First-Order Logic Normal Forms

We return to the abbreviations used in connection with resolution:

- $F_1 \rightarrow F_2$ abbreviates $\neg F_1 \lor F_2$
 - \top abbreviates $P_1^0 \lor \neg P_1^0$
 - \perp abbreviates $P_1^0 \land \neg P_1^0$

Substitutions are mappings from variables to terms.

Substitutions are mappings from variables to terms.

• By [t/x] we denote the substitution that replaces x by t.

- Substitutions are mappings from variables to terms.
- By [t/x] we denote the substitution that replaces x by t.
- ► The notation F[t/x] ("F with t for x") denotes the result of replacing all FREE occurrences of x in F by t.

- Substitutions are mappings from variables to terms.
- By [t/x] we denote the substitution that replaces x by t.
- The notation F[t/x] ("F with t for x") denotes the result of replacing all free occurrences of x in F by t.

Example: $(\forall x \ P(x) \land Q(x))[f(y)/x] = \forall x \ P(x) \land Q(f(y))$

- Substitutions are mappings from variables to terms.
- By [t/x] we denote the substitution that replaces x by t.
- The notation F[t/x] ("F with t for x") denotes the result of replacing all free occurrences of x in F by t.
 For each of the p(x) & Q(x) [f(x) / x] = Y(x, P(x)) & Q(f(x))

Example: $(\forall x \ P(x) \land Q(x))[f(y)/x] = \forall x \ P(x) \land Q(f(y))$

 Similarly for subsitutions in terms: u[t/x] is the result of replacing x by t in term u. Example: (f(x))[g(x)/x] = f(g(x))
 If a term t of F contains a bound occurrence of a variable, substitution may lead to variable capture:

 $(\forall x \ P(x,y))[f(x)/y] = \forall x \ P(x,f(x))$ Variable capture must be avoided

Substitution lemmas

Lemma

 $\mathcal{A}(u[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(u).$

Proof by structural induction on *u*.

Substitution lemmas

Lemma

 $\mathcal{A}(u[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(u).$

Proof by structural induction on *u*.

Lemma (Substitution Lemma) If t contains no variable bound in F then

 $\mathcal{A}(F[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(F).$

Proof by structural induction on F with the help of the lemma on terms.

Warning

The notation .[./.] is heavily overloaded:

```
Substitution in syntactic objects

F[G/A] in propositional logic

F[t/x]

u[t/x] where u is a term
```

Function update

 $\mathcal{A}[v/A]$ where \mathcal{A} is a propositional assignment $\mathcal{A}[d/x]$ where \mathcal{A} is a structure and $d \in U_{\mathcal{A}}$

Transform any formula F of length m into a closed formula

 $\forall x_1 \dots \forall x_n G$ where G is quantifier-free,

of lengt O(m) that is equisatisfiable with F.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and all quantifiers in the formula bind different variables.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and all quantifiers in the formula bind different variables.

Lemma

Let F = Qx G be a formula where $Q \in \{\forall, \exists\}$. Let y be a variable that does not occur in G. Then $F \equiv Qy G[y/x]$.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and all quantifiers in the formula bind different variables.

Lemma

Let F = Qx G be a formula where $Q \in \{\forall, \exists\}$. Let y be a variable that does not occur in G. Then $F \equiv Qy G[y/x]$.

Lemma

Every formula is equivalent to a rectified formula.

Example

 $\forall x \ P(x,y) \land \exists x \exists y \ Q(x,y) \ \equiv \ \forall x' \ P(x',y) \land \exists x \exists y' \ Q(x,y')$

Prenex form

Definition

A formula is in prenex form if it has the form

 $Q_1y_1\ldots Q_ny_n F$

where $Q_i \in \{\exists, \forall\}$, $n \ge 0$, and F is quantifier-free.

Prenex form

Theorem

Every formula is equivalent to a rectified formula in prenex form (a formula in **RPF**).

