Hilbert Systems Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Easy to define, hard to use. No context management.

Hilbert systems and proof trees

A Hilbert system for propositional logic consists of

- a set of axioms axioms (formulas over formula variables)
- ▶ and a single inference rule, $\rightarrow E$ or modus ponens:

$$\frac{F \to G \quad F}{G} \quad \to E$$

Nodes of a proof tree are (labeled with) formulas.

Proof trees are defined inductively:

- Every formula *F* is a proof tree.
- Larger proof trees are constructed using $\rightarrow E$ (and $\rightarrow E$ only).

 $\Gamma \vdash_{H} F$ denotes that there is a proof tree with root F whose leaves are either instances of axioms or elements of Γ (assumptions).

Alternative presentation

Proofs in Hilbert systems are frequently shown as lists of lines

_	justification ₁
2: F ₂	justification ₂
:	
1: F _i	justification _i
:	
n: F _n	justification _n
,	
[assumption,
where <i>justification</i> _i is either $\begin{cases} assumption, \\ axiom, \\ \rightarrow E (j, k), \text{ with } j, k < i. \end{cases}$	
l	ightarrow E(j,k), with $j,k < i$.

Notational convention:

$$F \to G \to H \quad \text{means} \quad F \to (G \to H)$$

Note:
$$F \to G \to H \equiv F \land G \to H$$
$$F \to G \to H \not\equiv (F \to G) \to H$$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

A proof of $A \rightarrow A$:

- 1:
- 2 :
- 3 :
- 4:

 $5: A \rightarrow A$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

1:
2:
3:
$$\longrightarrow A \rightarrow A$$

4: $_$
5: $A \rightarrow A$

 $\rightarrow E:3,4$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

A proof of $A \rightarrow A$:

1 : 2 : 3 : $(A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A$ 4 : $A \rightarrow A \rightarrow A$ 5 : $A \rightarrow A$

 $\rightarrow E:3,4$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

A proof of $A \rightarrow A$:

1: 2: 3: $(A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A$ 4: $A \rightarrow A \rightarrow A$ 5: $A \rightarrow A$ A1 $\rightarrow E: 3, 4$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

$$1: _ \rightarrow (A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A$$

$$2: _ _$$

$$3: (A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A \qquad \rightarrow E: 2, 1$$

$$4: A \rightarrow A \rightarrow A \qquad \qquad A1$$

$$5: A \rightarrow A \qquad \qquad \rightarrow E: 3, 4$$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

$$1: (A \to (A \to A) \to A) \to (A \to A \to A) \to A \to A$$

$$2: A \to (A \to A) \to A$$

$$3: (A \to A \to A) \to A \to A \qquad \rightarrow E: 2, 1$$

$$4: A \to A \to A \qquad \qquad A1$$

$$5: A \to A \qquad \qquad \rightarrow E: 3, 4$$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

$$1: (A \to (A \to A) \to A) \to (A \to A \to A) \to A \to A$$
 A2

$$2: A \to (A \to A) \to A$$
 A1

$$3: (A \to A \to A) \to A \to A \qquad \rightarrow E: 2, 1$$

$$4: A \to A \to A$$
 A1

$$5: A \to A \qquad \rightarrow E: 3, 4$$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

A proof of $A \rightarrow A$:

$$1: (A \to (A \to A) \to A) \to (A \to A \to A) \to A \to A$$
 A2

$$2: A \to (A \to A) \to A$$
 A1

$$3: (A \to A \to A) \to A \to A \qquad \rightarrow E: 2, 1$$

$$4: A \to A \to A$$
 A1

$$5: A \to A \qquad \rightarrow E: 3, 4$$

 $\Rightarrow \vdash_H A \to A$

Axioms:
$$F \to G \to F$$
 (A1)
 $(F \to G \to H) \to (F \to G) \to F \to H$ (A2)

A proof of $A \rightarrow A$:

$$1: (A \to (A \to A) \to A) \to (A \to A \to A) \to A \to A$$
 A2

$$2: A \to (A \to A) \to A$$
 A1

$$3: (A \to A \to A) \to A \to A \qquad \rightarrow E: 2, 1$$

$$4: A \to A \to A$$
 A1

 $5: A \rightarrow A \qquad \rightarrow E: 3, 4$

 $\Rightarrow \vdash_H A \rightarrow A$

Observe: The same proof can be used to derive $F \to F$ for any formula F.

