Basic Proof Theory
Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

v ... T,

— 7 rule-name
where Ty,... T, (premises) and T (conclusion) are syntactic
objects (eg formulas).
Intuitive reading: If Ty,..., T, are provable, then T is provable.

Degenerate case: If n = 0 the rule is called an axiom and the
horizontal line is sometimes omitted.

If some U is provable, we write - U.

Proof trees

Proofs (also: derivations) are drawn as trees of nested proof rules.
Example:

_ U _
i T T3

S5 S
R

We sometimes omit the names of proof rules in a proof tree if they
are obvious or for space reasons. You should always show them!

Every fragment
T ... T,
T

of a proof tree must be (an instance of) a proof rule.
All proofs must start with axioms.

The depth of a proof tree is the number of rules on the longest
branch of the tree. Thus >1

Abbreviations

Until further notice:

1, =, A, V, — are primitives.

T abbreviates —L

A possible simplification:
—F abbreviates F — 1|

We now consider three important proof systems:
» Sequent Calculus
» Natural Deduction
» Hilbert Systems

Sequent Calculus
Propositional Logic

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.

Proof rules
S ... S,

S

where S1,...5, and S are sequents: expressions of the form
M= A
with ' and A finite multisets of formulas.

Multiset = set with possibly repeated elements; using sets possible
but less elegant.

Notice: = is just a—suggestive—separator

= A is provable (derivable)
Intention of the calculus: iff

ATEVA (AT — VA valid)

Sequents: Notation

» We use set notation for multisets, e.g. {A,B — C, A}
» Drop{}: Fi,...,Fm = G1,...G,
» F,T abbreviates {F} UT (similarly for A)

» 1,12 abbreviates 1 U, (similarly for A)

Sequent Calculus rules

Tr=a ‘L AT=AA
Ir=ra Fr=4
-F,T=A r=-F,A

F,G,T = A r=FA IT=G,A
Frer=n = FAGA MR
FI=A Gr=aA r=FGA
FVG,T=A v r=FrFve,a '’

[=FA GTl=A F.l=G,A
—R

FoGT=A —L = F—>G,A

Sequent Calculus rules

Intuition: read backwards as proof search rules

Troa -t AT = AL
r=FrA Fr=4
Froa r—-Fa K
FGr=a (= FA [=64A
FAGT=a | = FAG,A A
FIT=A GTIT=A N=F,GA
FVGT=A Vi r=rfvga 'K
r=FA GI=A , F.lT=6GA R
F—=GT=A - r=F—-GAa

Every rule decomposes its principal formula

10

= (PVR)AN(QV—-R)—=PVQ

11

S (PVR)A(QV-R) - PVQ

F.T=GA

r—F>ca F

R

11

(PVR)A(QV—=R)= PV Q

~ PVRA(QV-R) =PvQ R

F.T=GA

r—F>ca F

11

(PVR A(Qv-R) =PvQt

~ PVRA(QV-R =PvaQ K

F,G,T = A

Frcr=oa /M

11

PVR,QV-R=PVQ
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

F,G,T = A

Frcr=oa /M

11

PVR.QV-R=PvQ "R
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

N=F,GA

r=rfvc.a 'R

11

PVRQV-R=P.Q
PVR,QV-R=PVvQ "
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

N=F,GA

r=rfvc.a 'R

11

PVRQV-R=P.Q
PVR,QV-R=PVvQ "
(PVRIA(QV-R) = PvQ"

