
First-Order Predicate Logic

Basics

1

Syntax of predicate logic: terms

A variable is a symbol of the form xi where i = 1, 2, 3

A function symbol is of the form f ki where i = 1, 2, 3 . . . and
k = 0, 1, 2

A predicate symbol is of the form Pk
i where i = 1, 2, 3 . . . and

k = 0, 1, 2

We call i the index and k the arity of the symbol. Function

symbols of arity 0 are called constant symbols.
Instead of f 0i () we write f 0i .

Terms are inductively defined as follows:

1. Variables are terms.

2. If f is a function symbol of arity k and t1, . . . , tk are terms
then f (t1, . . . , tk) is a term.

2

Syntax of predicate logic: terms

A variable is a symbol of the form xi where i = 1, 2, 3

A function symbol is of the form f ki where i = 1, 2, 3 . . . and
k = 0, 1, 2

A predicate symbol is of the form Pk
i where i = 1, 2, 3 . . . and

k = 0, 1, 2

We call i the index and k the arity of the symbol. Function

symbols of arity 0 are called constant symbols.
Instead of f 0i () we write f 0i .

Terms are inductively defined as follows:

1. Variables are terms.

2. If f is a function symbol of arity k and t1, . . . , tk are terms
then f (t1, . . . , tk) is a term.

2

Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t1, . . . , tk are terms then
P(t1, . . . , tk) is an atomic formula.
If k = 0 we write P instead of P().

Formulas (of predicate logic) are inductively defined as follows:

▶ Every atomic formula is a formula.

▶ If F is a formula, then ¬F is also a formula.

▶ If F and G are formulas,
then F ∧ G , F ∨ G and F → G are also formulas.

▶ If x is a variable and F is a formula,
then ∀x F and ∃x F are also formulas.
The symbols ∀ and ∃ are called the universal and the
existential quantifier.

3

Syntax trees and subformulas

Syntax trees are defined as before, extended with the following
trees for ∀xF and ∃xF :

∀x ∃x
| |
F F

Subformulas again correspond to subtrees.

4

Sructural induction of formulas

Like for propositional logic but

▶ Different base case: P(P(t1, . . . , tk))

▶ Two new induction steps:

prove P(∀x F) under the induction hypothesis P(F)
prove P(∃x F) under the induction hypothesis P(F)

5

Naming conventions

x , y , z , . . . instead of x1, x2, x3, . . .

a, b, c , . . . for constant symbols

f , g , h, . . . for function symbols of arity > 0

P,Q,R, . . . instead of Pk
i

6

Precedence of quantifiers

Quantifiers have the same precedence as ¬

Example

∀x P(x) ∧ Q(x) abbreviates (∀x P(x)) ∧ Q(x)
not ∀x (P(x) ∧ Q(x))

Similarly for ∨ etc.

[This convention is not universal]

7

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic
subformula of F .

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula
of F of the form ∃xG or ∀xG ; the smallest such subformula is the
scope of the occurrence.
Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

∀x P(x) → ∃y Q(a, x , y)

8

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic
subformula of F .

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula
of F of the form ∃xG or ∀xG ; the smallest such subformula is the
scope of the occurrence.
Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

∀x P(x) → ∃y Q(a, x , y)

8

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic
subformula of F .

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula
of F of the form ∃xG or ∀xG ; the smallest such subformula is the
scope of the occurrence.
Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

∀x P(x) → ∃y Q(a, x , y)

8

Exercise

Closed?

∀x P(a)

Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y))

Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y)

N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x)

Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x))

N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x))

N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x))

Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x))

N

9

Exercise

Closed?

∀x P(a) Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x) → ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x) → ∃x Q(x , f (x)) N

Formula?

∃x P(f (x)) Y

∃f P(f (x)) N

9

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA)
where UA is an arbitrary, nonempty set called the universe of A,
and the interpretation IA is a partial function that maps

▶ variables to elements of the universe UA,

▶ function symbols of arity k to functions of type Uk
A → UA,

▶ predicate symbols of arity k to functions of type Uk
A → {0, 1}

(predicates) [or equivalently to subsets of Uk
A (relations)]

IA maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

▶ constant symbols are mapped to elements of UA,

▶ predicate symbols of arity 0 are mapped to {0, 1}.

