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EXERCISE SHEET: RESOLUTION AND EQUALITY

Exercise 1: Lifting Lemma

Consider the following resolution:

(P(z,1), P(f(a), )} (~P(f(2), 9()), Q. 1)}
[F(a)/a]
la/x]
[9(b)/y]
l9(b)/2] /4]
{P(f(a). (b))} (=P (f(a), 4(b)), Q(ab)}
{Q(a.b)}

Follow the proof of the Lifting Lemma and find out which (predicate logic) resolution
step is constructed from this.

Solution

The missing predicate resolution step can be depicted as follows:

{=P(f(2),9(y)), Qx,y)}

[u/]
[v/y]
{P(z,y), P(f(a),2)} {=P(f (), 9(v)), Q(u, v)}
[f(a)/x]
[a/z]
igzg% \ / "
{P(f(a),9(b))} {Q(a,v)} {=P(f(a), 9(b)),Q(a,b)}



Exercise 2: Simulating Equality

(a) Show that the following formula has a Herbrand Model:
Fa=Vavy(f(z) = fly) >z =y)

(b) Construct G := Er A F[Eq/ =] as described in the lecture slides.

(c) Give a model of G that is not a model of F'

Solution

(a) In the Herbrand structure #, the function f** maps a term t to the term f(t).
Since f(t) = f(') iff t = ¢/, it follows that f™ is injective and H |= F.
(b)
Ep =Vz.Eq(x,x)

AVaVy.Eq(z,y) — Eq(y, z)

AVzVyVz.Eq(x,y) — FEq(y, z) = Eq(x, z)

AVaVy.Eq(xz,y) = Eq(f(y), f(x))

F[Eq/ =] = VaVy.(Eq(f(2), [(y)) = Eq(z,y))

(c) We construct A over the universe Y = Z and choose:
f () =2
Eq"(z,y) & |z| = |y]
A is a model of G since |2%| = |y?| iff |z| = |y|. But since it does not imply = = y,
A is not a model of F.
Exercise 3: Equality in Herbrand’s theorem

Let A be a structure with signature 7. Moreover, let 7¢, 7 be a partition of 7 such that
77 only contains function symbols and 7 only predicate symbols. For the rest of this
exercise we assume that there exists at least one constant symbol ¢ € 7¢. Furthermore,
we consider first-order logic with equality in this exercise. Let i/ be the ground terms

constructed from 7.

1. Prove that ~4C U x U with
ty ~qate if At =t

is an equivalence relation. As usual we use [t]., = {t' €U |t ~4 t'}.



2. Let P € 1g be a predicate symbol with arity k. Show that for all t1,... ¢, ¢;,... 1, €
U with t; ~4 t} for all 1 € {1,...,k} holds

AE P(ty,... ty) if AE P(t),...,t).

3. Let ¢ be a satisfiable closed formula in Skolem normal form over the signature
7 and A = ¢. Prove that there exists a model of 7 with universe U,., =
{[t]oq: t €U}

Conclude that Herbrand’s theorem can be generalized to first-order with equality.

4. Apply your generalization from above to the sentence you gave for Exercise 2 in
the last exercise sheet.

5. Consider the following Formula:

Fi=va(f(f(x)) = z)

a) Give two models A and B for F such ~ 4 and ~g differ.
b) Give the sets U, and U,

Solution

1. Establishing that ~ 4 is an equivalence relation is an immediate consequence
from the fact that = is an equivalence relation. We observe that if ¢t ~4 ¢ we get

At =1t Since = is always interpreted by the equality relation we know that
tA = A

Reflexive Trivially, t* = t* and, therefore, A |=t = t which is the definition of
t~gt.
Symmetric If t*4 = t/A then t* = t'A and, consequently, t ~_4 ¢ implies t’ ~ 4 t.

Transitive Let t; ~ 4 ty and ¢y ~4 t3. We know then that t{' = ¢5' and t5' = 5\,
Note that t{* = t5' and, therefore, A = t; = t3 which imples the desired

l1~ats.

