
Propositional Logic

Resolution

1

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

2

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F

until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

2

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

2

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

2

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

2

Resolvent

Definition
Let L be a literal. Then L is defined as follows:

L =

{
¬Ai if L = Ai

Ai if L = ¬Ai

Definition
Let C1, C2 be clauses and let L be a literal
such that L ∈ C1 and L ∈ C2. Then the clause

(C1 − {L}) ∪ (C2 − {L})

is a resolvent of C1 and C2.
The process of deriving the resolvent is called a resolution step.

3

Resolvent

Definition
Let L be a literal. Then L is defined as follows:

L =

{
¬Ai if L = Ai

Ai if L = ¬Ai

Definition
Let C1, C2 be clauses and let L be a literal
such that L ∈ C1 and L ∈ C2. Then the clause

(C1 − {L}) ∪ (C2 − {L})

is a resolvent of C1 and C2.
The process of deriving the resolvent is called a resolution step.

3

Graphical representation of resolvent:

C1 C2

R

If C1 = {L} and C2 = {L} then the empty clause is a resolvent of
C1 and C2. The special symbol □ denotes the empty clause.

Recall: □ represents ⊥.

4

Graphical representation of resolvent:

C1 C2

R

If C1 = {L} and C2 = {L} then the empty clause is a resolvent of
C1 and C2. The special symbol □ denotes the empty clause.

Recall: □ represents ⊥.

4

Resolution proof

Definition
A resolution proof of a clause C from a set of clauses F
is a sequence of clauses C0, . . . ,Cn such that

▶ Ci ∈ F or Ci is a resolvent of two clauses Ca and Cb, a, b < i ,

▶ Cn = C

Then we can write F ⊢Res C .

Note: F can be finite or infinite!

5

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P}

{Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P}

{Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

6

A linear resolution proof

0: {P,Q}
1: {P,¬Q}
2: {¬P,Q}
3: {¬P,¬Q}
4: {P} (0, 1)
5: {Q} (0, 2)
6: {¬P} (3, 5)
7: □ (4, 6)

7

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2.

Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Assume A |= C1 and A |= C2. We show A |= R.
There are two cases:

▶ A |= L. Then A |= C2 − {L} (because A |= C2), thus A |= R.

▶ A ̸|= L. Then A |= C1 − {L} (because A |= C1), thus A |= R.

8

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Assume A |= C1 and A |= C2. We show A |= R.
There are two cases:

▶ A |= L. Then A |= C2 − {L} (because A |= C2), thus A |= R.

▶ A ̸|= L. Then A |= C1 − {L} (because A |= C1), thus A |= R.

8

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Assume A |= C1 and A |= C2. We show A |= R.
There are two cases:

▶ A |= L. Then A |= C2 − {L} (because A |= C2),

thus A |= R.

▶ A ̸|= L. Then A |= C1 − {L} (because A |= C1), thus A |= R.

8

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Assume A |= C1 and A |= C2. We show A |= R.
There are two cases:

▶ A |= L. Then A |= C2 − {L} (because A |= C2), thus A |= R.

▶ A ̸|= L. Then A |= C1 − {L} (because A |= C1),

thus A |= R.

8

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Assume A |= C1 and A |= C2. We show A |= R.
There are two cases:

▶ A |= L. Then A |= C2 − {L} (because A |= C2), thus A |= R.

▶ A ̸|= L. Then A |= C1 − {L} (because A |= C1), thus A |= R.

8

Correctness of resolution

Theorem (Correctness of resolution)

Let F be a set of clauses. If F ⊢Res C then F |= C.

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
We show F |= Ci by induction on i . IH: F |= Cj for all j < i .
There are two cases:

▶ Ci ∈ F .
Then F |= Ci by definition.

▶ Ci is a resolvent of Ca and Cb for a, b < i .
Then F |= Ca and F |= Cb by IH, and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F ⊢Res □ then F is unsatisfiable.

9

Correctness of resolution

Theorem (Correctness of resolution)

Let F be a set of clauses. If F ⊢Res C then F |= C.

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
We show F |= Ci by induction on i . IH: F |= Cj for all j < i .

There are two cases:

▶ Ci ∈ F .
Then F |= Ci by definition.

▶ Ci is a resolvent of Ca and Cb for a, b < i .
Then F |= Ca and F |= Cb by IH, and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F ⊢Res □ then F is unsatisfiable.

9

Correctness of resolution

Theorem (Correctness of resolution)

Let F be a set of clauses. If F ⊢Res C then F |= C.

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
We show F |= Ci by induction on i . IH: F |= Cj for all j < i .
There are two cases:

▶ Ci ∈ F .
Then F |= Ci by definition.

▶ Ci is a resolvent of Ca and Cb for a, b < i .
Then F |= Ca and F |= Cb by IH, and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F ⊢Res □ then F is unsatisfiable.

9

Correctness of resolution

Theorem (Correctness of resolution)

Let F be a set of clauses. If F ⊢Res C then F |= C.

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
We show F |= Ci by induction on i . IH: F |= Cj for all j < i .
There are two cases:

▶ Ci ∈ F .
Then F |= Ci by definition.

▶ Ci is a resolvent of Ca and Cb for a, b < i .
Then F |= Ca and F |= Cb by IH, and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F ⊢Res □ then F is unsatisfiable.