10

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA)
where UA is an arbitrary, nonempty set called the universe of A,
and the interpretation IA is a partial function that maps

▶ variables to elements of the universe UA,

▶ function symbols of arity k to functions of type Uk
A → UA,

▶ predicate symbols of arity k to functions of type Uk
A → {0, 1}

(predicates) [or equivalently to subsets of Uk
A (relations)]

IA maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

▶ constant symbols are mapped to elements of UA,

▶ predicate symbols of arity 0 are mapped to {0, 1}.

10

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA)
where UA is an arbitrary, nonempty set called the universe of A,
and the interpretation IA is a partial function that maps

▶ variables to elements of the universe UA,

▶ function symbols of arity k to functions of type Uk
A → UA,

▶ predicate symbols of arity k to functions of type Uk
A → {0, 1}

(predicates) [or equivalently to subsets of Uk
A (relations)]

IA maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

▶ constant symbols are mapped to elements of UA,

▶ predicate symbols of arity 0 are mapped to {0, 1}.

10

Abbreviations:

xA abbreviates IA(x)

f A abbreviates IA(f)

PA abbreviates IA(P)

Example

UA = N
IA(P) = PA = {(m, n) | m, n ∈ N and m < n}
IA(Q) = QA = {m | m ∈ N and m is prime}
IA(f) is the successor function: f A(n) = n + 1

IA(g) is the addition function: gA(m, n) = m + n

IA(a) = aA = 2

IA(z) = zA = 3

Intuition: is ∀x P(x , f (x)) ∧ Q(g(a, z)) true in this structure?

11

Abbreviations:

xA abbreviates IA(x)

f A abbreviates IA(f)

PA abbreviates IA(P)

Example

UA = N
IA(P) = PA = {(m, n) | m, n ∈ N and m < n}
IA(Q) = QA = {m | m ∈ N and m is prime}
IA(f) is the successor function: f A(n) = n + 1

IA(g) is the addition function: gA(m, n) = m + n

IA(a) = aA = 2

IA(z) = zA = 3

Intuition: is ∀x P(x , f (x)) ∧ Q(g(a, z)) true in this structure?

11

Evaluation of a term in a structure

Definition
Let t be a term and let A = (UA, IA) be a structure.
A is suitable for t if IA is defined for all variables and function
symbols occurring in t.

The value of a term t in a suitable

structure A, denoted by A(t), is defined recursively:

A(x) =xA

A(c) =cA

A(f (t1, . . . , tk)) =f A(A(t1), . . . ,A(tk))

Definition
Let F be a formula and let A = (UA, IA) be a structure.
A is suitable for F if IA is defined for all predicate and function
symbols occurring in F and for all variables occurring free in F .

12

Evaluation of a term in a structure

Definition
Let t be a term and let A = (UA, IA) be a structure.
A is suitable for t if IA is defined for all variables and function
symbols occurring in t. The value of a term t in a suitable

structure A, denoted by A(t), is defined recursively:

A(x) =xA

A(c) =cA

A(f (t1, . . . , tk)) =f A(A(t1), . . . ,A(tk))

Definition
Let F be a formula and let A = (UA, IA) be a structure.
A is suitable for F if IA is defined for all predicate and function
symbols occurring in F and for all variables occurring free in F .

12

Evaluation of a formula in a structure

Suitable structures for ∀x(P(x) → ∃yQ(x , y))

A1 = (U1, I1)
U1 = N
PA1 = 2N
QA1 = {(n,m) | n +m = 5}

A2 = (U2, I2)
U2 = {0, 1, 2}
PA2 = {0}
QA2 = {(n,m) | n ≤ m}

A3 = (U3, I3)
U3 = {a, b}
PA3 = {a}
QA3 = {(a, b), (b, a), (b, b)}

A4 = (U4, I4)
U4 = N
PA4 = ∅
QA4 = ∅

13

Evaluation of a formula in a structure

Let A be suitable for F . The (truth) value of F in A, denoted by
A(F), is defined recursively:

A(¬F), A(F ∧ G), A(F ∨ G), A(F → G)
as for propositional logic.