L

~ PVRA(QV-R =PvaQ K

F.T=A GTI=A
FVvGT=A

VL

VL

11

P.QV-R=P,Q R.QV-R=P,Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

F.,T=A GIT=A
FVvGT=A

VL

L

11

P.QV-R=P,Q ™ R QV-R=P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=AA

11

P.QV-R=P Q"™ RQV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

F.,T=A GIT=A
FVvGT=A

VL

L

VL

11

R,QR=P,Q R,-R=P,Q

P.QV-R=P Q"™ RQV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R = PvaQ K

L

L

F.T=A GTI=A
FVvGT=A

VL

VL

11

RO=P.O™ R-R=PQ

P.QV-R=P,Q "™ R,QV-R= P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=AA

11

RQG=>PQ™ R-R=pPQ "L

P.QV-R=P Q"™ R QV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R = PvaQ K

L

= FA

Fr=sa

L

VL

11

R=R,P,Q

RO=P Q™ R-R=P.Q

P.QV-R=P Q"™ RQV-R=P.Q
PVR,QV—-R=P,Q v
PVR.QvV-R=PvQ "R

(PVRIA(QV-R) = PvQ"
~ PVRA(QV-R =PvaQ K

L

L

=L
VL

11

| R:>R,P,QAXL
RQ=P,Q"™™ R -R=P,Q

P.QV-R=P,Q "™ R.QV-R= P,Q

PVR,QV-R=P,Q

PVR.Qv-R=PvQ "R
(PVR)A(QV-R) =PVvQ"
~ (PVR)A(QV=R) > PvQ F

L

AT=>AA

11

Proof search properties

» For every logical operator (— etc)
there is one left and one right rule

» Every formula in the premise of a rule
is a subformula of the conclusion of the rule.
This is called the subformula property.

= no need to guess anything when applying a rule backward

» Backward rule application terminates
because one operator is removed in each step.

12

Instances of rules

Definition
An instance of a rule is the result of replacing I' and A by

multisets of concrete formulas and F and G by concrete formulas.

Example

= PAQ,A B
~(PAQ)=AB

is an instance of
M= FA

“FT=A
setting F .=PAQ,T:=0, A:={A B}

13

Proof trees

Definition (Proof tree)
A proof tree is a tree whose nodes are sequents and where each
parent-children fragment

St ... 5
S

is an instance of a proof rule.

(= all leaves must be instances of axioms)

A sequent S is provable (or derivable) if there is a proof tree with

root S.
We write ¢ S to denote that S is derivable.

14

Proof trees

An alternative inductive definition of proof trees:

Definition (Proof tree)

If
S5 ... S,
S
is an instance of a proof rule and
there are proof trees Ty,... T, with roots S1,...,5,
then
T, ... T,
S

is a proof tree (with root S).

15

What does [= A “mean”?
Definition

r=a| = (/\r—>\/A)

Example: [{A,B} = {P,Q}|=(AAB — PV Q)
Remember: A =T and \/0 =L

We aim to prove: ¢ S iff =S|

Lemma (Rule Equivalence)
S ... S,
S

> S| = [S1|A... A ISk
» |S| is a tautology iff all |S;| are tautologies

For every rule

16

Theorem (Soundness of +¢)
If F¢ S then [=1S|.

Proof by induction on the height of the proof tree for ¢ S.

Tree must end in rule instance

St ... S,
S

If n =0 then we vacuously have = |S;| for all i.
If n > 0 then by IH we also have = |S;| for all i.
So = |Si| for all i, hence |= |S| by the previous lemma.

17

Proof Search and Completeness

18

Proof search = growing a proof tree from the root

» Start from an initial sequent Sp

» At each stage we have some potentially partial proof tree
with unproved leaves

» In each step, pick some unproved leaf S and some rule
instance
S5 ... S,

S

and extend the tree with that rule instance
(creating new unproved leaves Sy, ...,S,)

19

Proof search terminates if ...

» there are no more unproved leaves — success

» there is some unproved leaf where no rule applies — failure
By the rules, that leaf is of the form

Pi,....,Pc=Q1,...,Q

where all P; and Q; are atoms, no P; = Q;, and no P; = L.

Example (failed proof)

p=p X Q=P , P=Q Q:QC)L(
PvVQ=PFP P\/Q:>Q/\R
PVQR=PAQ

Falsifying assignments?

20

Proof search = Counterexample search

Can view sequent calculus as a search for a falsifying assignment
for [= Al

Make I true and A false

Some examples:
F.G,T = A

FAGT=A
To make F A G true, make both F and G true
r=FA IT'=G,A
M= FAG,A
To make F A G false, make F or G false

AR

21

Lemma (Search Equivalence)
At each stage of the search process,

if S1,...,Sk are the unproved leaves, then |So| = |S1| A .

Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

i ... U,

we have

|50’ 5‘51’ VAN ‘5,‘ VANPIAAN ’5/(’
(by IH)

E|51|/\-"/\‘5,'_1|/\|U1|/\-"/\|Un|/\‘5,'+1|/\...

(by Lemma Rule Equivalence)

oo AN Sk

A | Skl

22

Lemma
If proof search fails,

So| is not a tautology.

Proof If proof search fails, there is some unproved leaf
S= Pl,...,Pk:>Q1,...,Q/

where all P;, Q; atoms, no P; = Q; and no P; = L.

Any assignment A with A(P;) =1 (for all i)

and A(Q;) = 0 (for all j) satisfies A(|S]) = 0.

