Propositional Logic Resolution

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Algorithm: Keep on "resolving" two clauses from F and adding the result to F

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Algorithm:

Keep on "resolving" two clauses from F and adding the result to F until the empty clause is found

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Algorithm:

Keep on "resolving" two clauses from F and adding the result to F until the empty clause is found

Correctness:

If the empty clause is found, the initial F is unsatisfiable Completeness:

If the initial F is unsatisfiable, the empty clause can be found.

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Algorithm:

Keep on "resolving" two clauses from ${\it F}$ and adding the result to ${\it F}$ until the empty clause is found

Correctness:

If the empty clause is found, the initial F is unsatisfiable Completeness:

If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution) w.r.t. semantic property (unsatisfiability)

Resolvent

Definition Let *L* be a literal. Then \overline{L} is defined as follows:

$$\overline{L} = \begin{cases} \neg A_i & \text{if } L = A_i \\ A_i & \text{if } L = \neg A_i \end{cases}$$

Resolvent

Definition Let L be a literal. Then \overline{L} is defined as follows:

$$\overline{L} = \begin{cases} \neg A_i & \text{if } L = A_i \\ A_i & \text{if } L = \neg A_i \end{cases}$$

Definition

Let C_1 , C_2 be clauses and let L be a literal such that $L \in C_1$ and $\overline{L} \in C_2$. Then the clause

$$(C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$$

is a resolvent of C_1 and C_2 .

The process of deriving the resolvent is called a resolution step.

Graphical representation of resolvent:

 $C_1 \quad C_2$ R

Graphical representation of resolvent:

$$C_1 \quad C_2$$
 R

If $C_1 = \{L\}$ and $C_2 = \{\overline{L}\}$ then the empty clause is a resolvent of C_1 and C_2 . The special symbol \Box denotes the empty clause.

Recall: \Box represents \bot .

Resolution proof

Definition

A resolution proof of a clause C from a set of clauses F

- is a sequence of clauses C_0, \ldots, C_n such that
 - $C_i \in F$ or C_i is a resolvent of two clauses C_a and C_b , a, b < i,

$$\blacktriangleright$$
 $C_n = C$

Then we can write $F \vdash_{Res} C$.

Note: F can be finite or infinite!

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

Example

 $\{P,Q\} \qquad \{P,\neg Q\} \qquad \{\neg P,Q\} \qquad \{\neg P,\neg Q\}$

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

$$\{P,Q\} \qquad \{P,\neg Q\} \qquad \{\neg P,Q\} \qquad \{\neg P,\neg Q\}$$

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

$$\{P,Q\} \quad \{P,\neg Q\} \quad \{\neg P,Q\} \quad \{\neg P,\neg Q\}$$
$$\{P\}$$

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

A linear resolution proof

0:
$$\{P, Q\}$$

1: $\{P, \neg Q\}$
2: $\{\neg P, Q\}$
3: $\{\neg P, \neg Q\}$
4: $\{P\}$ (0, 1)
5: $\{Q\}$ (0, 2)
6: $\{\neg P\}$ (3, 5)
7: \Box (4, 6)

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C_1 and C_2 .

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C_1 and C_2 . Then $C_1, C_2 \models R$.

Lemma (Resolution Lemma)

Let *R* be a resolvent of two clauses C_1 and C_2 . Then $C_1, C_2 \models R$. **Proof** By definition $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ (for some *L*). Assume $\mathcal{A} \models C_1$ and $\mathcal{A} \models C_2$. We show $\mathcal{A} \models R$. There are two cases:

•
$$\mathcal{A} \models L$$
. Then $\mathcal{A} \models C_2 - \{\overline{L}\}$ (because $\mathcal{A} \models C_2$),

Lemma (Resolution Lemma)

Let *R* be a resolvent of two clauses C_1 and C_2 . Then $C_1, C_2 \models R$. **Proof** By definition $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ (for some *L*). Assume $\mathcal{A} \models C_1$ and $\mathcal{A} \models C_2$. We show $\mathcal{A} \models R$. There are two cases:

•
$$\mathcal{A} \models L$$
. Then $\mathcal{A} \models C_2 - \{\overline{L}\}$ (because $\mathcal{A} \models C_2$), thus $\mathcal{A} \models R$.