A(P(t1, . . . , tk)) =

{
1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise

A(∀x F) =

{
1 if for every d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A(∃x F) =

{
1 if for some d ∈ UA, (A[d/x])(F) = 1
0 otherwise

Recall: A[d/x] coincides with A except xA[d/x] = d .

14

Evaluation of a formula in a structure

Let A be suitable for F . The (truth) value of F in A, denoted by
A(F), is defined recursively:

A(¬F), A(F ∧ G), A(F ∨ G), A(F → G)
as for propositional logic.

A(P(t1, . . . , tk)) =

{
1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise

A(∀x F) =

{
1 if for every d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A(∃x F) =

{
1 if for some d ∈ UA, (A[d/x])(F) = 1
0 otherwise

Recall: A[d/x] coincides with A except xA[d/x] = d .

14

Notes

▶ During the evaluation of a formulas in a structure, the
structure stays unchanged except for the interpretation of the
variables.

▶ If the formula is closed, the initial interpretation of the
variables is irrelevant.

15

Coincidence Lemma

Lemma
Let A and A′ be two structures that coincide on all free variables,
on all function symbols and all predicate symbols that occur in F .
Then A(F) = A′(F).

Proof.
Exercise.

16

Relation to propositional logic

▶ Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

▶ Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b))

can be viewed as the propositional formula

F ′ = A1 ∨ ¬A2 ∧ A3 .

17

Relation to propositional logic

▶ Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

▶ Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b))

can be viewed as the propositional formula

F ′ = A1 ∨ ¬A2 ∧ A3 .

17

Relation to propositional logic

▶ Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

▶ Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b))

can be viewed as the propositional formula

F ′ = A1 ∨ ¬A2 ∧ A3 .

17

Relation to propositional logic

▶ Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

▶ Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b))

can be viewed as the propositional formula

F ′ = A1 ∨ ¬A2 ∧ A3 .

17

Predicate logic with equality

Predicate logic
+

distinguished predicate symbol “=” of arity 2

Semantics: A structure A of predicate logic with equality always
maps the predicate symbol = to the identity relation:

A(=) = {(d , d) | d ∈ UA}

18

Formalizing statements

“Formalizing” a statement in predicate logic means to give a
formula F and a structure A such that “the meaning of F in A
corresponds to the statement.” More prcisely: every structure that
extends A is a model of F .

Intuitively, the symbols interpreted in A are those that the
formalizer assumes are known by whoever is going to read the
formula. F may contain other symbols, but then F must define
what they mean (see next slides).

Typically, the formalizer chooses names for the symbols that
suggest their meaning. The structure is often omitted, because it
is assumed to be known (danger!).

We give different formalizations of the statement

There are infinitely many prime numbers

19

Formalizing statements

“Formalizing” a statement in predicate logic means to give a
formula F and a structure A such that “the meaning of F in A
corresponds to the statement.” More prcisely: every structure that
extends A is a model of F .

Intuitively, the symbols interpreted in A are those that the
formalizer assumes are known by whoever is going to read the
formula. F may contain other symbols, but then F must define
what they mean (see next slides).

Typically, the formalizer chooses names for the symbols that
suggest their meaning. The structure is often omitted, because it
is assumed to be known (danger!).

We give different formalizations of the statement

There are infinitely many prime numbers

19

Formalizing statements

“Formalizing” a statement in predicate logic means to give a
formula F and a structure A such that “the meaning of F in A
corresponds to the statement.” More prcisely: every structure that
extends A is a model of F .

Intuitively, the symbols interpreted in A are those that the
formalizer assumes are known by whoever is going to read the
formula. F may contain other symbols, but then F must define
what they mean (see next slides).

Typically, the formalizer chooses names for the symbols that
suggest their meaning. The structure is often omitted, because it
is assumed to be known (danger!).

We give different formalizations of the statement

There are infinitely many prime numbers

19

Formalizing statements

“Formalizing” a statement in predicate logic means to give a
formula F and a structure A such that “the meaning of F in A
corresponds to the statement.” More prcisely: every structure that
extends A is a model of F .

Intuitively, the symbols interpreted in A are those that the
formalizer assumes are known by whoever is going to read the
formula. F may contain other symbols, but then F must define
what they mean (see next slides).