Prenex form

Theorem

Every formula is equivalent to a rectified formula in prenex form (a formula in **RPF**).

Proof First construct an equivalent rectified formula. Then pull the quantifiers to the front using the following equivalences from left to right as long as possible:

$$\neg \forall x F \equiv \exists x \neg F$$

$$\neg \exists x F \equiv \forall x \neg F$$

$$Qx F \land G \equiv Qx (F \land G)$$

$$F \land Qx G \equiv Qx (F \land G)$$

$$Qx F \lor G \equiv Qx (F \lor G)$$

$$F \lor Qx G \equiv Qx (F \lor G)$$

For the last four rules note that the formula is rectified!

The Skolem form of a formula F in RPF is the result of applying the following algorithm to F:

while F contains an existential quantifier do

Let $F = \forall y_1 \forall y_2 \dots \forall y_n \exists z G$

(the block of universal quantifiers may be empty)

Let f be a fresh function symbol of arity n that does not occur in F.

$$F := \forall y_1 \forall y_2 \dots \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z]$$

i.e. remove the outermost existential quantifier in F and replace every occurrence of z in G by $f(y_1, y_2, \ldots, y_n)$

Example

 $\exists x \,\forall y \,\exists z \,\forall u \,\exists v \, P(x, y, z, u, v) \equiv$

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$			

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x		

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	х	

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	x	х

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	х	x	х
$\exists x \exists y (C(y) \lor B(x,y))$			

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	х	х
$\exists x \exists y (C(y) \lor B(x,y))$	x		

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	х	x
$\exists x \exists y (C(y) \lor B(x,y))$	x	х	

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	х	х	x
$\exists x \exists y (C(y) \lor B(x, y))$	х	х	
$\neg \exists x \ C(x) \leftrightarrow \forall x \neg C(x)$			

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	х	x
$\exists x \exists y (C(y) \lor B(x, y))$	x	х	
$\neg \exists x \ C(x) \leftrightarrow \forall x \neg C(x)$			
$\forall x (C(x) ightarrow S(x)) ightarrow \forall y (\neg C(y) ightarrow \neg S(y))$			

	R	Ρ	S
$\forall x (T(x) \lor C(x) \lor D(x))$	x	х	x
$\exists x \exists y (C(y) \lor B(x,y))$	x	x	
$\neg \exists x \ C(x) \leftrightarrow \forall x \neg C(x)$			
$\forall x (C(x) ightarrow S(x)) ightarrow \forall y (\neg C(y) ightarrow \neg S(y))$	x		

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$.

1. $F' \models F$, that is, every model of F' is a model of F.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$.

1. $F' \models F$, that is, every model of F' is a model of F.

Assume A is suitable for F' and A(F') = 1.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$.

1. $F' \models F$, that is, every model of F' is a model of F.

Assume A is suitable for F' and A(F') = 1.

 \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y](G[f(y)/z]) = 1$

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 1. $F' \models F$, that is, every model of F' is a model of F. Assume \mathcal{A} is suitable for F' and $\mathcal{A}(F') = 1$. \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y](G[f(y)/z]) = 1$ \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y][f^{\mathcal{A}}(u)/z](G) = 1$

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$. 1. $F' \models F$, that is, every model of F' is a model of F. Assume \mathcal{A} is suitable for F' and $\mathcal{A}(F') = 1$. \Rightarrow for all $u \in U_A$, $\mathcal{A}[u/y](G[f(y)/z]) = 1$ \Rightarrow for all $u \in U_A$, $\mathcal{A}[u/v][f^{\mathcal{A}}(u)/z](G) = 1$ \Rightarrow for all $u \in U_A$ there is a $v \in U_A$ s.t. $\mathcal{A}[u/v][v/z](G) = 1$ \Rightarrow for all $u \in U_A$, $\mathcal{A}(\exists z G) = 1$ $\Rightarrow \mathcal{A}(\forall v \exists z G) = 1$

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$.

