Sequent Calculus
Propositional Logic

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.

Proof rules
S ... S,

S

where S1,...5, and S are sequents: expressions of the form
M= A
with ' and A finite multisets of formulas.

Multiset = set with possibly repeated elements; using sets possible
but less elegant.

Notice: = is just a—suggestive—separator

= A is provable (derivable)
Intention of the calculus: iff

ATEVA (AT — VA valid)

Sequents: Notation

» We use set notation for multisets, e.g. {A,B — C, A}
» Drop{}: Fi,...,Fm = G1,...G,
» F,T abbreviates {F} UT (similarly for A)

» 1,12 abbreviates 1 U, (similarly for A)

Sequent Calculus rules

Tr=a ‘L AT=AA
Ir=ra Fr=4
-F,T=A r=-F,A

F,G,T = A r=FA IT=G,A
Frer=n = FAGA MR
FI=A Gr=aA r=FGA
FVG,T=A v r=FrFve,a '’

[=FA GTl=A F.l=G,A
—R

FoGT=A —L = F—>G,A

Sequent Calculus rules

Intuition: read backwards as proof search rules

Sequent Calculus rules

Intuition: read backwards as proof search rules

Sequent Calculus rules

Intuition: read backwards as proof search rules

Lr=a

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t AT = AL

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t
r=F,A

“Fr=a "

AT = A A

Ax

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t AT = AL
r=FA F.T=A
Fr=>a * = -F.A

—

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t
r=FA
“FT=A

F.G.T = A
AL

FAG,T = A

AT = A A

FIr=4
= -FA

—

Sequent Calculus rules

Intuition: read backwards as proof search rules

I T=A

=54
—~F,T=A

F,G,T = A
FAG,T = A

1L

-L

AT = A A

FIr=4
= -FA

= FA T=G,A

= FAG,A

Ax

—

AR

Sequent Calculus rules

Intuition: read backwards as proof search rules

Lr=a AT=AN ™
Ir=Fr4a Fr=4
Fr=>a * = -FA
FGr=a (= FA [=64A
FAGT=a | = FAG,A A
FIT=A GT=A
VL

FVvGT=A

Sequent Calculus rules

Intuition: read backwards as proof search rules

I T=A

=54
—~F,T=A

F,G,T = A
FAG,T = A

FT=A GT=A

FVvGT=A

1L

-L

AL

AT = A A

FIr=4
= -FA

= FA T=G,A

= FAG,A

= F,G,A
= FVGA

-R

AR

VR

Sequent Calculus rules

Intuition: read backwards as proof search rules

I T=A

=54
—~F,T=A

F,G,T = A
FAG,T = A

FT=A GTl=A
FVvGT=A

N=FA GIT=A
F—GT=A

1L

-L

AL

VL

—L

AT = A A

FIr=4
= -FA

= FA T=G,A

= FAG,A

= F,G,A
= FVGA

-R

AR

VR

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t
Ir=ra
“FTI=A
FGr=a
FAGT=a |

FIT=A Gl=A
FVGT=A Vi

N=FA GIT=A
—L

F—>GT=A

AT = A A

FIr=4
= -FA

= FA T=G,A

= FAG,A

= F,G,A
= FVGA

F.IT=G,A
N=F—G,A

-R

AR

VR

—R

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t AT = AL
r=FrA Fr=4
Froa r—-Fa K
FGr=a (= FA [=64A
FAGT=a | = FAG,A A
FIT=A GTIT=A N=F,GA
FVGT=A Vi r=rfvga 'K
r=FA GI=A , F.lT=6GA R
F—=GT=A - r=F—-GAa

Every rule decomposes its principal formula

= (PVR)AN(QV—-R)—=PVQ

~ PVR)A(QV-R) >PvQ R
F.r =G, A

r—F>ca F

(PVR)A(QV—=R)= PV Q

~ PVRA(QV-R) =PvQ R

F.T=GA

r—F>ca F

(PVR A(Qv-R) =PvQt

~ PVRA(QV-R =PvaQ K

F,G,T = A

Frcr=oa /M

PVR,QV-R=PVQ
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

F,G,T = A

Frcr=oa /M

PVR.QV-R=PvQ "R
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

N=F,GA

r=rfvc.a 'R

PVRQV-R=P.Q
PVR,QV-R=PVvQ "
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

