First-Order Logic Herbrand Theory

Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F (including the constants!).

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F (including the constants!).

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Formally, T(F) is inductively defined as follows:

- All constants occurring in F belong to T(F); if no constant occurs in F, then a ∈ T(F) for an arbitrary constant a.
- For every *n*-ary function symbol f occurring in F, if $t_1, t_2, \ldots, t_n \in T(F)$ then $f(t_1, t_2, \ldots, t_n) \in T(F)$.

Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F (including the constants!).

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Formally, T(F) is inductively defined as follows:

- All constants occurring in F belong to T(F); if no constant occurs in F, then a ∈ T(F) for an arbitrary constant a.
- For every *n*-ary function symbol f occurring in F, if $t_1, t_2, \ldots, t_n \in T(F)$ then $f(t_1, t_2, \ldots, t_n) \in T(F)$.

Note: All terms in T(F) are variable-free by construction!

Example

 $T(\forall x \forall y P(f(x),g(c,y))) = \{c,f(c),g(c,c),f(g(c,c)),\ldots\}.$

Herbrand structure

Let *F* be a closed formula in Skolem form. A structure A suitable for *F* is a Herbrand structure for *F* if it satisfies the following conditions:

•
$$U^{\mathcal{A}} = T(F)$$
, and

For every *n*-ary function symbol *f* occurring in *F* and every *t*₁,..., *t_n* ∈ *T*(*F*): *f*^A(*t*₁,..., *t_n*) = *f*(*t*₁,..., *t_n*).

Fact

If A is a Herbrand structure, then A(t) = t for all $t \in U^A$.

A Herbrand model of F is a Herbrand structure suitable for F that is model of F.

Matrix of a formula

Definition The matrix of a formula F is the result of removing all quantifiers (all $\forall x$ and $\exists x$) from F. The matrix is denoted by F^* .

Fundamental theorem of predicate logic

Theorem

A closed formula in Skolem form is satisfiable iff it has a Herbrand model.

Proof (\Leftarrow): If a formula has a model then it is satisfiable.

Fundamental theorem of predicate logic

Theorem

A closed formula in Skolem form is satisfiable iff it has a Herbrand model.

Proof (\Leftarrow): If a formula has a model then it is satisfiable.

 (\Rightarrow) : Let \mathcal{A} be a model of a closed formula F in Skolem form. We define a Herbrand structure \mathcal{T} suitable for F:

Universe:

Function symbols:

Predicate symbols:

$$U_{\mathcal{T}} = T(F)$$

$$f^{\mathcal{T}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$$

(If *F* contains no constant, then

$$a^{\mathcal{A}} = u \text{ for some arbitrary } u \in U^{\mathcal{A}})$$

$$(t_1, \dots, t_n) \in P^{\mathcal{T}} \text{ iff } (\mathcal{A}(t_1), \dots, \mathcal{A}(t_n)) \in P^{\mathcal{A}}$$

Fundamental theorem of predicate logic

Theorem

A closed formula in Skolem form is satisfiable iff it has a Herbrand model.

Proof (\Leftarrow): If a formula has a model then it is satisfiable.

 (\Rightarrow) : Let \mathcal{A} be a model of a closed formula F in Skolem form. We define a Herbrand structure \mathcal{T} suitable for F:

Universe:

Function symbols:

$$U_{\mathcal{T}} = T(F)$$

$$f^{\mathcal{T}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$$

(If *F* contains no constant, then

$$a^{\mathcal{A}} = u \text{ for some arbitrary } u \in U^{\mathcal{A}})$$

$$(t_1, \dots, t_n) \in P^{\mathcal{T}} \text{ iff } (\mathcal{A}(t_1), \dots, \mathcal{A}(t_n)) \in P^{\mathcal{A}}$$

Predicate symbols: $(t_1, \ldots, t_n) \in P^{\prime}$ iff $(\mathcal{A}(t_1), \ldots, \mathcal{A}(t_n)) \in P^{\prime}$

Claim: \mathcal{T} is also a model of F.

Claim: \mathcal{T} is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form that contains the same function and predicate symbols as F, if $A \models G$ then $\mathcal{T} \models G$ Claim: \mathcal{T} is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form that contains the same function and predicate symbols as F, if $A \models G$ then $\mathcal{T} \models G$

Proof By induction on the number n of universal quantifiers of G.

Claim: \mathcal{T} is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form that contains the same function and predicate symbols as F, if $A \models G$ then $\mathcal{T} \models G$

Proof By induction on the number *n* of universal quantifiers of *G*. **Basis:** n = 0. Then *G* has no quantifiers at all.

