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DPLL-based SAT solvers > 1990:

» clause learning

» is over 50 years old

» non-chronological backtracking
» branching heuristics

P lazy evaluation



Performance increase of SAT solvers

SAT/SMT solving improvements

%

100000

10000

ftconstraints solved
in standard benchmark



Clause representation of CNF formulas



Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)



Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)
Representation as set of sets of literals:

{1, s Lumd, - {1, -5 Lun t)

clause




Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)
Representation as set of sets of literals:

{{L1,17 R Ll,n1}7 R {Lk,17 R Ll,nk}}

clause

Clause = set of literals (disjunction).



Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)
Representation as set of sets of literals:

{{L1,17 R Ll,n1}7 R {Lk,17 R Ll,nk}}

clause

Clause = set of literals (disjunction).

Formula in CNF = set of clauses



Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)

Representation as set of sets of literals:

{{L1,17 R Ll,n1}7 R {Lk,17 R Ll,nk}}

clause

Clause = set of literals (disjunction).
Formula in CNF = set of clauses

Degenerate cases:
The empty clause stands for L.



Clause representation of CNF formulas

CNF: (LiaV...VLip)AN oA (L VooV Lip,)

Representation as set of sets of literals:

{{L1,17 R Ll,n1}7 R {Lk,17 R Ll,nk}}

clause

Clause = set of literals (disjunction).
Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for L.
The empty set of clauses stands for T.
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DPLL — The simplest algorithm for CNF-SAT

Simplest algorithm: Construct the truth table.
Best-case runtime is ©(m - 2") for a formula of length m over n
variables.



DPLL — A first improvement: Partial Evaluation

Improvement: partial evaluation using Boole-Shannon expansion

Lemma (Boole-Shannon Expansion)

For every formula F and atom A:
F=(AANF[T/A])V (mAA F[L/A]).

Proof By structural induction on F (exercise).

Corollary
F is satisfiable iff F[L/A] or F[T /A| are satisfiable.
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DPLL — First step: partial evaluation

F[L/A] and F[T/A] easy to compute in clause normal form:

F[T/A] = take F, remove all clauses with A, remove all —A.
F[L/A] = take F, remove all clauses with —A, remove all A.

Partial evaluation algorithm:

Given formula F, total order on the variables <:
If {} € F return unsatisfiable.
If F = () return satisfiable.
Otherwise:
Fix the first variable A in F according to <.
Recursively check if F[.L/A] is satisfiable;
if yes, return satisfiable.
Recursively check if F[T/A] is satisfiable;
if yes, return satisfiable, otherwise unsatisfiable.
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DPLL: Davis-Putnam-Logemann-Loveland

Instead of fixing an order on variables, choose the next variable
dynamically.
» OLR: one-literal rule If {L} € F ({L} is called unit clause),
then every satisfying assignment sets L to true. So it suffices
to check satisfiability of F[T/L].

» PLR: pure-literal rule
If L appears in F and L does not, then it also suffices to check
satisfiability of F[T /L] (Why?).

DPLL algorithm: Partial evaluation that gives priority to a variable
satisfying OLR, then to a variable satisfying PLR, and otherwise
picks the first unpicked variable of <.

Applying OLR can generate further unit clauses (unit propagation).
Same for PLR, but DPLL often implemented with only OLR for
efficiency.

10



DPLL: Davis-Putnam-Logemann-Loveland

{{_‘P, q,=r, 5}7 {_‘q, -r, 5}7 {r}7 {_‘P, _'5}7 {“P, r}}

OLRr:=T
{{-p,a,s},{~q,s}, {=p,~s}}

PLR p:= L

4

{{-q,s}}

PLR g:= L

4

{}

In this example PLR and OLR allow us to avoid all case splits.

11



Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board

W

%..

Variable p;j models: there is a queen in square (i, )

» > 1in each row: /\j}:1 ?:1 pij

» <1 in each row: /\j}:1 j-‘#,:l —pij V —pijr
» < 1in each column: /\j}:l /\?75,-,:1 —pij V pirj

- 4
» < 1 on each diagonal: /\,’j:1 Vi ~Pi—k itk V Pitk j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80

12



DPLL: 4 queens
Running the DPLL algorithm:

» Start with p;1 — 1
delete {p11, p12, P13, P14}, delete =p11: 9 new unit clauses
unit propagation: deletes 65 clauses!
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DPLL: 4 queens
Running the DPLL algorithm:

» Start with p;1 — 1
delete {p11, p12, P13, P14}, delete =p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

> Set pp3— 1

4 new unit clauses: {—p2a}, {—paz}, {—p32}, {—p3a}
unit propagation of {—p3s}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 2% of 210 possible assignments!

» Backtrack: p1; — 0, p12+—1
delete {—p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {pa3}!

> Answer: pio, p2a, P31, pa3z > 1
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DPLL: Evaluation

Oriented towards satisfiability:

» 20(n) time for satisfiable formulas, but 22(") for unsatisfiable
ones.

» DPLL computes a satisfying assignment, if there is one.

v

The satisfying assignment is a certificate of satisfiability.

> Satisfiable formulas have short certificates: satisfying
assignment never larger than the formula.

Coming next: resolution, a procedure oriented towards
unsatisfiability.

» 20(") time for unsatisfiable formulas, but 29" for satisfiable
ones.

> Resolution computes a certificate of unsatisfiabiity.

> However, the certificate is exponentially longer than the
formula in the worst case.

» Polynomial certificates for satisfiability implies NP= coNP.
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