• $\mathcal{A} \not\models L$. Then $\mathcal{A} \models C_1 - \{L\}$ (because $\mathcal{A} \models C_1$),

Lemma (Resolution Lemma)

Let *R* be a resolvent of two clauses C_1 and C_2 . Then $C_1, C_2 \models R$. **Proof** By definition $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ (for some *L*). Assume $\mathcal{A} \models C_1$ and $\mathcal{A} \models C_2$. We show $\mathcal{A} \models R$. There are two cases:

▶
$$\mathcal{A} \models L$$
. Then $\mathcal{A} \models C_2 - \{\overline{L}\}$ (because $\mathcal{A} \models C_2$), thus $\mathcal{A} \models R$.

• $\mathcal{A} \not\models L$. Then $\mathcal{A} \models C_1 - \{L\}$ (because $\mathcal{A} \models C_1$), thus $\mathcal{A} \models R$.

Theorem (Correctness of resolution) Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$.

Theorem (Correctness of resolution) Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$. **Proof** Assume there is a resolution proof $C_0, \ldots, C_n = C$. We show $F \models C_i$ by induction on i. IH: $F \models C_i$ for all j < i.

Theorem (Correctness of resolution)

Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$.

Proof Assume there is a resolution proof $C_0, \ldots, C_n = C$. We show $F \models C_i$ by induction on *i*. IH: $F \models C_j$ for all j < i. There are two cases:

- $C_i \in F$. Then $F \models C_i$ by definition.
- C_i is a resolvent of C_a and C_b for a, b < i. Then F ⊨ C_a and F ⊨ C_b by IH, and C_a, C_b ⊨ C_i by the resolution lemma. Thus F ⊨ C_i.

Theorem (Correctness of resolution)

Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$.

Proof Assume there is a resolution proof $C_0, \ldots, C_n = C$. We show $F \models C_i$ by induction on *i*. IH: $F \models C_j$ for all j < i. There are two cases:

- $C_i \in F$. Then $F \models C_i$ by definition.
- ▶ C_i is a resolvent of C_a and C_b for a, b < i. Then $F \models C_a$ and $F \models C_b$ by IH, and $C_a, C_b \models C_i$ by the resolution lemma. Thus $F \models C_i$.

Corollary

Let F be a set of clauses. If $F \vdash_{Res} \Box$ then F is unsatisfiable.

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem (Completeness of resolution) Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem (Completeness of resolution) Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$. **Proof** If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Theorem);

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Proof If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Theorem); in that case let F be that finite subset and apply the previous theorem.

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Proof If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Theorem); in that case let F be that finite subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff $F \vdash_{Res} \Box$.

Corollary

(of the Boole-Shannon expansion) F is unsatisfiable iff $F[\perp/A]$ and $F[\top/A]$ are unsatisfiable.

Idea for completeness proof:

If A is an atom of F, then both $F[\perp/A]$ and $F[\top/A]$ have fewer atoms than F.

Use Boole-Shannon to prove completeness by induction on the number of atoms of the unsatisfiable formula F:

- construct inductively resolution proofs for $F[\perp/A]$ and $F[\top/A]$, and
- "combine" them into a resolution proof for *F*.

$$F = \{ \{\neg q, s\}, \{\neg p, q, s\}, \{p\}, \{r, \neg s\}, \{\neg p, \neg r, \neg s\} \}$$

• Compute inductively proofs for $F[\top/s]$ and $F[\perp/s]$.

$$F[\top/s] \equiv \{ \{p\}, \{r\}, \{\neg p, \neg r\} \}$$

$$F[\perp/s] \equiv \{ \{\neg q\}, \{\neg p, q\}, \{p\} \}$$

$$F = \{ \{\neg q, s\}, \{\neg p, q, s\}, \{p\}, \{r, \neg s\}, \{\neg p, \neg r, \neg s\} \}$$

• Compute inductively proofs for $F[\top/s]$ and $F[\perp/s]$.

{

$$F = \left\{ \left\{ \neg q, s \right\}, \left\{ \neg p, q, s \right\}, \left\{ p \right\}, \left\{ r, \neg s \right\}, \left\{ \neg p, \neg r, \neg s \right\} \right\}$$

$$\left\{ \neg q \right\} \left\{ \neg p, q \right\} \left\{ p \right\} \left\{ p \right\} \left\{ r \right\} \left\{ \neg p, \neg r \right\} \right\}$$

$$\left\{ q \right\} \left\{ q \right\} \left\{ q \right\} \left\{ q \right\} \left\{ \gamma r, \gamma s \right\} \left\{ \neg p, \neg r, \neg s \right\} \right\}$$

$$\left\{ q, s \right\} \left\{ q, s \right\} \left\{ p \right\} \left\{ p \right\} \left\{ r, \neg s \right\} \left\{ \neg p, \neg r, \neg s \right\} \right\}$$

$$\left\{ s \right\} \left\{ \gamma r, \gamma s \right\} \right\}$$

• Combine the graphs for $\{s\}$ and $\{\neg s\}$.