Hence, G is a boolean combination of atomic formulas without variables.

So $\mathcal{A}(G) = \mathcal{T}(G)$ (why?), and we are done.

Step: n > 0. Let $G = \forall x H$.

$$\mathcal{A} \models G$$

Step: n > 0. Let $G = \forall x H$.

$$\mathcal{A} \models G$$

 \Rightarrow for every $u \in U^{\mathcal{A}}$: $\mathcal{A}[u/x](H) = 1$

Step: n > 0. Let $G = \forall x H$.

$$\mathcal{A} \models G$$

$$\Rightarrow$$
 for every $u \in U^{\mathcal{A}}$: $\mathcal{A}[u/x](H) = 1$

$$\Rightarrow \ \, \text{for every} \ \, u \in U^{\mathcal{A}} \ \, \text{s.t.} \ \, u = \mathcal{A}(t) \\ \text{for some} \ \, t \in \mathcal{T}(F) \text{:} \ \, \mathcal{A}[u/x](H) = 1 \\ \end{aligned}$$

$$\Rightarrow$$
 for every $t \in \mathcal{T}(F)$: $\mathcal{A}[\mathcal{A}(t)/x](H) = 1$

$$\Rightarrow$$
 for every $t \in T(F)$: $\mathcal{A}(H[t/x]) = 1$

(IH)

- \Rightarrow for every $t \in T(F)$: $\mathcal{T}(H[t/x]) = 1$
- \Rightarrow for every $t \in T(F)$: $\mathcal{T}[\mathcal{T}(t)/x](H) = 1$
- \Rightarrow for every $t \in T(F)$: $\mathcal{T}[t/x](H) = 1$

$$\Rightarrow \quad \mathcal{T}(\forall x \ H) = 1$$

 $\Rightarrow \mathcal{T} \models G$

$$(\mathcal{T} \text{ is Herbrand struct.})$$

 $(U^{\mathcal{T}} = T(F))$

Let F and A be given by

 $F = \forall x (x > \mathbf{0} \to \exists x (x > y \land y > \mathbf{0}))$ $\mathcal{U}^{\mathcal{A}} = \mathbb{Q}$ $\mathbf{0}^{\mathcal{A}} = 0$ $p > \mathcal{A} \ q \ \Leftrightarrow \ p > q$

 \mathcal{A} is a model of F. The Skolem form of F is

 $G = \forall x (x > \mathbf{0} \rightarrow (x > f(x) \land f(x) > \mathbf{0})) .$

Extending \mathcal{A} with e.g. $f^{\mathcal{A}}(p) = p/2$ makes \mathcal{A} a model of G.

Let F and A be given by

 $F = \forall x (x > \mathbf{0} \to \exists x (x > y \land y > \mathbf{0}))$ $\mathcal{U}^{\mathcal{A}} = \mathbb{Q}$ $\mathbf{0}^{\mathcal{A}} = 0$ $p > \mathcal{A} \ q \ \Leftrightarrow \ p > q$

 \mathcal{A} is a model of F. The Skolem form of F is

 $G = \forall x (x > \mathbf{0} \rightarrow (x > f(x) \land f(x) > \mathbf{0})) .$

Extending \mathcal{A} with e.g. $f^{\mathcal{A}}(p) = p/2$ makes \mathcal{A} a model of G. Which is the Herbrand structure \mathcal{T} given by the proof of the fundamental theorem?

The Herbrand structure $\ensuremath{\mathcal{T}}$ is given by:

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = T(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^k(\mathbf{0}) \mid k \ge 0\}$

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = \mathcal{T}(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^{k}(\mathbf{0}) \mid k \ge 0\}$ $f^{\mathcal{T}}(f^{k}(\mathbf{0})) = f(f^{k}(\mathbf{0})) = f^{k+1}(\mathbf{0})$

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = \mathcal{T}(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^{k}(\mathbf{0}) \mid k \ge 0\}$ $f^{\mathcal{T}}(f^{k}(\mathbf{0})) = f(f^{k}(\mathbf{0})) = f^{k+1}(\mathbf{0})$ $f^{k}(\mathbf{0}) >^{\mathcal{T}} f^{\ell}(\mathbf{0}) \Leftrightarrow (f^{k}(\mathbf{0}))^{\mathcal{A}} >^{\mathcal{A}} (f^{\ell}(\mathbf{0}))^{\mathcal{A}}$ $\Leftrightarrow (f^{\mathcal{A}})^{k}(\mathbf{0}^{\mathcal{A}}) >^{\mathcal{A}} (f^{\mathcal{A}})^{\ell}(\mathbf{0}^{\mathcal{A}})$

