Basic Proof Theory Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

$$\frac{T_1 \quad \dots \quad T_n}{T}$$
 rule-name

where T_1, \ldots, T_n (premises) and T (conclusion) are syntactic objects (eg formulas).

Intuitive reading: If T_1, \ldots, T_n are provable, then T is provable.

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

$$\frac{T_1 \quad \dots \quad T_n}{T}$$
 rule-name

where T_1, \ldots, T_n (premises) and T (conclusion) are syntactic objects (eg formulas).

Intuitive reading: If T_1, \ldots, T_n are provable, then T is provable.

Degenerate case: If n = 0 the rule is called an axiom and the horizontal line is sometimes omitted.

If some U is provable, we write $\vdash U$.

Proof trees

Proofs (also: derivations) are drawn as trees of nested proof rules. Example:

$$\frac{\overline{T_1} \quad \frac{\overline{U}}{\overline{T_2}}}{\frac{S_1}{R}} \quad \frac{\overline{T_3}}{\frac{S_2}{R}}$$

We sometimes omit the names of proof rules in a proof tree if they are obvious or for space reasons. *You* should always show them!

Proof trees

Proofs (also: derivations) are drawn as trees of nested proof rules. Example:

$$\frac{\overline{T_1} \quad \frac{\overline{U}}{\overline{T_2}}}{\underline{S_1} \quad \frac{\overline{T_3}}{\overline{S_2}}}$$

We sometimes omit the names of proof rules in a proof tree if they are obvious or for space reasons. *You* should always show them!

Every fragment

$$\frac{T_1 \quad \dots \quad T_n}{T}$$

of a proof tree must be (an instance of) a proof rule. All proofs must start with axioms.

The depth of a proof tree is the number of rules on the longest branch of the tree. Thus ≥ 1

Abbreviations

Until further notice:

 \perp , \neg , \land , \lor , \rightarrow are primitives.

 \top abbreviates $\neg \bot$

A possible simplification:

 $\neg F \quad \text{abbreviates} \quad F \to \bot$

We now consider three important proof systems:

- Sequent Calculus
- Natural Deduction
- Hilbert Systems