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem

Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$. **Proof** By induction on the number n of distinct atoms in F. Basis: If n = 0 then $F = \{\}$ (but F is unsat.)

Theorem

Let *F* be a finite set of clauses. If *F* is unsatisfiable then $F \vdash_{Res} \Box$. **Proof** By induction on the number *n* of distinct atoms in *F*. Basis: If n = 0 then $F = \{\}$ (but *F* is unsat.) or $F = \{\Box\}$. Step: IH: For every unsat. set of clauses *F* with *n* dist. atoms, $F \vdash_{Res} \Box$. Let *F* contain n + 1 distinct atoms. Pick some atom *A* in *F*.

 $F[\top/A] \equiv$ take *F*, remove all clauses with *A*, remove all $\neg A$. $F[\perp/A] \equiv$ take *F*, remove all clauses with $\neg A$, remove all *A*.

By IH: there are res. proofs $C_0, \ldots, C_m = \Box$ from $F[\perp/A]$ and $D_0, \ldots, D_n = \Box$ from $F[\top/A]$.

Now transform C_0, \ldots, C_m into a proof C'_0, \ldots, C'_m from F by adding A back into the clauses it was removed from. Then:

• either
$$C'_m = \{A\}$$

• or $C'_m = \Box$ (and we are done).

Similarly we transform D_0, \ldots, D_n into a proof D'_0, \ldots, D'_n from F by adding $\neg A$ back in. Then:

• either
$$D'_n = \{\neg A\}$$

• or
$$D'_n = \Box$$
 (and we are done).

If $C'_m = \{A\}$ and $D'_n = \{\neg A\}$ then $F \vdash_{Res} A$ and $F \vdash_{Res} \neg A$ and thus $F \vdash_{Res} \Box$.

Not everything that is a consequence of a set of clauses can be derived by resolution.

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise Find F and C such that $F \models C$ but not $F \vdash_{Res} C$.

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise Find F and C such that $F \models C$ but not $F \vdash_{Res} C$.

How to prove $F \models C$ by resolution?

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise Find F and C such that $F \models C$ but not $F \vdash_{Res} C$.

> How to prove $F \models C$ by resolution? Prove $F \cup \{\neg C\} \vdash_{Res} \Box$

Input: A CNF formula F, i.e. a finite set of clauses

Input: A CNF formula F, i.e. a finite set of clauses

while there are clauses $C_a, C_b \in F$ and resolvent R of C_a and C_b such that $R \notin F$ do $F := F \cup \{R\}$

Input: A CNF formula F, i.e. a finite set of clauses

```
while there are clauses C_a, C_b \in F and resolvent R of C_a and C_b
such that R \notin F
do F := F \cup \{R\}
```

Lemma

The algorithm terminates.

Proof There are only finitely many clauses over a finite set of atoms.

Input: A CNF formula F, i.e. a finite set of clauses

```
while there are clauses C_a, C_b \in F and resolvent R of C_a and C_b
such that R \notin F
do F := F \cup \{R\}
```

Lemma

The algorithm terminates.

Proof There are only finitely many clauses over a finite set of atoms.

Theorem

The initial F is unsatisfiable iff \Box is in the final F

Proof F_{init} is unsat. iff $F_{init} \vdash_{Res} \Box$ iff $\Box \in F_{final}$ because the algorithm enumerates all R such that $F_{init} \vdash_{Res} R$.

Input: A CNF formula F, i.e. a finite set of clauses

```
while there are clauses C_a, C_b \in F and resolvent R of C_a and C_b
such that R \notin F
do F := F \cup \{R\}
```

Lemma

The algorithm terminates.

Proof There are only finitely many clauses over a finite set of atoms.

Theorem

The initial F is unsatisfiable iff \Box is in the final F

Proof F_{init} is unsat. iff $F_{init} \vdash_{Res} \Box$ iff $\Box \in F_{final}$ because the algorithm enumerates all R such that $F_{init} \vdash_{Res} R$.

The algorithm is a decision procedure for unsat. of CNF formulas.