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Exercise sheet: Quantifier Elimination

Exercise 1: Fourier-Motzkin Elimination

Apply the Fourier–Motzkin Elimination to check the following sentences:

1. ∃x∃y(2 · x+ 3 · y = 7 ∧ x < y ∧ 0 < x)

2. ∃x∃y(3 · x+ 3 · y < 8 ∧ 8 < 3 · x+ 2 · y)

Use ⇐⇒ if two formulas are logically equivalent and ⇐⇒R+ if the equivalence requires
the theory R+.

Solution ∃x∃y(2 · x+ 3 · y = 7 ∧ x < y ∧ 0 < x)

⇐⇒ ∃x (∃y (2 · x+ 3 · y = 7 ∧ x < y) ∧ 0 < x)

⇐⇒R+ ∃x
(
∃y

(
y =

7

3
− 2

3
· x ∧ x < y

)
∧ 0 < x

)
⇐⇒R+

∃x
(
x <

7

3
− 2

3
· x ∧ 0 < x

)
⇐⇒R+

∃x
(
x <

7

5
∧ 0 < x

)
⇐⇒R+ 0 <

7

5
⇐⇒R+

> (optional step; not part of QEP)

∃x∃y(3 · x+ 3 · y < 8 ∧ 8 < 3 · x+ 2 · y)

⇐⇒R+
∃x∃y

(
y <

8

3
− x ∧ 4− 3

2
· x < y

)
⇐⇒R+ ∃x

(
4− 3

2
· x <

8

3
− x

)
⇐⇒R+

∃x
(
8

3
< x

)
⇐⇒R+ >

Exercise 2: Ferrante-Rackoff Elimination

Apply the Ferrante–Rackoff Elimination to check the validity of the following sentence:

∃x(∃y(x = 2 · y) → (2 · x ≥ 0 ∨ 3 · x < 2))



∃x(∃y(x = 2 · y) → (2 · x ≥ 0 ∨ 3 · x < 2))

⇐⇒R+
∃x(∃y(y =

1

2
x) → (2 · x ≥ 0 ∨ 3 · x < 2))

⇐⇒R+
∃x

(
⊥ ∨⊥ ∨ 1

2
x =

1

2
x ∨ ⊥ → (2 · x ≥ 0 ∨ 3 · x < 2)

)
⇐⇒ ∃x

((
> ∧> ∧ ¬

(
1

2
x =

1

2
x

)
∧ >

)
∨ (2 · x ≥ 0 ∨ 3 · x < 2)

)
⇐⇒R+

∃x
((

> ∧> ∧
(
1

2
x <

1

2
x

)
∧ >

)
∨ (2 · x ≥ 0 ∨ 3 · x < 2)

)
⇐⇒R+

∃x
(
(> ∧> ∧⊥ ∧>) ∨

(
0 < x ∨ x = 0 ∨ x <

2

3

))
⇐⇒R+

∨
t∈{−∞,∞,0,1/3}

(
(> ∧> ∧⊥ ∧ >) ∨

(
0 < x ∨ x = 0 ∨ x <

2

3

))
[t/x]

⇐⇒ (· · · ∨ (⊥ ∨⊥ ∨>)) ∨ (· · · ∨ (> ∨⊥ ∨⊥)) ∨
(
· · · ∨

(
0 < 0 ∨ 0 = 0 ∨ 0 <

2

3

))
∨
(
· · · ∨

(
0 <

1

3
∨ 1

3
= 0 ∨ 1

3
<

2

3

))
⇐⇒ > (optional step; not part of QEP)

Exercise 3: Presburger Arithmetic

Using quantifier elimination check whether the following sentence belongs to Presburger
arithmetic.

∀x∃y
(
(x < 2y + 1 ∧ 2y < x+ 1) ∨ (x < 2y + 2 ∧ 2y < x)

)
Solution

Note that

∀x∃y
(
(x < 2y + 1 ∧ 2y < x+ 1) ∨ (x < 2y + 2 ∧ 2y < x)

)
≡∀x

(
∃y(x ≤ 2y ∧ 2y ≤ x) ∨ ∃y(x− 1 ≤ 2y ∧ 2y ≤ x− 1)

)
Let F1 = ∃y(x ≤ 2y∧2y ≤ x) and F2 = ∃y(x−1 ≤ 2y∧2y ≤ x−1). We first eliminate
quantifiers from these two subformulas.

For eliminating the quantifier ∃y from F1, we proceed in two steps. First, we need
to set all the coefficients of y to either 1 or -1. To this end, performing the first step of
the quantifier elimination procedures yields the following equivalent formula G1.

G1 = ∃y(x ≤ y ∧ y ≤ x ∧ 2 | y)

We can now perform the second step of the quantifier elimination procedure on G1.
To this end, note that AL = {0 ≤ y − x}, AU = {0 ≤ −y + x}, L = {x}, U = {x}, D =



{2 | y} and so the performing the second step of the quantifier elimination procedure
on G1 yields the following equivalent formula H1.

H1 = ((x ≤ x) ∧ (x ≤ x) ∧ (2 | x)) ∨ ((x ≤ x+ 1) ∧ (x+ 1 ≤ x) ∧ (2 | x+ 1))

≡ 2 | x

Similarly, from F2 we obtain H2 = 2 | x − 1. Consequently, the initial formula is
equivalent to H = ∀x((2 | x) ∨ (2 | x− 1)). Now observe that ¬(m | n) ≡

∨
1≤i<m m |

n+ i. Hence,

∀x((2 | x) ∨ (2 | x− 1))

≡¬∃x(¬(2 | x) ∧ ¬(2 | x− 1))

≡¬∃x((2 | x+ 1) ∧ (2 | x))

We now eliminate x from (2 | x + 1) ∧ (2 | x). Note that we do not need to apply
the first step of quantifier elimination, since all the coefficients of x are already either 1
or -1. Performing the second step allows us to derive the following.

∃x
(
(2 | x+ 1) ∧ (2 | x)

)
≡((2 | 0 + 1) ∧ (2 | 0)) ∨ ((2 | 1 + 1) ∧ (2 | 1))
≡((2 | 1) ∧ (2 | 0)) ∨ ((2 | 2) ∧ (2 | 1))
≡false.

Finally, ¬false ≡ true, which shows that the initial formula is true in Presburger
arithmetic.

Exercise 4: Completeness

Which of the following theories are complete? Justify your answers.

1. Presburger arithmetic,

2. Theory of linear orders,

3. Theory of dense linear orders,

4. Group theory.

Solution

1. Presburger arithmetic is complete since it is defined as a theory of a structure.
For every formula, this structure is either a model or it is a model for its negation,
and thus, for every F , either F or ¬F is in Presburger arithmetic, which makes
it complete.

2. The theory of linear orders is not complete, since neither the formula ∀x∃y(y < x)
nor its negation belong to the theory.



3. The theory of dense linear orders is also not complete, and the same sentence
proves that as in the previous case.

4. The group theory is not complete, as neither the formula ∀x∀y(x · y = y · x) nor
its negation belong to it. There exist both abelian and non-abelian groups.
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