Propositional Logic Compactness

Compactness Theorem

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Equivalent formulation: A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

An application: Graph Coloring

Definition A 4-coloring of a graph (V, E) is a map $c : V \to \{1, 2, 3, 4\}$ such that $(x, y) \in E$ implies $c(x) \neq c(y)$.

Theorem (4CT)

A finite planar graph has a 4-coloring.

Theorem

A planar graph G = (V, E) with countably many vertices $V = \{v_1, v_2, \ldots\}$ has a 4-coloring.

Proof $G \rightsquigarrow$ set of formulas S s.t. S is sat. iff G is 4-col.

G is planar

- \Rightarrow every finite subgraph of G is planar and 4-col. (by 4CT)
- \Rightarrow every finite subset of S is sat.
- \Rightarrow S is sat. (by Compactness)
- \Rightarrow *G* is 4-col.

Proof details

 $G \rightsquigarrow S$:

For simplicity:

atoms are of the form A^c_i where $c \in \{1, \dots, 4\}$ and $i \in \mathbb{N}$

$$S := \begin{array}{ll} \{A_i^1 \lor A_i^2 \lor A_i^3 \lor A_i^4 \mid i \in \mathbb{N}\} \cup \\ \{A_i^c \to \neg A_i^d \mid i \in \mathbb{N}, \ c, d \in \{1, \dots, 4\}, \ c \neq d\} \cup \\ \{\neg (A_i^c \land A_j^c) \mid (v_i, v_j) \in E, \ c \in \{1, \dots, 4\}\} \end{array}$$

Subgraph corresponding to some $T \subseteq S$: $V_T := \{v_i \mid A_i^c \text{ occurs in } T \text{ (for some } c)\}$ $E_T := \{(v_i, v_j) \mid \neg (A_i^c \land A_j^c) \in T \text{ (for some } c)\}$

Proof of Compactness

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Proof

 \Rightarrow : If S is satisfiable then every finite subset of S is satisfiable. Trivial.

 $\Leftarrow: \text{ If every finite subset of } S \text{ is satisfiable then } S \text{ is satisfiable.}$ We prove that S has a model.

Proof of Compactness

Definition

Let $b_1 \cdots b_n \in \{0, 1\}^*$ with $n \ge 0$ and let T be a set of formulas. An assignment \mathcal{A} is a $b_1 \cdots b_n$ -model of T if $\mathcal{A}(\mathcal{A}_i) = b_i$ for every $i = 1, \ldots, n$ and $\mathcal{A} \models T$.

In particular: every model is a ε -model.

Assume every finite $T \subseteq S$ is satisfiable. We prove:

- 1. There is an infinite sequence $b_1b_2\cdots \in \{0,1\}^{\omega}$ such that for every $n \ge 1$ all finite $T \subseteq S$ have a $b_1\cdots b_n$ -model.
- 2. The assignment \mathcal{B} given by $\mathcal{B}(A_i) := b_i$ for all $i \ge 1$ is a model of S.

Proof of Compactness: Part (1)

To prove: There is an infinite sequence $b_1b_2\cdots \in \{0,1\}^{\omega}$ such that for every $n \ge 1$ all finite $T \subseteq S$ have a $b_1\cdots b_n$ -model.

It suffices to show:

- (a) Every finite $T \subseteq S$ has an ε -model.
- (b) For every sequence $\sigma \in \{0,1\}^*$: if every finite $T \subseteq S$ has a σ -model then there exists $b \in \{0,1\}$ such that every finite $T \subseteq S$ has a σb -model.

Proof of (a): By assumption every $T \subseteq S$ has an ε -model. **Proof of (b)**: Next slide.

Proof of Compactness: Part (1)

Proof of (b): By contradiction.

Assume that for some $\sigma \in \{0,1\}$: every finite $T \subseteq S$ has a σ -model, but

(0) some finite $T_0 \subseteq S$ has no σ 0-model; and

(1) some finite $T_1 \subseteq S$ has no $\sigma 1$ -model.

Consider the finite set $T_0 \cup T_1$. By assumption, $T_0 \cup T_1$ has some σ -model \mathcal{A} . Let $n := |\sigma|$.

Two possible cases:

- $\mathcal{A}(A_{n+1}) = 0$. Then \mathcal{A} is a σ 0-model of T_0 , contradicting (0).
- $\mathcal{A}(A_{n+1}) = 1$. Then \mathcal{A} is a $\sigma 1$ -model of T_1 , contradicting (1).

To prove: The assignment \mathcal{B} given by $\mathcal{B}(A_i) := b_i$ for all $i \ge 1$, where $b_1 b_2 \cdots$ is the infinite sequence of (1), is a model of S. We show $\mathcal{B} \models F$ for all $F \in S$. Let m be the maximal index of all atoms in F. By (1), $\{F\}$ has a $b_1 \cdots b_m$ -model \mathcal{A} .

Hence $\mathcal{B} \models F$, because \mathcal{A} and \mathcal{B} agree on all atoms in F.

Corollary

Corollary If $S \models F$ then there is a finite subset $M \subseteq S$ such that $M \models F$.