Typically, the formalizer chooses names for the symbols that
suggest their meaning. The structure is often omitted, because it
is assumed to be known (danger!).

We give different formalizations of the statement

There are infinitely many prime numbers

19

Formalization I

If the meanings of “prime” and “‘greater-than” are known, then
we can take:

F1: ∀x ∃y (Pr(y) ∧ y > x)

A1: UA1 = N

PrA1 = {n ∈ N | n is prime}

>A1 = {(n,m) ∈ N | n > m}

What if the meaning of “prime” is not known?

20

Formalization I

If the meanings of “prime” and “‘greater-than” are known, then
we can take:

F1: ∀x ∃y (Pr(y) ∧ y > x)

A1: UA1 = N

PrA1 = {n ∈ N | n is prime}

>A1 = {(n,m) ∈ N | n > m}

What if the meaning of “prime” is not known?

20

Formalization II

If the meaning of “divides” and “one” are known, then we can
take:

F2: ∀x (Pr(x) ↔ ∀y (Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A2: UA2 = N

DvA2 = {(n,m) ∈ N | n divides m}

>A2 = {(n,m) ∈ N | n > m}

oneA2 = 1

We are now stating “ if we define prime numbers as . . . then there
are infinitely many prime numbers”.

What if the meaning of “divides” is not known?

21

Formalization II

If the meaning of “divides” and “one” are known, then we can
take:

F2: ∀x (Pr(x) ↔ ∀y (Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A2: UA2 = N

DvA2 = {(n,m) ∈ N | n divides m}

>A2 = {(n,m) ∈ N | n > m}

oneA2 = 1

We are now stating “ if we define prime numbers as . . . then there
are infinitely many prime numbers”.

What if the meaning of “divides” is not known?

21

Formalization III

If the meaning of “product” is known , then we can take

F3: ∀x ∀y (Dv(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

(the conjunction of the first two formulas implies the third)

A3: UA3 = N

>A3 = {(n,m) ∈ N | n > m}

oneA3 = 1

prodA3(n,m) = n ·m

What if the meaning of “product” is not known ?

22

Formalization III

If the meaning of “product” is known , then we can take

F3: ∀x ∀y (Dv(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

(the conjunction of the first two formulas implies the third)

A3: UA3 = N

>A3 = {(n,m) ∈ N | n > m}

oneA3 = 1

prodA3(n,m) = n ·m

What if the meaning of “product” is not known ?

22

Formalization IV

If the meaning of “sum”, “successor”, “one” and “zero” is known,
then we can take

F4: ∀x prod(x , zero) = zero

∧ ∀x ∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Dv(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A4 only defines >, sum, succ , one, zero.

Observe: prod is defined inductively. The definition is no longer a
macro, in the sense that we cannot produce an “equivalent”
formula without the symbol prod .

What if the meaning of “sum” is not known?

23

Formalization IV

If the meaning of “sum”, “successor”, “one” and “zero” is known,
then we can take

F4: ∀x prod(x , zero) = zero

∧ ∀x ∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Dv(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Dv(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A4 only defines >, sum, succ , one, zero.

Observe: prod is defined inductively. The definition is no longer a
macro, in the sense that we cannot produce an “equivalent”
formula without the symbol prod .

What if the meaning of “sum” is not known?

23

Formalization V

F5: ∀x sum(x , zero) = x

∧ ∀x ∀y sum(x , succ(y)) = succ(sum(x , y))

∧ ∀x prod(x , zero) = zero

∧ ∀x ∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Div(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Div(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A5 only defines >, succ , one, zero.

What if the meaning of ‘greater than” and “one” is not known?

24

Formalization V

F5: ∀x sum(x , zero) = x

∧ ∀x ∀y sum(x , succ(y)) = succ(sum(x , y))

∧ ∀x prod(x , zero) = zero

∧ ∀x ∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Div(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Div(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A5 only defines >, succ , one, zero.

What if the meaning of ‘greater than” and “one” is not known?

