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Exercise sheet: Resolution and Equality
Exercise 1: Lifting Lemma

Consider the following resolution:

{Q(a, b)}

{¬P (f(a), g(b)), Q(a, b)}

{¬P (f(x), g(y)), Q(x, y)}

[a/x]
[b/y]

{P (f(a), g(b))}

{P (x, y), P (f(a), z)}

[f(a)/x]
[g(b)/y]
[g(b)/z]

Follow the proof of the Lifting Lemma and find out which (predicate logic) resolution
step is constructed from this.

Solution

The missing predicate resolution step can be depicted as follows:

{Q(a, b)}

{¬P (f(a), g(b)), Q(a, b)}

{¬P (f(u), g(v)), Q(u, v)}

{¬P (f(x), g(y)), Q(x, y)}

[u/x]
[v/y]

[a/x]
[b/y]

{P (f(a), g(b))}

{P (x, y), P (f(a), z)}

[f(a)/x]
[g(b)/y]
[g(b)/z]

{Q(a, v)}

[b/v]



Exercise 2: Simulating Equality

(a) Show that the following formula has a Herbrand Model:

F := ∀x∀y(f(x) = f(y) → x = y)

(b) Construct G := EF ∧ F [Eq/ =] as described in the lecture slides.

(c) Give a model of G that is not a model of F

Solution

(a) In the Herbrand structure H, the function fH maps a term t to the term f(t).
Since f(t) = f(t′) iff t = t′, it follows that fH is injective and H |= F .

(b)

EF = ∀x.Eq(x, x)
∧ ∀x∀y.Eq(x, y) → Eq(y, x)

∧ ∀x∀y∀z.Eq(x, y) → Eq(y, z) → Eq(x, z)

∧ ∀x∀y.Eq(x, y) → Eq(f(y), f(x))

F [Eq/ =] = ∀x∀y.(Eq(f(x), f(y)) → Eq(x, y))

(c) We construct A over the universe UA = Z and choose:

fH(x) := x2

EqH(x, y) :⇔ |x| = |y|

A is a model of G since |x2| = |y2| iff |x| = |y|. But since it does not imply x = y,
A is not a model of F .

Exercise 3: Equality in Herbrand’s theorem

Let A be a structure with signature τ . Moreover, let τf , τR be a partition of τ such that
τf only contains function symbols and τR only predicate symbols. For the rest of this
exercise we assume that there exists at least one constant symbol c ∈ τf . Furthermore,
we consider first-order logic with equality in this exercise. Let U be the ground terms
constructed from τf .

1. Prove that ∼A⊆ U × U with

t1 ∼A t2 iff A |= t1 = t2

is an equivalence relation. As usual we use [t]∼A = {t′ ∈ U | t ∼A t′}.



2. Let P ∈ τR be a predicate symbol with arity k. Show that for all t1, . . . , tk, t′1, . . . , t′k ∈
U with ti ∼A t′i for all 1 ∈ {1, . . . , k} holds

A |= P (t1, . . . , tk) iff A |= P (t′1, . . . , t
′
k).

3. Let ϕ be a satisfiable closed formula in Skolem normal form over the signature
τ and A |= ϕ. Prove that there exists a model of τ with universe U/∼A =
{[t]∼A : t ∈ U}.
Conclude that Herbrand’s theorem can be generalized to first-order with equality.

4. Apply your generalization from above to the sentence you gave for Exercise 2 in
the last exercise sheet.

5. Consider the following Formula:

F := ∀x(f(f(x)) = x)

a) Give two models A and B for F such ∼A and ∼B differ.
b) Give the sets U/∼A and U/∼B

Solution

1. Establishing that ∼A is an equivalence relation is an immediate consequence
from the fact that = is an equivalence relation. We observe that if t ∼A t′ we get
A |= t = t′. Since = is always interpreted by the equality relation we know that
tA = t′A.
Reflexive Trivially, tA = tA and, therefore, A |= t = t which is the definition of

t ∼A t.
Symmetric If tA = t′A then tA = t′A and, consequently, t ∼A t′ implies t′ ∼A t.
Transitive Let t1 ∼A t2 and t2 ∼A t3. We know then that tA1 = tA2 and tA2 = tA3 .

Note that tA1 = tA3 and, therefore, A |= t1 = t3 which imples the desired
t1 ∼A t3.