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = \mathcal{T}(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^{k}(\mathbf{0}) \mid k \ge 0\}$ $f^{\mathcal{T}}(f^{k}(\mathbf{0})) = f(f^{k}(\mathbf{0})) = f^{k+1}(\mathbf{0})$ $f^{k}(\mathbf{0}) >^{\mathcal{T}} f^{\ell}(\mathbf{0}) \Leftrightarrow (f^{k}(\mathbf{0}))^{\mathcal{A}} >^{\mathcal{A}} (f^{\ell}(\mathbf{0}))^{\mathcal{A}}$ $\Leftrightarrow (f^{\mathcal{A}})^{k}(\mathbf{0}^{\mathcal{A}}) >^{\mathcal{A}} (f^{\mathcal{A}})^{\ell}(\mathbf{0}^{\mathcal{A}})$ $\Leftrightarrow (f^{\mathcal{A}})^{k}(\mathbf{0}) > (f^{\mathcal{A}})^{\ell}(\mathbf{0})$

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = \mathcal{T}(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^k(\mathbf{0}) \mid k > 0\}$ $f^{\mathcal{T}}(f^{k}(\mathbf{0})) = f(f^{k}(\mathbf{0})) = f^{k+1}(\mathbf{0})$ $f^{k}(\mathbf{0}) >^{\mathcal{T}} f^{\ell}(\mathbf{0}) \Leftrightarrow (f^{k}(\mathbf{0}))^{\mathcal{A}} >^{\mathcal{A}} (f^{\ell}(\mathbf{0}))^{\mathcal{A}}$ $\Leftrightarrow (f^{\mathcal{A}})^{k}(\mathbf{0}^{\mathcal{A}}) >^{\mathcal{A}} (f^{\mathcal{A}})^{\ell}(\mathbf{0}^{\mathcal{A}})$ $\Leftrightarrow (f^{\mathcal{A}})^k(0) > (f^{\mathcal{A}})^\ell(0)$ $\Leftrightarrow 0/2^k > 0/2^\ell$ \Leftrightarrow false

The Herbrand structure \mathcal{T} is given by:

 $\mathcal{U}^{\mathcal{T}} = \mathcal{T}(G) = \{\mathbf{0}, f(\mathbf{0}), f(f(\mathbf{0})), \ldots\} = \{f^k(\mathbf{0}) \mid k \ge 0\}$ $f^{\mathcal{T}}(f^{k}(\mathbf{0})) = f(f^{k}(\mathbf{0})) = f^{k+1}(\mathbf{0})$ $f^{k}(\mathbf{0}) >^{\mathcal{T}} f^{\ell}(\mathbf{0}) \Leftrightarrow (f^{k}(\mathbf{0}))^{\mathcal{A}} >^{\mathcal{A}} (f^{\ell}(\mathbf{0}))^{\mathcal{A}}$ $\Leftrightarrow (f^{\mathcal{A}})^{k}(\mathbf{0}^{\mathcal{A}}) >^{\mathcal{A}} (f^{\mathcal{A}})^{\ell}(\mathbf{0}^{\mathcal{A}})$ $\Leftrightarrow (f^{\mathcal{A}})^k(0) > (f^{\mathcal{A}})^\ell(0)$ $\Leftrightarrow 0/2^k > 0/2^\ell$ \Leftrightarrow false

The theorem guarantees that \mathcal{T} is also a model of G. This is indeed the case because the premise x > 0 of the implication is always false.

We have just shown:

Theorem Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?

Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of formulas

$$E(F) = \{F^*[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Informally: the formulas of E(F) are the result of substituting terms from T(F) for the variables of F^* in every possible way.

Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of formulas

$$E(F) = \{F^*[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Informally: the formulas of E(F) are the result of substituting terms from T(F) for the variables of F^* in every possible way.

Example

Some elements of $E(\forall x \forall y P(f(x), g(c, y)))$:

 $\begin{array}{ll} P(f(c),g(c,c)) & P(f^{2}(c),g(c,c)) & P(f(c),g(c,f(c))) \\ P(f^{8}(c),g(c,c)) & P(f(g(f(c),f(c))),g(c,f(g(c,f(c))))) \end{array}$

Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of formulas

$$E(F) = \{F^*[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Informally: the formulas of E(F) are the result of substituting terms from T(F) for the variables of F^* in every possible way.