N=F,GA

r=rfvc.a 'R

PVRQV-R=P.Q
PVR,QV-R=PVvQ "
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

F.T=A GTI=A
FVvGT=A

VL

VL

P.QV-R=P,Q R.QV-R=P,Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

L

F.,T=A GIT=A
FVvGT=A

VL

P.QV-R=P,Q ™ R QV-R=P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=AA

VL

P.QV-R=P Q"™ RQV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

L

F.,T=A GIT=A
FVvGT=A

VL

R,QR=P,Q R,-R=P,Q

VL

P.QV-R=P Q"™ RQV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R = PvaQ K

L

L

F.T=A GTI=A
FVvGT=A

VL

RO=P.O™ R-R=PQ

P.QV-R=P,Q "™ R,QV-R= P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=AA

RQG=>PQ™ R-R=pPQ "L

P.QV-R=P Q"™ R QV-R=P.Q vi
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R = PvaQ K

L

L

= FA

Fr=sa

R=R,P,Q

RA=PQ™ R-R=>PQ *

PQV-R=P Q"™ RQV-R=P.Q viL

PVR.QV-R=P,Q L

PVR.QvV-R=PvQ "R
(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

| R:>R,P,QAXL
RQ=P,Q"™™ R -R=P,Q

P.QV-R=P,Q "™ R.QV-R= P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PVvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=>AA

Proof search properties

» For every logical operator (— etc)
there is one left and one right rule

» Every formula in the premise of a rule
is a subformula of the conclusion of the rule.
This is called the subformula property.

= no need to guess anything when applying a rule backward

» Backward rule application terminates
because one operator is removed in each step.

Instances of rules

Definition
An instance of a rule is the result of replacing I' and A by
multisets of concrete formulas and F and G by concrete formulas.

Example

= PAQ,A B
~(PAQ)=AB

is an instance of
M= FA

“FT=A
setting F .=PAQ,T:=0, A:={A B}

Proof trees

Definition (Proof tree)
A proof tree is a tree whose nodes are sequents and where each
parent-children fragment

St ... 5
S

is an instance of a proof rule.
(= all leaves must be instances of axioms)

A sequent S is provable (or derivable) if there is a proof tree with

root S.
We write ¢ S to denote that S is derivable.

Proof trees

An alternative inductive definition of proof trees:

Definition (Proof tree)

If
S5 ... S,
S
is an instance of a proof rule and
there are proof trees Ty,... T, with roots S1,...,5,
then
T, ... T,
S

is a proof tree (with root S).

10

What does I = A “mean”?

Definition

r=al = (Ar-\a)

Example: [{A,B} = {P,Q} =(AAB — PV Q)
Remember: A =T and \/0 =L

In the following slides we prove: ¢ S iff = |S]

11

Soundness

Lemma (Rule Equivalence)
S1 ... S,
S

> |5‘ = ’S]_|/\.../\|Sn’
» |S| is a tautology iff all |S;| are tautologies

For every rule

Proof: Exercise.

Theorem (Soundness of F¢)
If F¢ S then = |S].

Proof by induction on the height of the proof tree for ¢ S.
Tree must end in rule instance
S5 ... S,
S

If n =0 then we vacuously have |= |S;| for all i.
If n> 0 then by IH we also have = |S;| for all i.
So [=|Sj| for all i, hence |= |S| by Rule Equivalence. 12

Proof search = growing a proof tree from the root

To prove completeness we first examine the properties of the
proof search procedure:

» Start from an initial sequent Sp

> At each stage we have some potentially partial proof tree
with unproved leaves

» In each step, pick some unproved leaf S and some rule
instance
S5 ... S,

S

and extend the tree with that rule instance
(creating new unproved leaves Sy, ..., 5S,)

13

Proof search terminates if ...

