EXERCISE SHEET: QUANTIFIER ELIMINATION

Exercise 1: Fourier-Motzkin Elimination

Apply the Fourier–Motzkin Elimination to check the following sentences:

- 1. $\exists x \exists y (2 \cdot x + 3 \cdot y = 7 \land x < y \land 0 < x)$
- 2. $\exists x \exists y (3 \cdot x + 3 \cdot y < 8 \land 8 < 3 \cdot x + 2 \cdot y)$

Use \iff if two formulas are logically equivalent and \iff_{R_+} if the equivalence requires the theory R_+ .

Exercise 2: Ferrante-Rackoff Elimination

Apply the Ferrante–Rackoff Elimination to check the validity of the following sentence:

$$\exists x (\exists y (x = 2 \cdot y) \to (2 \cdot x \ge 0 \lor 3 \cdot x < 2))$$

Exercise 3: Presburger Arithmetic

Using quantifier elimination check whether the following sentence belongs to Presburger arithmetic.

$$\forall x \exists y \big((x < 2y + 1 \land 2y < x + 1) \lor (x < 2y + 2 \land 2y < x) \big)$$

Exercise 4: Completeness

Which of the following theories are complete? Justify your answers.

- 1. Presburger arithmetic,
- 2. Theory of linear orders,
- 3. Theory of dense linear orders,
- 4. Group theory.