Example

Some elements of $E(\forall x \forall y P(f(x), g(c, y)))$:

 $\begin{array}{ll} P(f(c),g(c,c)) & P(f^{2}(c),g(c,c)) & P(f(c),g(c,f(c))) \\ P(f^{8}(c),g(c,c)) & P(f(g(f(c),f(c))),g(c,f(g(c,f(c))))) \end{array}$

Note: The Herbrand expansion can be viewed as a set of propositional formulas over the set of variable-free atomic formulas.

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}[t_1/y_1] \ldots [t_n/y_n](F^*) = 1$

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

iff for all $t_1, ..., t_n \in T(F)$, $\mathcal{A}[t_1/y_1] ... [t_n/y_n](F^*) = 1$ iff for all $t_1, ..., t_n \in T(F)$, $\mathcal{A}(F^*[t_1/y_1] ... [t_n/y_n]) = 1$

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

- iff for all $t_1, ..., t_n \in T(F)$, $\mathcal{A}[t_1/y_1] ... [t_n/y_n](F^*) = 1$ iff for all $t_1, ..., t_n \in T(F)$, $\mathcal{A}(F^*[t_1/y_1] ... [t_n/y_n]) = 1$
- iff for all $G \in E(F)$, $\mathcal{A}(G) = 1$

Theorem

A closed formula F in Skolem form is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof. By the fundamental theorem, it suffices to show that F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

- iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}[t_1/y_1] \ldots [t_n/y_n](F^*) = 1$
- iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}(F^*[t_1/y_1] \ldots [t_n/y_n]) = 1$

iff for all
$$G \in E(F)$$
, $\mathcal{A}(G) = 1$

iff \mathcal{A} is a model of E(F)

Let $F = \forall x (P(x) \lor Q(f(x))).$

Herbrand universe:

 $T(F) = \{f^{k}(a) \mid k \geq 0\} = \{a, f(a), f(f(a), \cdots\}\}$

Herbrand expansion:

 $E(F) = \{ P(f^{k}(a)) \lor Q(f^{k+1}(a)) \mid k \ge 0 \}$ = $\{ P(a) \lor Q(f(a)), P(f(a)) \lor Q(f^{2}(a)), P(f^{2}(a)) \lor Q(f^{3}(a)), \cdots \}$

Let $F = \forall x (P(x) \lor Q(f(x))).$

Herbrand universe:

 $T(F) = \{f^{k}(a) \mid k \geq 0\} = \{a, f(a), f(f(a), \cdots\}\}$

Herbrand expansion:

 $E(F) = \{ P(f^{k}(a)) \lor Q(f^{k+1}(a)) \mid k \ge 0 \}$ = $\{ P(a) \lor Q(f(a)), P(f(a)) \lor Q(f^{2}(a)), P(f^{2}(a)) \lor Q(f^{3}(a)), \cdots \}$

 \mathcal{A} is a Herbrand model of F

Let $F = \forall x (P(x) \lor Q(f(x))).$

Herbrand universe:

 $T(F) = \{f^{k}(a) \mid k \geq 0\} = \{a, f(a), f(f(a), \cdots)\}$

Herbrand expansion:

 $E(F) = \{ P(f^{k}(a)) \lor Q(f^{k+1}(a)) \mid k \ge 0 \}$ = $\{ P(a) \lor Q(f(a)), P(f(a)) \lor Q(f^{2}(a)), P(f^{2}(a)) \lor Q(f^{3}(a)), \cdots \}$

 ${\mathcal A}$ is a Herbrand model of ${\it F}$

iff for all $k \ge 0$, $\mathcal{A}[f^k(a)/x](P(x) \lor Q(f(x))) = 1$

Let $F = \forall x (P(x) \lor Q(f(x))).$

Herbrand universe:

 $T(F) = \{f^{k}(a) \mid k \geq 0\} = \{a, f(a), f(f(a), \cdots)\}$

Herbrand expansion:

 $E(F) = \{ P(f^{k}(a)) \lor Q(f^{k+1}(a)) \mid k \ge 0 \}$ = $\{ P(a) \lor Q(f(a)), P(f(a)) \lor Q(f^{2}(a)), P(f^{2}(a)) \lor Q(f^{3}(a)), \cdots \}$

 \mathcal{A} is a Herbrand model of F

- iff for all $k \ge 0$, $\mathcal{A}[f^k(a)/x](P(x) \lor Q(f(x))) = 1$
- iff for all $k \ge 0$, $\mathcal{A}(P(x) \lor Q(f(x))[f^k(a)/x]) = 1$
- iff for all $k \geq 0$, $\mathcal{A}(P(f^k(a)) \lor Q(f^{k+1}(a)) = 1$
- iff \mathcal{A} is a model of E(F)

Herbrand's Theorem

Theorem

A closed formula F in Skolem form is unsatisfiable iff some finite subset of E(F) is unsatisfiable.

