
Propositional Logic

DPLL: Davis-Putnam-
Logemann-Loveland
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Davis–Putnam–Logemann–Loveland

DPLL algorithm:

▶ combines search and deduction to decide satisfiability

▶ underlies most modern SAT solvers

▶ is over 50 years old

DPLL-based SAT solvers ≥ 1990:

▶ clause learning

▶ non-chronological backtracking

▶ branching heuristics

▶ lazy evaluation
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Performance increase of SAT solvers
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Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.

The empty set of clauses stands for ⊤.

4



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

4



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F

Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions with built in associativity, commutativity and
idempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

5



DPLL — The simplest algorithm for CNF-SAT

Simplest algorithm: Construct the truth table.
Best-case runtime is Θ(m · 2n) for a formula of length m over n
variables.
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DPLL — A first improvement: Partial Evaluation

Improvement: partial evaluation using Boole-Shannon expansion

Lemma (Boole-Shannon Expansion)

For every formula F and atom A:

F ≡ (A ∧ F [⊤/A]) ∨ (¬A ∧ F [⊥/A]).

Proof By structural induction on F (exercise).

Corollary

F is satisfiable iff F [⊥/A] or F [⊤/A] are satisfiable.
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DPLL — First step: partial evaluation

F [⊥/A] and F [⊤/A] easy to compute in clause normal form:

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

Partial evaluation algorithm:

Given formula F , total order on the variables ≺:
If {} ∈ F return unsatisfiable.
If F = ∅ return satisfiable.
Otherwise:

Fix the first variable A in F according to ≺.
Recursively check if F [⊥/A] is satisfiable;
if yes, return satisfiable.
Recursively check if F [⊤/A] is satisfiable;
if yes, return satisfiable, otherwise unsatisfiable.
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DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤
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DPLL: Davis-Putnam-Logemann-Loveland

Instead of fixing an order on variables, choose the next variable
dynamically.

▶ OLR: one-literal rule If {L} ∈ F ({L} is called unit clause),
then every satisfying assignment sets L to true. So it suffices
to check satisfiability of F [⊤/L].

▶ PLR: pure-literal rule
If L appears in F and L does not, then it also suffices to check
satisfiability of F [⊤/L] (Why?).

DPLL algorithm: Partial evaluation that gives priority to a variable
satisfying OLR, then to a variable satisfying PLR, and otherwise
picks the first unpicked variable of ≺.

Applying OLR can generate further unit clauses (unit propagation).
Same for PLR, but DPLL often implemented with only OLR for
efficiency.
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DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{¬p, q, s}, {¬q, s}, {¬p,¬s}}

{{¬q, s}}

{}

OLR r := ⊤

PLR p := ⊥

PLR q := ⊥

In this example PLR and OLR allow us to avoid all case splits.
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Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board

Variable pij models: there is a queen in square (i , j)

▶ ≥ 1 in each row:
∧4

i=1

∨4
j=1 pij

▶ ≤ 1 in each row:
∧4

i=1

∧4
j ̸=j ′=1 ¬pij ∨ ¬pij ′

▶ ≤ 1 in each column:
∧4

j=1

∧4
i ̸=i ′=1 ¬pij ∨ ¬pi ′j

▶ ≤ 1 on each diagonal:
∧4

i ,j=1

∨
k ¬pi−k,i+k ∨ ¬pi+k,j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80
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DPLL: 4 queens

Running the DPLL algorithm:

▶ Start with p11 7→ 1
delete {p11, p12, p13, p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

▶ Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: unsat
fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

▶ Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

▶ Answer: p12, p24, p31, p43 7→ 1
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DPLL: Evaluation
Oriented towards satisfiability:

▶ 2O(n) time for satisfiable formulas, but 2Θ(n) for unsatisfiable
ones.

▶ DPLL computes a satisfying assignment, if there is one.

▶ The satisfying assignment is a certificate of satisfiability.

▶ Satisfiable formulas have short certificates: satisfying
assignment never larger than the formula.

Coming next: resolution, a procedure oriented towards
unsatisfiability.

▶ 2O(n) time for unsatisfiable formulas, but 2Θ(n) for satisfiable
ones.

▶ Resolution computes a certificate of unsatisfiabiity.

▶ However, the certificate is exponentially longer than the
formula in the worst case.

▶ Polynomial certificates for satisfiability implies NP= coNP.
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