Propositional Logic Definitional CNF

(Tseytin's transformation)

Definitional CNF

1. The definitional CNF of a formula is obtained in 2 steps:

Repeatedly replace a subformula G of the form $\neg A$, $A \land B$ or $A \lor B$ (A, B atoms!) by a new atom A' and conjoin $A' \leftrightarrow G$. (This replacement is not applied to the "definitions" $A' \leftrightarrow G$ but only to the (remains of the) original formula.)

2. Translate all the subformulas $A' \leftrightarrow G$ into CNF.

Example

$$\neg(\boxed{A_1 \lor A_2}) \land A_3$$

$$\neg A_4 \land A_3 \land (A_4 \leftrightarrow (A_1 \lor A_2))$$

$$\Rightarrow \boxed{A_5 \land A_3} \land (A_4 \leftrightarrow (A_1 \lor A_2)) \land (A_5 \leftrightarrow \neg A_4)$$

$$\Rightarrow A_6 \land (A_4 \leftrightarrow (A_1 \lor A_2)) \land (A_5 \leftrightarrow \neg A_4) \land (A_6 \leftrightarrow (A_5 \land A_3))$$

$$\Rightarrow A_6 \land CNF(A_4 \leftrightarrow (A_1 \lor A_2)) \land CNF(A_5 \leftrightarrow \neg A_4) \land CNF(A_6 \leftrightarrow (A_5 \land A_3))$$

Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a constant.

There are at most as many replacement steps as subformulas, linearly many.

2. The conversion of each $A \leftrightarrow G$ into CNF increases the size by a constant.

There are only linearly many such subformulas.

Thus: the definitional CNF has size O(n), and can be constructed in O(n) time.

Definitional CNF: Correctness — Notation

Definition

The notation F[G/A] denotes the result of replacing all occurrences of the atom A in F by G.

We pronounce it as "F with G for A".

Example

$$(A \wedge B)[(A \rightarrow B)/B] = (A \wedge (A \rightarrow B))$$

Definition

The notation $\mathcal{A}[v/A]$ denotes a modified version of \mathcal{A} that maps A to v and behaves like \mathcal{A} otherwise:

$$(A[v/A])(A_i) = \begin{cases} v & \text{if } A_i = A \\ A(A_i) & \text{otherwise} \end{cases}$$

Definitional CNF: Correctness — Substitution Lemma

Lemma

$$\mathcal{A}(F[G/A]) = \mathcal{A}'(F)$$
 where $\mathcal{A}' = \mathcal{A}[\mathcal{A}(G)/A]$

Proof by structural induction on *F*.

F is an atom:

If
$$F = A$$
: $\mathcal{A}(F[G/A]) = \mathcal{A}(G) = \mathcal{A}'(F)$
If $F \neq A$: $\mathcal{A}(F[G/A]) = \mathcal{A}(F) = \mathcal{A}'(F)$

 $ightharpoonup F = F_1 \wedge F_2$:

$$\mathcal{A}((F_1 \wedge F_2)[G/A]) = \mathcal{A}(F_1[G/A] \wedge F_2[G/A])$$

$$= \min(\mathcal{A}(F_1[G/A]), \mathcal{A}(F_2[G/A]))$$

$$\stackrel{IH}{=} \min(\mathcal{A}'(F_1), \mathcal{A}'(F_2))$$

$$= \mathcal{A}'(F_1 \wedge F_2)$$

Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma

Let A be an atom that does not occur in G.

Then F[G/A] is equisatisfiable with $F \wedge (A \leftrightarrow G)$.

Proof Assume $A \models F[G/A]$ for some assignment A.

Let $\mathcal{A}' := \mathcal{A}[\mathcal{A}(G)/A]$. We prove $\mathcal{A}' \models F \land (A \leftrightarrow G)$.

 $\mathcal{A}' \models F$: Substitution Lemma.

 $\mathcal{A}' \models (A \leftrightarrow G)$: Because $\mathcal{A}'(A) = \mathcal{A}(G) = \mathcal{A}'(G)$

(by definition of \mathcal{A}' and because A does not occur in G).

Assume $\mathcal{A} \models F \land (A \leftrightarrow G)$ for some assignment \mathcal{A} .

We prove $A \models F[G/A]$, that is, A(F[G/A]) = 1.

We show $\mathcal{A}(F[G/A]) = \mathcal{A}'(F) = \mathcal{A}(F) = 1$ for $\mathcal{A}' := \mathcal{A}[\mathcal{A}(G)/A]$.

 $\mathcal{A}(F[G/A]) = \mathcal{A}'(F)$: Substitution Lemma.

 $\mathcal{A}'(F) = \mathcal{A}(F)$: From $\mathcal{A} \models (A \leftrightarrow G)$ follows $\mathcal{A}(A) = \mathcal{A}(G)$, and so $\mathcal{A}' = \mathcal{A}$.

 $\mathcal{A}(F) = 1$: Because $\mathcal{A} \models F$.

Definitional CNF: Correctness

Does
$$F \wedge (A \leftrightarrow G) \models F[G/A]$$
 hold?

Does $F[G/A] \models F \land (A \leftrightarrow G)$ hold?

Summary

Theorem

For every formula F of size n there is an equisatisfiable CNF formula G of size O(n).

Proof.

Repeated application of the Lemma.

Similarly it can be shown:

Theorem

For every formula F of size n there is an equivalid DNF formula G of size O(n).

Validity of CNF

Validity of formulas in CNF can be checked in linear time.

A formula in CNF is valid iff all its disjunctions are valid. A disjunction is valid iff it contains both an atomic A and $\neg A$ as literals.

Example

Valid: $(A \lor \neg A \lor B) \land (C \lor \neg C)$

Not valid: $(A \lor \neg A) \land (\neg A \lor C)$

Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.

A formula in DNF is satisfiable iff at least one of its conjunctions is satisfiable. A conjunction is satisfiable iff it does not contain both an atomic A and $\neg A$ as literals.

Example

Satisfiable: $(\neg B \land A \land B) \lor (\neg A \land C)$ Unsatisfiable: $(A \land \neg A \land B) \lor (C \land \neg C)$

Satisfiability/validity of DNF and CNF

Theorem

Satisfiability of formulas in CNF is NP-complete.

Theorem

Validity of formulas in DNF is co-NP-complete.

Standard decision procedure for validity of *F*:

- 1. Transform $\neg F$ into an equisat. formula G in def. CNF
- 2. Apply efficient CNF-based SAT solver to G