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Leftarrow ": Assume $\Gamma \vdash_H F \to G$. We prove $F, \Gamma \vdash_H G$.

$$\begin{array}{l} \Gamma \vdash_{H} F \to G \\ \Rightarrow \quad F, \Gamma \vdash_{H} F \to G \\ \Rightarrow \quad F, \Gamma \vdash_{H} G \qquad \text{by } \to E \text{ because } F, \Gamma \vdash_{H} F \end{array}$$

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Base: n = 1. Then either $G \in \Gamma \cup \{F\}$ or G is instance of axiom.

- G = F. To prove: $\Gamma \vdash_H F \rightarrow F$. Done earlier.
- $G \in \Gamma$ or instance of axiom.

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Step: n > 1. Assume last $\rightarrow E$ gives G from $H \rightarrow G$ and H.

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Step: n > 1. Assume last $\rightarrow E$ gives G from $H \rightarrow G$ and H.

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Step: n > 1. Assume last $\rightarrow E$ gives G from $H \rightarrow G$ and H.

$$\frac{(F \to H) \to F \to G}{F \to G} \qquad F \to H$$

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Step: n > 1. Assume last $\rightarrow E$ gives G from $H \rightarrow G$ and H.

$$\frac{(F \to H \to G) \to (F \to H) \to F \to G \quad F \to H \to G}{(F \to H) \to F \to G} \qquad F \to H$$

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": Assume $F, \Gamma \vdash_H G$ with a proof of length n. We prove $\Gamma \vdash_H F \rightarrow G$ by induction on n.

Step: n > 1. Assume last $\rightarrow E$ gives G from $H \rightarrow G$ and H.

$$\frac{A2: (F \to H \to G) \to (F \to H) \to F \to G \quad F \to H \to G}{(F \to H) \to F \to G} \qquad F \to H$$

Hilbert System

From now on \vdash_H refers to the following set of axioms:

$$F \to G \to F$$
 (A1)

$$(F \to G \to H) \to (F \to G) \to F \to H$$
 (A2)

$$F \to G \to F \wedge G$$
 (A3)

$$F \wedge G \rightarrow F$$
 (A4)

$$F \wedge G \rightarrow G$$
 (A5)

$$F \to F \lor G$$
 (A6)

$$G \to F \lor G$$
 (A7)

$$F \lor G \to (F \to H) \to (G \to H) \to H$$
 (A8)
 $(\neg F \to \bot) \to F$ (A9)

We prove soundness and completeness.

Relating Hilbert and Natural Deduction

Theorem (Hilbert can simulate ND) If $\Gamma \vdash_N F$ then $\Gamma \vdash_H F$

Proof. Translation in two steps:

$$\vdash_{N} \stackrel{(1)}{\leadsto} \vdash_{H} + \rightarrow I \stackrel{(2)}{\leadsto} \vdash_{H}$$

1. Transform a ND-proof tree into a proof tree containing Hilbert axioms, $\rightarrow E$, and $\rightarrow I$ by replacing all other ND rules by Hilbert proofs with $\rightarrow I$

Principle: ND rule $\rightsquigarrow 1 \operatorname{axiom} + \rightarrow I/E$

2. Eliminate $\rightarrow I$ rules using the Deduction Theorem

Theorem (ND can simulate Hilbert) If $\Gamma \vdash_H F$ then $\Gamma \vdash_N F$

Proof by induction on the length of the Hilbert proof of F.

Every Hilbert axiom is provable in ND (Exercise!).

 \blacktriangleright \rightarrow *E* is also available in ND.

 $Corollary \Gamma \vdash_H F \quad iff \ \Gamma \vdash_N F$

Corollary (Soundness and completeness) $\Gamma \vdash_H F$ iff $\Gamma \models F$