P there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....Pk= Q... Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PVvQQ=PAQR

14

Proof search terminates if ...

P there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....Pk= Q... Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PVvQQ=PAQR

14

Proof search terminates if ...

P there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....Pk= Q... Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PVQ=PAQ AR

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....Pk= Q... Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PVQ=P PVQ=Q
PVvQQ=PAQR

AR

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....Pk= Q... Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

pvo=p YL —pvo=0
PVQR=PAQR

AR

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

P=Pr Q=P !
PVQ=P PVR=0Q
PVQ=PAQ

R

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PP Q=P

Pva=p "t “PVQ=0
PVQR=PAQ

R

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

PP Q=P

Pva=p "t “PVQ=a
PVQR=PAQ

VL
R

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

P=P™ Q=P P=Q Q=Q

Pva=p "' "PVQ=0
PVQQ=PAQ

VL
R

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

p=p X Q=P , P=Q Q:QC)L(
PvVQ=PFP P\/Q:>Q/\R

PVvQQ=PAQR

14

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

p=p X Q=P , P=Q Q:QC)L(
PvVQ=PFP P\/Q:>Q/\R
PVQR=PAQ

Falsifying assignments?

14

Proof search always terminates

Lemma (Termination)

Proof search terminates from any initial sequent Sg.

Proof

In every step, one logical operator is removed.
= Size of sequent decreases by 1

= Depth of proof tree is bounded by size of Sy
= Construction of proof tree terminates.

Observe: Breadth only bounded by 2572 of %o

15

Proof search preserves equivalence

Lemma (Search Equivalence)

At each stage of the search process,
if S1,...,Sk are the unproved leaves, then |So| = |S1| A ... A |Sk]|

Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

v ... U,
S;
we have
|So| E|51| VAN ‘5,| VANPIRAN |Sk|

(by 1H)
=|S1| A ALSi—1 AU A - AU A |Siga] Ao A Sk

(by Lemma Rule Equivalence)

Completeness

Lemma
If proof search fails, |Sp| is not a tautology.

Proof If proof search fails, there is some unproved leaf
S= Pl,...,Pk:>Q1,...,Q/

where all P;, Q; atoms, no P; = Q; and no P; = L.
Any assignment A with A(P;) =1 (for all i)

and A(Q;) = 0 (for all j) satisfies A(|S]) = 0.
Thus A(|So|) = 0 by Lemma Search Equivalence.

Because of soundness of Fg:

Corollary

Starting with some fixed Sy, proof search cannot both fail (for
some choices) and succeed (for other choices).

= no need for backtracking upon failure!

17

Completeness

Theorem (Completeness)

If = |S| thent¢ S.

Proof by contraposition: if not ¢ S then proof search must fail.
Therefore £ |S|.

Corollary

Proof search is a decision procedure: it always terminates and it
succeeds iff = S.

18

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

F:>F,A r={-F} —|F:>F,A

Fr=a Lt~ TFza

An alternative formulation of the set version:

N{-F} = F,A
~F.T=A

Gentzen used sequences (hence “sequent calculus™)

19

Admissible Rules and Cut Elimination

20

Admissible rules

Definition
A rule
S5 ... S,
S
is admissible if F¢ 51, ..., Fg S, together imply ¢ S.

= Admissible rules can be used in proofs like normal rules

Admissibility of
S5 ... S,
S

can be shown semantically (using ¢ iff =)
by proving that = |S1|, ..., = |Sa| together imply = |S|.

Proof theory is interested in syntactic proofs that show how to
eliminate admissible rules.

21

Cut elimination rule

Theorem (Gentzen's Hauptsatz)
The cut elimination rule

N=FA ILF=A
M= A

cut

is admissible.
Proof Omitted.

Proofs with cut elimination can be much shorter than proofs
without!

But: applying the rule needs creativity! (find the right F)
Intuitively: Proof of Gentzen's theorem shows how to replace
creativity by calculation.

Many applications.

22