Thus A(|So|) = 0 by Lemma Search Equivalence. O

Because of soundness of Fg:

Corollary

Starting with some fixed Sy, proof search cannot both fail (for
some choices) and succeed (for other choices).

= no need for backtracking upon failure!

23

Theorem (Completeness)
If = |S| then ¢ S.
Proof by contraposition: if not ¢ S then proof search must fail.

Therefore = |S]|.
Additionally we have:

Lemma

Proof search terminates.

Proof In every step, one logical operator is removed.
= Size of sequent decreases by 1

= Depth of proof tree is bounded by size of Sy

= Construction of proof tree terminates. O
Observe: Breadth only bounded by 257z of %o

Corollary

Proof search is a decision procedure: it always terminates and it
succeeds iff = S.

24

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

F:>F,A r={-F} —|F:>F,A

Fr=a Lt~ TFza

An alternative formulation of the set version:

N{-F} = F,A
~F.T=A

Gentzen used sequences (hence “sequent calculus™)

25

Admissible Rules and Cut Elimination

26

Admissible rules

Definition
A rule
S5 ... S,
S
is admissible if F¢ 51, ..., Fg S, together imply ¢ S.

= Admissible rules can be used in proofs like normal rules

Admissibility of
S5 ... S,
S

can be shown semantically (using ¢ iff =)
by proving that = |S1|, ..., = |Sa| together imply = |S|.

Proof theory is interested in syntactic proofs that show how to
eliminate admissible rules.

27

Cut elimination rule

Theorem (Gentzen's Hauptsatz)
The cut elimination rule

N=FA ILF=A
M= A

cut

is admissible.
Proof Omitted.

Proofs with cut elimination can be much shorter than proofs
without!

But: applying the rule needs creativity! (find the right F)
Intuitively: Proof of Gentzen's theorem shows how to replace
creativity by calculation.

Many applications.

28

Tableaux Calculus
Propositional Logic

A compact version of sequent calculus

29

The idea

What's “wrong” with sequent calculus:

Why do we have to copy(?) I and A
with every rule application?

The answer: tableaux calculus.
The idea:

Describe backward sequent calculus rule application
but leave I and A implicit/shared

Comparison:

Sequent Proof is a tree labeled by sequents,
trees grow upwards

Tableaux Proof is a tree labeled by formulas,
trees grow downwards

Terminology: tableau = tableaux calculus proof tree

30

Tableaux rules (examples)

Notation: +F = F occurs on the right of =
—F =~ F occurs on the left of =
S.C. Tab. Effect
F.T=A L +F +TF
= -F,A —F F
+FVG
+FV G ’
N=F,G,A - 1F = oF
= FVG,A e |
+G
r=FA T=GA _ +FAG +F/QG
= FAG,A +F|+G

+F +G

31

Interpretation of tableaux rule

FGH

if F matches the formula at some node in the tableau
extend the end of some branch starting at that node
according to FGH.

32

Example

—-A—B
—-B—C
—A
+C

A—-B,B—CA=C

33

From tableau to sequents:

» Every path from the root to a leaf in a tableau
represents a sequent

> The set of all such sequents represents
the set of leaves of the corresponding sequent calculus proof
=

» A branch is closed (proved) if both +F and —F occur on it
or —L occurs on it

» The root sequent is proved if all branches are closed

Algorithm to prove Fi,...= Gi,...:
1. Start with the tableau —F1,...,+Gy,. ...

2. while there is an open branch do
pick some non-atomic formula on that branch,
extend the branch according to the matching rule

34

Termination

No formula needs to be used twice on the same branch.
But possibly on different branches:

+-AN-B
+AV B

A formula occurrence in a tableau can be deleted
if it has been used in every unclosed branch
starting from that occurrence

35

Tableaux rules

—F +-F
+F “F
—FAG
_F +FAG
e TF 4G
FVvG
—Fve T
—Fl-¢ +G
F—G
FoG =
+F |-G

+G

36

Natural Deduction
Propositional Logic

(See the book by Troelstra and Schwichtenberg)

37

Natural deduction (Gentzen 1935) aims at natural proofs
It formalizes good mathematical practice

Resolution but also sequent calculus aim at proof search

38

Main principles

1. For every logical operator & there are two kinds of rules:

Introduction rules: How to prove F ® G

Fo G

Elimination rules What can be proved from F & G

Fo G ...
Examples
A B FAG FAG
anB M F B ¢ \b

39

Main principles

2. Proof can contain subproofs with local/closed assumptions
Example

If from the local assumption F we can prove G
then we can prove F — G.