Proof. Follows immediately from the Gödel-Herbrand-Skolem Theorem and the Compactness Theorem.

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \, \forall y \, P(x, y) \land \exists y \, \forall x \, \neg P(x, y)$$

is unsatisfiable.

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \,\forall y \, P(x, y) \land \exists y \,\forall x \,\neg P(x, y)$$

is unsatisfiable.

Rectified form: $\exists x \forall y P(x, y) \land \exists z \forall v \neg P(v, z)$

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \,\forall y \, P(x, y) \land \exists y \,\forall x \,\neg P(x, y)$$

is unsatisfiable.

Rectified form: $\exists x \forall y P(x, y) \land \exists z \forall v \neg P(v, z)$ Prenex form: $\exists x \exists z \forall y \forall v (P(x, y) \land \neg P(v, z))$

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \, \forall y \, P(x, y) \land \exists y \, \forall x \, \neg P(x, y)$$

is unsatisfiable.

Rectified form: $\exists x \forall y P(x, y) \land \exists z \forall v \neg P(v, z)$ Prenex form: $\exists x \exists z \forall y \forall v (P(x, y) \land \neg P(v, z))$ Skolem form: $\forall y \forall v (P(a, y) \land \neg P(v, b))$

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \, \forall y \, P(x, y) \land \exists y \, \forall x \, \neg P(x, y)$$

is unsatisfiable.

Rectified form: $\exists x \forall y P(x, y) \land \exists z \forall v \neg P(v, z)$ Prenex form: $\exists x \exists z \forall y \forall v (P(x, y) \land \neg P(v, z))$ Skolem form: $\forall y \forall v (P(a, y) \land \neg P(v, b))$ Herbrand universe: $\{a, b\}$

We show that

$$F = \exists x \,\forall y \, P(x, y) \rightarrow \forall y \,\exists x \, P(x, y)$$

is valid, or, equivalently, that

$$\neg F \equiv \exists x \,\forall y \, P(x, y) \land \exists y \,\forall x \,\neg P(x, y)$$

is unsatisfiable.

Rectified form: $\exists x \forall y P(x, y) \land \exists z \forall v \neg P(v, z)$ Prenex form: $\exists x \exists z \forall y \forall v (P(x, y) \land \neg P(v, z))$ Skolem form: $\forall y \forall v (P(a, y) \land \neg P(v, b))$ Herbrand universe: $\{a, b\}$ Herbrand expansion: $\{P(a, a) \land \neg P(a, b), P(a, a) \land \neg P(b, b), P(a, b) \land \neg P(b, b), P(a, b) \land \neg P(b, b)\}$

Semi-decidability Theorems

Theorem

- (a) The unsatisfiability problem of predicate logic is (only) semi-decidable.
- (b) The validity problem of predicate logic is (only) semi-decidable.

Proof. (a) Gilmore's algorithm is a semi-decision procedure. (The problem is undecidable. Proof later)

(b) F valid iff $\neg F$ unsatisfiable.

Gilmore's Algorithm

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be a computable enumeration of E(F).

> Input: F n := 0; repeat n := n + 1; until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable; return "unsatisfiable"

The algorithm terminates iff F is unsatisfiable.

Löwenheim-Skolem Theorem

Theorem

Every satisfiable formula of first-order predicate logic has a model with a countable universe.

Proof Let F_0 be a formula with free variables x_1, \ldots, x_n for $n \ge 0$. Define $F := \exists x_1 \ldots \exists x_n F_0$ and observe that F_0 has a model with universe U iff F has a model with universe U.

Let G be closed formula in Skolem form equisatisfiable with F as produced by the Normal Form transformations starting with F. Fact: Every model of G is a model of F.

 F_0 satisfiable \Rightarrow F satisfiable

- \Rightarrow *G* satisfiable
- \Rightarrow G has a Herbrand model
- \Rightarrow F has a model with universe T(G)
- \Rightarrow F_0 has a model with universe T(G)
- $\Rightarrow F_0 \text{ has a model with countable universe}$ (T(G) is countable)

Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models