2. Due to the symmetry of the statement it suffices to only show one direction.
Thus, we assume A |= P(t1,...,t;) and t; ~4 t; for i € {1,...,k}. Observe that
t4 =t since A= t; = t, for all i € {4,...,k}. Hence,

Al P(ty,...,tg)
iff (tf,...,t7) e PA
iff (¢4, 1) e PA
if A P(t),....t,)



3. Let ¢ be a satisfiable closed 7 formula in Skolem normal form in first-order logic
with equality and let A be a model of . Let U, all ground terms of 7 (as usual we
assume that 7 contains at least one constant symbol). We construct a Herbrand
structure H with universe U, , = {[t]~,: t € U}. First, we set for every constant
symbol ¢ € 7 that ¢ = [c|.,. Moreover, let f € 7 be a function symbol with
arity k. Then, we set f™([t1]~ ., ..., [tel~a) = [f(t1,. .., tk)]~,. Finally, we fix
for every predicate symbol P € 7 with arity ¢ that

(1) mns - [te]m) € PTEAfE A= P(ty, ... t0).

Using question 2., we observe that this definition actually is well-defined; that is,
it does not matter which representative of the equivalence classes we choose since
they all behave the same w.r.t. interpretation of P under A.

It remains to show that H = ¢. The proof, however, is very similar to the
proof from the lecture. Hence, we may simply adapt it. Therefore, we proceed
by induction on the number of universal quantifications in ¢. The base case
postulates no quantification in ¢ which is then a Boolean combination of terms
of the form P(t1,...,tx) or t; = to. However, by construction of H we see
that H = P(t1,...,tx) if and only if A |= P(t1,...,t) and, more interestingly,
A [=t1 = to if and only if t1 ~4 o if and only if [t1]~, = [t2]~, if and only if
H E t; = ta. Therefore, since A = ¢ we get H = .

Assume H is a model for those closed formulae with n universal quantifications
for which A is a model. We establish now that for every formula with n + 1
universal quantifications for which A is a model H is a model too. Let now
@ = VoY where ¢ =V, ...Vr,n where 1 is a quantifier free formula. Assume
A |= ¢. Pick an arbitrary term ¢t € U, and consider the formula ¢[t/z]. i.e. we
substituted every occurence of xo with ¢. Since A |= ¢ also A |= ¢[t/zo]. By
induction hypothesis we get H = ¥[t/xo] since A |= ¢ and 1) contains n universal
quantifications. However, since t" = [t]., we get get that Hags [t , E 4. By
the arbitrary choice of ¢ we observe that for every t € U, we have Hy i, F ¥
and, consequently,

~—~—

=

Hence, we may state that for every closed sastisfiable formula in Skolem normal
form in first-order logic with equality there is a Herbrand model of the form
above.

4. Our example is ¢ = VaVy((x = y) A (f(x) = x)) which is satisfiable with
A = ({a},{a — a}). We now add one arbitrary constant symbol ¢ to A such
that ¢* = a, i.e. A = ({a},{ar a},a). The set of ground terms becomes
U= e f(c), f(f(e),...}. However, we observe that A =t = f(¢) for every
ground term ¢t € U. Consequently, we get ~4= U X U by simple inductive
reasoning. Hence, H = ({[c]~,},{[c]ws — [c]us},[c]~a). We observe that
H E ¢ and, moreover, A and H are isomorphic.



(a) Let U* = UB = Z We choose f*: z + = as the identity function and
fB: 2+ —x as negation. Both are clearly self inverse.

(b) Since F' does not contain a constant, we add the constant ¢ and extend our
models with ¢A¢® = 1. The set of ground terms generated by {f,c} is:

U={f"c)| keN}
In A f(z) = 2 therefore [f*(c)]~, = [f¥ (¢)]4 = U and hence
U/NA = {U}

In B we have f¥(c) = f¥(¢) iff k = k' (mod 2) which results in Uy =
{lc]mp, [f(¢)]~p} with the following two equivalence classes:
[els = {F*"(c) | k €N}
(s = (S (e) [ K € N}
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