9

Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem); in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F ⊢Res □.

10

Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem);

in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F ⊢Res □.

10

Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem); in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F ⊢Res □.

10

Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem); in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F ⊢Res □.

10

Completeness proof

Corollary

(of the Boole-Shannon expansion) F is unsatisfiable iff F [⊥/A]
and F [⊤/A] are unsatisfiable.

Idea for completeness proof:
If A is an atom of F , then both F [⊥/A] and F [⊤/A] have fewer
atoms than F .

Use Boole-Shannon to prove completeness by induction on the
number of atoms of the unsatisfiable formula F :

▶ construct inductively resolution proofs for F [⊥/A] and
F [⊤/A], and

▶ “combine” them into a resolution proof for F .

11

Inductive construction of resolution proofs

F = { {¬q, s} , {¬p, q, s} , {p} , {r ,¬s} , {¬p,¬r ,¬s} }

▶ Compute inductively proofs for F [⊤/s] and F [⊥/s].

F [⊤/s] ≡ { {p} , {r} , {¬p,¬r} }

F [⊥/s] ≡ { {¬q} , {¬p, q} , {p} }

{p} {r}

□

{¬p,¬r}

{¬r}

{p}

{q}

{q,¬p}

□

{¬q}

12

Inductive construction of resolution proofs

F = { {¬q, s} , {¬p, q, s} , {p} , {r ,¬s} , {¬p,¬r ,¬s} }

▶ Compute inductively proofs for F [⊤/s] and F [⊥/s].

F [⊤/s] ≡ { {p} , {r} , {¬p,¬r} }

F [⊥/s] ≡ { {¬q} , {¬p, q} , {p} }

{p} {r}

□

{¬p,¬r}

{¬r}

{p}

{q}

{q,¬p}

□

{¬q}

12

Inductive construction of resolution proofs
▶ Reintroduce s and ¬s.

F = { {¬q, s} , {¬p, q, s} , {p} , {r ,¬s} , {¬p,¬r ,¬s} }

{p}

{q}

{¬p, q}

□

{¬q} {p} {r}

□

{¬p,¬r}

{¬r}

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {p} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

13

Inductive construction of resolution proofs

▶ Combine the graphs for {s} and {¬s}.

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {p} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

□

14

Completeness proof

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof By induction on the number n of distinct atoms in F .

Basis: If n = 0 then F = {} (but F is unsat.) or F = {□}.
Step:
IH: For every unsat. set of clauses F with n dist. atoms, F ⊢Res □.
Let F contain n + 1 distinct atoms. Pick some atom A in F .

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

15

Completeness proof

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof By induction on the number n of distinct atoms in F .

Basis: If n = 0 then F = {} (but F is unsat.)

or F = {□}.
Step:
IH: For every unsat. set of clauses F with n dist. atoms, F ⊢Res □.
Let F contain n + 1 distinct atoms. Pick some atom A in F .

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

15

Completeness proof

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof By induction on the number n of distinct atoms in F .

Basis: If n = 0 then F = {} (but F is unsat.) or F = {□}.
Step:
IH: For every unsat. set of clauses F with n dist. atoms, F ⊢Res □.
Let F contain n + 1 distinct atoms. Pick some atom A in F .

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

15

Completeness proof

By IH: there are res. proofs C0, . . . ,Cm = □ from F [⊥/A] and
D0, . . . ,Dn = □ from F [⊤/A].

Now transform C0, . . . ,Cm into a proof C ′
0, . . . ,C

′
m from F by

adding A back into the clauses it was removed from. Then:

▶ either C ′
m = {A}

▶ or C ′
m = □ (and we are done).

Similarly we transform D0, . . . ,Dn into a proof D ′
0, . . . ,D

′
n from F

by adding ¬A back in. Then:

▶ either D ′
n = {¬A}

▶ or D ′
n = □ (and we are done).

If C ′
m = {A} and D ′

n = {¬A} then F ⊢Res A and F ⊢Res ¬A
and thus F ⊢Res □.

16

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F ⊢Res C.

How to prove F |= C by resolution?

Prove F ∪ {¬C} ⊢Res □

17

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F ⊢Res C.

How to prove F |= C by resolution?

Prove F ∪ {¬C} ⊢Res □

17

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F ⊢Res C.

How to prove F |= C by resolution?

Prove F ∪ {¬C} ⊢Res □

17

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F ⊢Res C.

How to prove F |= C by resolution?

Prove F ∪ {¬C} ⊢Res □

17

A resolution algorithm

Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal because the
algorithm enumerates all R such that Finit ⊢Res R.

The algorithm is a decision procedure for unsat. of CNF formulas.

18

A resolution algorithm

Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal because the
algorithm enumerates all R such that Finit ⊢Res R.

The algorithm is a decision procedure for unsat. of CNF formulas.

18

A resolution algorithm

Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal because the
algorithm enumerates all R such that Finit ⊢Res R.

The algorithm is a decision procedure for unsat. of CNF formulas.

18

A resolution algorithm

Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal because the
algorithm enumerates all R such that Finit ⊢Res R.

The algorithm is a decision procedure for unsat. of CNF formulas.

18

A resolution algorithm

Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal because the
algorithm enumerates all R such that Finit ⊢Res R.

The algorithm is a decision procedure for unsat. of CNF formulas.

18