2. Due to the symmetry of the statement it suffices to only show one direction.
Thus, we assume A |= P (t1, . . . , tk) and t′i ∼A ti for i ∈ {1, . . . , k}. Observe that
tAi = t′Ai since A |= ti = t′i for all i ∈ {i, . . . , k}. Hence,

A |= P (t1, . . . , tk)

iff
〈
tA1 , . . . , t

A
k

〉
∈ PA

iff
〈
t′A1 , . . . , t′Ak

〉
∈ PA

iff A |= P (t′1, . . . , t
′
k)



3. Let ϕ be a satisfiable closed τ formula in Skolem normal form in first-order logic
with equality and let A be a model of ϕ. Let Uτ all ground terms of τ (as usual we
assume that τ contains at least one constant symbol). We construct a Herbrand
structure H with universe U/∼A = {[t]∼A : t ∈ U}. First, we set for every constant
symbol c ∈ τ that cH = [c]∼A . Moreover, let f ∈ τ be a function symbol with
arity k. Then, we set fH([t1]∼A , . . . , [tk]∼A) = [f(t1, . . . , tk)]∼A . Finally, we fix
for every predicate symbol P ∈ τ with arity ` that

〈[t1]∼A
, . . . , [t`]∼A

〉 ∈ PH iff A |= P (t1, . . . , t`).

Using question 2., we observe that this definition actually is well-defined; that is,
it does not matter which representative of the equivalence classes we choose since
they all behave the same w.r.t. interpretation of P under A.
It remains to show that H |= ϕ. The proof, however, is very similar to the
proof from the lecture. Hence, we may simply adapt it. Therefore, we proceed
by induction on the number of universal quantifications in ϕ. The base case
postulates no quantification in ϕ which is then a Boolean combination of terms
of the form P (t1, . . . , tk) or t1 = t2. However, by construction of H we see
that H |= P (t1, . . . , tk) if and only if A |= P (t1, . . . , tk) and, more interestingly,
A |= t1 = t2 if and only if t1 ∼A t2 if and only if [t1]∼A = [t2]∼A if and only if
H |= t1 = t2. Therefore, since A |= ϕ we get H |= ϕ.
Assume H is a model for those closed formulae with n universal quantifications
for which A is a model. We establish now that for every formula with n + 1
universal quantifications for which A is a model H is a model too. Let now
ϕ = ∀x0ψ where ψ = ∀x1 . . . ∀xnη where η is a quantifier free formula. Assume
A |= ϕ. Pick an arbitrary term t ∈ Uτ and consider the formula ψ[t/x0]. i.e. we
substituted every occurence of x0 with t. Since A |= ϕ also A |= ψ[t/x0]. By
induction hypothesis we get H |= ψ[t/x0] since A |= ψ and ψ contains n universal
quantifications. However, since tH = [t]∼A we get get that Hx0 7→[t]∼A

|= ψ. By
the arbitrary choice of t we observe that for every t ∈ Uτ we have Hx0 7→[t]A∼

|= ψ
and, consequently,

H |= ∀x0ψ︸ ︷︷ ︸
=ϕ

.

Hence, we may state that for every closed sastisfiable formula in Skolem normal
form in first-order logic with equality there is a Herbrand model of the form
above.

4. Our example is ϕ = ∀x∀y((x = y) ∧ (f(x) = x)) which is satisfiable with
A = 〈{a} , {a 7→ a}〉. We now add one arbitrary constant symbol c to A such
that cA = a, i.e. A = 〈{a} , {a 7→ a} , a〉. The set of ground terms becomes
U = {c, f(c), f(f(c)), . . .}. However, we observe that A |= t = f(t) for every
ground term t ∈ U . Consequently, we get ∼A= U × U by simple inductive
reasoning. Hence, H = 〈{[c]∼A} , {[c]∼A 7→ [c]∼A} , [c]∼A〉. We observe that
H |= ϕ and, moreover, A and H are isomorphic.



5. (a) Let UA = UB = Z We choose fA : x 7→ x as the identity function and
fB : x 7→ −x as negation. Both are clearly self inverse.

(b) Since F does not contain a constant, we add the constant c and extend our
models with cAcB = 1. The set of ground terms generated by {f, c} is:

U = {fk(c) | k ∈ N}

In A f(x) = x therefore [fk(c)]∼A = [fk
′
(c)]A = U and hence

U/∼A = {U}

In B we have fk(c) = fk
′
(c) iff k ≡ k′ (mod 2) which results in U/∼B =

{[c]∼B , [f(c)]∼B} with the following two equivalence classes:

[c]∼B = {f2k(c) | k ∈ N}
[f(c)]∼B = {f2k+1(c) | k ∈ N}
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