24

Formalization VI

F6: one = succ(zero)

∧ ∀x ∀y (x > y ↔ ∃z ¬(z = zero) ∧ sum(y , z) = x)

∧ ∀x sum(x , zero) = x

∧ ∀x ∀y sum(x , succ(y)) = succ(sum(x , y))

∧ ∀x prod(x , zero) = zero

∧ ∀x ∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Div(x , y) ↔ ∃z prod(x , z) = y)

∧ ∀x (Pr(x) ↔ (∀y Div(y , x) → (y = x ∨ y = one)))

→ ∀x ∃y (Pr(y) ∧ y > x)

A6 only defines succ , zero.

25

Model, validity, satisfiability
Like in propositional logic

Definition
We write A |= F to denote that the structure A is suitable for the
formula F and that A(F) = 1.
Then we say that F is true in A or that A is a model of F .

If every structure suitable for F is a model of F ,
then we write |= F and say that F is valid.

If F has at least one model then we say that F is satisfiable.

26

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a)

x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a))

x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x)

x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x)

x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x)

x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y)

x

27

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a) x

∃x (¬P(x) ∨ P(a)) x

P(a) → ∃x P(x) x

P(x) → ∃x P(x) x

∀x P(x) → ∃x P(x) x

∀x P(x) ∧ ¬∀y P(y) x

27

Consequence and equivalence
Like in propositional logic

Definition
A formula G is a consequence of a set of formulas M
if every structure that is a model of all F ∈ M and suitable for G
is also a model of G . Then we write M |= G .

Two formulas F and G are (semantically) equivalent
if every structure A suitable for both F and G satisfies
A(F) = A(G). Then we write F ≡ G .

28

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2

x

2 |= 3 x

3 |= 1 x

29

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2 x

2 |= 3 x

3 |= 1 x

29

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2 x

2 |= 3

x

3 |= 1 x

29

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2 x

2 |= 3 x

3 |= 1 x

29

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2 x

2 |= 3 x

3 |= 1

x

29

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2 x

2 |= 3 x

3 |= 1 x

29

Exercise

1. ∃y ∀x P(x , y)
2. ∀x ∃y P(x , y)

Y N

1 |= 2

x

2 |= 1 x

30

Exercise

1. ∃y ∀x P(x , y)
2. ∀x ∃y P(x , y)

Y N

1 |= 2 x

2 |= 1 x

30

Exercise

1. ∃y ∀x P(x , y)
2. ∀x ∃y P(x , y)

Y N

1 |= 2 x

2 |= 1

x

30

Exercise

1. ∃y ∀x P(x , y)
2. ∀x ∃y P(x , y)

Y N

1 |= 2 x

2 |= 1 x

30

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F

x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F

x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F

x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G)

x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G)

x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G)

x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G)

x

31

Exercise

Y N

∀x ∀y F ≡ ∀y ∀x F x

∀x ∃y F ≡ ∃x ∀y F x

∃x ∃y F ≡ ∃y ∃x F x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G) x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G) x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G) x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G) x

31

Exercise

Y N

P(x) ≡ ∃x P(x)

x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x)

x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x)

x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y)

x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x)

x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x)

x

32

Exercise

Y N

P(x) ≡ ∃x P(x) x

P(x) ≡ ∀x P(x) x

P(a) ≡ P(x) x

P(x) ≡ P(y) x

∀x ∀y P(y) ≡ ∀x P(x) x

∃x ∀y P(y) ≡ ∀x P(x) x

32

Equivalences

Theorem

1. ¬∀x F ≡ ∃x ¬F
¬∃x F ≡ ∀x ¬F

2. If x does not occur free in G then:
∀x F ∧ G ≡ ∀x (F ∧ G)
∀x F ∨ G ≡ ∀x (F ∨ G)
∃x F ∧ G ≡ ∃x (F ∧ G)
∃x F ∨ G ≡ ∃x (F ∨ G)

3. ∀x F ∧ ∀x G ≡ ∀x (F ∧ G)
∃xF ∨ ∃xG ≡ ∃x(F ∨ G)

4. ∀x ∀y F ≡ ∀y ∀x F
∃x ∃y F ≡ ∃y ∃x F

33

Replacement theorem

Just like for propositional logic it can be proved:

Theorem
Let F ≡ G . Let H be a formula with an occurrence of F as a
subformula. Then H ≡ H ′, where H ′ is the result of replacing an
arbitrary occurrence of F in H by G .

34

