(0))* > (F(0))"
& (FY04) >4 (F) (0
& (FY 0) > (F4%(0)

& 0/2k > 0/2°

& false
The theorem guarantees that 7 is also a model of G. This is

indeed the case because the premise x > 0 of the implication is
always false.



We have just shown:

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?
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Herbrand expansion

Let F =Vy;...Vy,F* be a closed formula in Skolem form.
The Herbrand expansion of F is the set of formulas

E(F)=A{F"[ti/y1]---[tn/yn] | t1,.- ., tn € T(F)}

Informally: the formulas of E(F) are the result of substituting

terms from T(F) for the variables of F* in every possible way.
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Herbrand expansion

Let F =Vy;...Vy,F* be a closed formula in Skolem form.
The Herbrand expansion of F is the set of formulas

E(F)=A{F"[ti/y1]---[tn/yn] | t1,.- ., tn € T(F)}

Informally: the formulas of E(F) are the result of substituting
terms from T(F) for the variables of F* in every possible way.

Example
Some elements of E(VxVy P(f(x),g(c,y)):

P(f(c).g(c.c))  P(f?(c),g(c.c)) P(f(c).glc,f(c)))
P(f%(c).g(c. ) P(f(g(f(c).f(c))), &(c.f(g(c, f(c)))

Note: The Herbrand expansion can be viewed as a set of

propositional formulas over the set of variable-free atomic formulas.

11



Godel-Herbrand-Skolem Theorem

Theorem
A closed formula F in Skolem form is satisfiable iff its Herbrand
expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has
a Herbrand model iff E(F) is satisfiable.
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Example
Let F = x (P(x) V Q(f(x)).
Herbrand universe:
T(F)={f(a) | k > 0} = {a, f(a), f(f(a),---}
Herbrand expansion:

E(F)={P(f(a)) v Q(f*"!(a)) | k > 0}
= {P(a) v Q(f(a), P(f(a)) v Q(*(a)), P(f*(a)) v Q(F*(a)), -}
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Example
Let F = x (P(x) V Q(f(x)).
Herbrand universe:
T(F)={f(a) | k > 0} = {a, f(a), f(f(a),---}
Herbrand expansion:

E(F)={P(f(a)) v Q(f*"!(a)) | k > 0}

(
= {P(a) v Q(f(a)), P(f(a)) v Q(f*(a)), P(f*(a)) v Q(£*(a)), -

A is a Herbrand model of F
iff for all k >0, A[fk(a)/x](P(x) V Q(f(x)))
iff for all k>0, A(P(x) V Q(f(x))[f*(a)/x])
iff for all k >0, A(P(f*(a)) v Q(fk*1(a)) =
iff Ais a model of E(F)

'_‘II ||

}
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Herbrand’s Theorem

Theorem
A closed formula F in Skolem form is unsatisfiable iff some finite
subset of E(F) is unsatisfiable.

Proof. Follows immediately from the Godel-Herbrand-Skolem
Theorem and the Compactness Theorem.
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Example

We show that
F = 3xVYy P(x,y) — Yy 3x P(x, y)
is valid, or, equivalently, that
-F =3xVy P(x,y) A JyVx—=P(x,y)

is unsatisfiable.
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Example

We show that

F = 3xVYy P(x,y) — Yy 3x P(x, y)
is valid, or, equivalently, that
-F =3xVy P(x,y) A JyVx—=P(x,y)

is unsatisfiable.

Rectified form:
Prenex form:
Skolem form:

Herbrand universe:

IxVy P(x, y) A 3z¥v ~P(v, 2)
Ix Iz Wy Vv (P(x, y) A —~P(v, 2))
Yy v (P(a,y) A =P(v, b))

{a, b}
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IxVy P(x, y) A 3z¥v ~P(v, 2)

Ix Iz Wy Vv (P(x, y) A —~P(v, 2))

Yy v (P(a,y) A =P(v, b))

{a, b}

{ P(a,a) A ~P(a,b), P(a,a) A ~P(b,b)
P(a, b) A —P(a,b) , P(a,b) A=P(b,b) }
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Semi-decidability Theorems

Theorem

(a) The unsatisfiability problem of predicate logic is (only)
semi-decidable.

(b) The validity problem of predicate logic is (only)
semi-decidable.

Proof. (a) Gilmore's algorithm is a semi-decision procedure.

(The problem is undecidable. Proof later)
(b) F valid iff =F unsatisfiable.
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Gilmore's Algorithm

Let F be a closed formula in Skolem form
and let Fi, Fp, F3,... be a computable enumeration of E(F).

Input: F

n:=0;

repeat n:=n+1;

until (F1 A Fa A ... A Fp) is unsatisfiable;
return “unsatisfiable”

The algorithm terminates iff F is unsatisfiable.
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Lowenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic
has a model with a countable universe.

Proof Let Fy be a formula with free variables xq,...,x, for n > 0.
Define F := dx; ...3dx, Fg and observe that Fy has a model with
universe U iff F has a model with universe U.

Let G be closed formula in Skolem form equisatisfiable with F as
produced by the Normal Form transformations starting with F.
Fact: Every model of G is a model of F.

Fo satisfiable F satisfiable

G satisfiable

G has a Herbrand model

F has a model with universe T(G)

Fo has a model with universe T(G)

Fo has a model with countable universe
(T(G) is countable)

L A
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Lowenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models
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