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EXERCISE SHEET: PROPOSITIONAL PROOF THEORY

Exercise 1: Natural Deduction

Prove the following formula using natural deduction.
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Exercise 2: Sequent Calculus
Prove the following formulae in sequent calculus:
1. =3z P(z) — Va—P(x)
2. (Vz(PVQ(x))) = (PVVzQ(z))
Solution
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Exercise 3: Natural Deduction can Simulate Sequent Calculus II

In exercise 6.2 we proved that if T' ¢ A then I' Fx \/ A for formulae in propositional logic.
Augment your proof by the new cases for FOL.
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Exercise 4: Counterexamples from Sequent Calculus
Consider the statement Yz (P(xz) — —P(f(x))).

1. What happens when trying to prove the validity of this formula in sequent calculus?
2. How can we derive a countermodel from the proof tree?

3. Is there a smaller countermodel?



Solution

The proof tree gets stuck:

P(y), P(f(y)) =
P(y) = -P(f(y))
= P(y) = =P(f(y))
= Va(P(z) = ~P(f(z)))
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As in the lecture, we can create a countermodel A: Let U4 be the set of all terms over y, f(-),
set yA =y, fAt) = f(t*), and PA = {y, f(y)}. Then A = P(y) and A |= P(f(y)) and hence
A EVx (P(x) — —P(f(x))). Note that A is infinite, but there are countermodels with just two
elements {a,b}: Set f(a) :=0b, f(b) :=b, P(a) and P(b). Then P(a) and P(f(a)) = P(b).
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