2. If F has a model, so does F'Assume A is suitable for F and A(F) = 1.

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$.

2. If F has a model, so does F'Assume A is suitable for F and A(F) = 1. W.I.o.g. A does not define f (because f is new).

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 2. If F has a model, so does F'Assume \mathcal{A} is suitable for F and $\mathcal{A}(F) = 1$. W.I.o.g. \mathcal{A} does not define f (because f is new). \Rightarrow for all $u \in U_{\mathcal{A}}$ there is $v \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u/y][v/z](G) = 1$ (*)

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$. 2. If *F* has a model, so does *F'* Assume *A* is suitable for *F* and A(F) = 1. W.I.o.g. *A* does not define *f* (because *f* is new). \Rightarrow for all $u \in U_A$ there is $v \in U_A$ s.t. A[u/y][v/z](G) = 1 (*) Let *A'* be *A* extended with a definition of *f*: $f^{A'}(u) := v$, where *v* is chosen as in (*).

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Show: Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z G$ and $F' = \forall y G[f(y)/z]$. 2. If F has a model, so does F'Assume \mathcal{A} is suitable for F and $\mathcal{A}(F) = 1$. W.l.o.g. \mathcal{A} does not define f (because f is new). \Rightarrow for all $u \in U_A$ there is $v \in U_A$ s.t. $\mathcal{A}[u/y][v/z](G) = 1$ (*) Let \mathcal{A}' be \mathcal{A} extended with a definition of $f: f^{\mathcal{A}'}(u) := v$, where v is chosen as in (*). $\Rightarrow \mathcal{A}'(F') = 1$ because for all $u \in U_{\mathcal{A}}$: $\mathcal{A}'[u/y](G[f(y)/z]) = \mathcal{A}'[u/y][f^{\mathcal{A}'[u/y]}(u)/z](G)$ (subs. lemma) $= \mathcal{A}'[u/v][f^{\mathcal{A}'}(u)/z](G)$ (def. of \mathcal{A}') $= \mathcal{A}'[u/v][v/z](G) = 1$ (def. of \mathcal{A}' and (*))

Input: a formula *F*

Output: a rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k G$, where G is quantifier-free, that is equisatisfiable with F.

- **Output:** a rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k G$, where G is quantifier-free, that is equisatisfiable with F.
 - 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.

- **Output:** a rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k G$, where G is quantifier-free, that is equisatisfiable with F.
 - 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
 - 2. Let y_1, y_2, \ldots, y_n be the variables occurring free in F_1 . Produce the formula $F_2 = \exists y_1 \exists y_2 \ldots \exists y_n F_1$. F_2 is equisatisfiable with F_1 , rectified and closed.

- **Output:** a rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k G$, where G is quantifier-free, that is equisatisfiable with F.
 - 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
 - 2. Let y_1, y_2, \ldots, y_n be the variables occurring free in F_1 . Produce the formula $F_2 = \exists y_1 \exists y_2 \ldots \exists y_n F_1$. F_2 is equisatisfiable with F_1 , rectified and closed.
 - 3. Produce a formula F_3 in RPF equivalent to F_2 .

- **Output:** a rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k G$, where G is quantifier-free, that is equisatisfiable with F.
 - 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
 - 2. Let y_1, y_2, \ldots, y_n be the variables occurring free in F_1 . Produce the formula $F_2 = \exists y_1 \exists y_2 \ldots \exists y_n F_1$. F_2 is equisatisfiable with F_1 , rectified and closed.
 - 3. Produce a formula F_3 in RPF equivalent to F_2 .
 - 4. Eliminate the existential quantifiers in F_3 by transforming F_3 into its Skolem form F_4 . The formula F_4 is equisatisfiable with F_3 .

Exercise

Convert into Skolem form $F = \forall x P(y, f(x, y)) \lor \neg \forall y Q(g(x), y)$