The formal inference rule:

[F]

G —/
F—G

A proof tree:
[Pl @

Form the (open) assumption @ we can prove P — P A Q.
In symbols: QFy P — PAQ

40

Growing the proof tree

Upwards:

41

Growing the proof tree

Upwards:

P—PAQ

41

Growing the proof tree

Upwards:

P—>P/\Q_>I

41

Growing the proof tree

Upwards:

PAQ

P—PAQ

41

Growing the proof tree

Upwards:

41

Growing the proof tree

Upwards:

41

Growing the proof tree

Upwards:

41

Growing the proof tree

Upwards:

Downwards:

41

Growing the proof tree

Upwards:

Downwards:

41

Growing the proof tree

Upwards:
[Pl Q
PSPAQ
Downwards:
P Q

41

Growing the proof tree

Upwards:
[Pl Q
pro M /
PSPAQ
Downwards:
P Q
Al

41

Growing the proof tree

Upwards:
[Pl Q
PSPAQ
Downwards:
P Q
PAQ Al

41

Growing the proof tree

Upwards:
[Pl Q
pro M /
PSPAQ
Downwards:
Pl_Q Al
PAQ@

41

Growing the proof tree

Upwards:
[Pl Q
pro M /
PSPAQ
Downwards:
Pl_Q Al
PAQ@

41

ND proof trees

The nodes of a ND proof tree are labeled by formulas.
Leaf nodes represent assumptions.

The root node is the conclusion.

Assumptions can be open or closed.

Closed assumptions are written [F].

Intuition:
» Open assumptions are used in the proof of the conclusion

» Closed assumptions are local assumptions in a subproof

that have been closed (removed) by some proof rule like —/.

ND proof trees are defined inductively.

» Every F is a ND proof tree
(with open assumption F and conclusion F).
Reading: From F we can prove F.

> New proof trees are constructed by the rules of ND.

42

Natural Deduction rules

F G
FAG

Al
[F]

G
F—G

—1

F G

h

Fve ' Fve

Vi

F B
F—>g For

GHE
Fve H H,

43

Natural Deduction rules

Rules for — are special cases of rules for —-:

[F]

i -/ -F F

~F L

-E

44

Natural Deduction rules

How to read a rule
[F]

Forward:
Close all (or some) of the assumptions F in the proof of G
when applying rule r

Backward:

In the subproof of G you can use the local assumption [F].

Can use labels to show which rule application closed which
assumptions.

45

Soundness

Definition
I n F if there is a proof tree with root F and open assumptions
contained in the set of formulas I.

Lemma (Soundness)

IfT by F thenT = F

Proof by induction on the depth of the proof tree for I -y F.
Base case: norule, F Tl

Step: Case analysis of last rule

Case —E:

HTEF—G TEF

To show: ' = G

Assume AT =M A(F - G)=1and A(F)=1= A(G) =1

46

Soundness

Case
[F]
G —1
F—G
IHT,FEG

To show: N'=F = G

iffforall A, AET=AEF—>G
iffforal A, AET=(AEF=AFEG)
iffforall 4, AETand AEF = AEG
iff IH

47

Completeness

48

Towards completeness

ND can simulate truth tables

Lemma (Tertium non datur)
by FV —F

Corollary (Cases)
If F,T+=n G and =F,T by G thenT Fpy G.

Definition

L F ifA(F)=1
FA'{ﬁF if A(F) =0

49

Towards completeness

Lemma (1)

If atoms(F) C {A1,...,An} then A{',... At by FA
Proof by induction on F

Lemma (2)

If atoms(F) = {A1,...,Ap} and = F
then A, ..., Al -y F for all k < n

Proof by (downward) induction on k =n,...,0

50

Completeness

Theorem (Completeness)
IfT = F thenT by F
Proof

51

Relating
Sequent Calculs and Natural Deduction

52

Constructive approach to relating proof systems:

» Show how to transform proofs in one system into proofs in
another system

» Implicit in inductive (meta)proof

53

Theorem (ND can simulate SC)

Iftg T = A then,-AFyn L (where ~{F1,...} = {=F1,...

Proof by induction on (the depth of) F¢ I = A

1y,

54

Corollary (Completeness of ND)
IfT | =F thenT -y F
Proof If I = F then Iy = F for some finite [y C T.

55

Two completness proofs

» Direct

» By simulating a complete system

56

Theorem (SC can simulate ND)
IfT' by F and T is finite thentg I = F
Proof by inductionon Iy F

57

Corollary
If T p F then there is some finite g C I such thatbg g = F

58

