EXERCISE SHEET: RESOLUTION AND EQUALITY

Exercise 1: Lifting Lemma

Consider the following resolution:

Follow the proof of the Lifting Lemma and find out which (predicate logic) resolution step is constructed from this.

Solution

The missing predicate resolution step can be depicted as follows:

Exercise 2: Simulating Equality

(a) Show that the following formula has a Herbrand Model:

$$F \coloneqq \forall x \forall y (f(x) = f(y) \to x = y)$$

- (b) Construct $G \coloneqq E_F \wedge F[Eq/=]$ as described in the lecture slides.
- (c) Give a model of G that is not a model of F

Solution

- (a) In the Herbrand structure \mathcal{H} , the function $f^{\mathcal{H}}$ maps a term t to the term f(t). Since f(t) = f(t') iff t = t', it follows that $f^{\mathcal{H}}$ is injective and $\mathcal{H} \models F$.
- (b)

$$E_F = \forall x. Eq(x, x)$$

$$\land \forall x \forall y. Eq(x, y) \to Eq(y, x)$$

$$\land \forall x \forall y \forall z. Eq(x, y) \to Eq(y, z) \to Eq(x, z)$$

$$\land \forall x \forall y. Eq(x, y) \to Eq(f(y), f(x))$$

$$F[Eq/=] = \forall x \forall y. (Eq(f(x), f(y)) \to Eq(x, y))$$

(c) We construct \mathcal{A} over the universe $\mathcal{U}^{\mathcal{A}} = \mathbb{Z}$ and choose:

$$f^{\mathcal{H}}(x) \coloneqq x^{2}$$
$$Eq^{\mathcal{H}}(x, y) :\Leftrightarrow |x| = |y|$$

 \mathcal{A} is a model of G since $|x^2| = |y^2|$ iff |x| = |y|. But since it does not imply x = y, \mathcal{A} is not a model of F.

Exercise 3: Equality in Herbrand's theorem

Let \mathcal{A} be a structure with signature τ . Moreover, let τ_f, τ_R be a partition of τ such that τ_f only contains function symbols and τ_R only predicate symbols. For the rest of this exercise we assume that there exists at least one constant symbol $c \in \tau_f$. Furthermore, we consider first-order logic with equality in this exercise. Let \mathcal{U} be the ground terms constructed from τ_f .

1. Prove that $\sim_{\mathcal{A}} \subseteq \mathcal{U} \times \mathcal{U}$ with

$$t_1 \sim_{\mathcal{A}} t_2$$
 iff $\mathcal{A} \models t_1 = t_2$

is an equivalence relation. As usual we use $[t]_{\sim_{\mathcal{A}}} = \{t' \in \mathcal{U} \mid t \sim_{\mathcal{A}} t'\}.$

2. Let $P \in \tau_R$ be a predicate symbol with arity k. Show that for all $t_1, \ldots, t_k, t'_1, \ldots, t'_k \in \mathcal{U}$ with $t_i \sim_{\mathcal{A}} t'_i$ for all $1 \in \{1, \ldots, k\}$ holds

$$\mathcal{A} \models P(t_1, \ldots, t_k)$$
 iff $\mathcal{A} \models P(t'_1, \ldots, t'_k)$.

3. Let φ be a satisfiable closed formula in Skolem normal form over the signature τ and $\mathcal{A} \models \varphi$. Prove that there exists a model of τ with universe $\mathcal{U}_{/\sim_{\mathcal{A}}} = \{[t]_{\sim_{\mathcal{A}}} : t \in \mathcal{U}\}.$

Conclude that Herbrand's theorem can be generalized to first-order with equality.

- 4. Apply your generalization from above to the sentence you gave for Exercise 2 in the last exercise sheet.
- 5. Consider the following Formula:

$$F \coloneqq \forall x(f(f(x)) = x)$$

- a) Give two models \mathcal{A} and \mathcal{B} for F such $\sim_{\mathcal{A}}$ and $\sim_{\mathcal{B}}$ differ.
- b) Give the sets $\mathcal{U}_{/\sim_{\mathcal{A}}}$ and $\mathcal{U}_{/\sim_{\mathcal{B}}}$

Solution

1. Establishing that $\sim_{\mathcal{A}}$ is an equivalence relation is an immediate consequence from the fact that = is an equivalence relation. We observe that if $t \sim_{\mathcal{A}} t'$ we get $\mathcal{A} \models t = t'$. Since = is always interpreted by the equality relation we know that $t^{\mathcal{A}} = t'^{\mathcal{A}}$.

Reflexive Trivially, $t^{\mathcal{A}} = t^{\mathcal{A}}$ and, therefore, $\mathcal{A} \models t = t$ which is the definition of $t \sim_{\mathcal{A}} t$.

Symmetric If $t^{\mathcal{A}} = t'^{\mathcal{A}}$ then $t^{\mathcal{A}} = t'^{\mathcal{A}}$ and, consequently, $t \sim_{\mathcal{A}} t'$ implies $t' \sim_{\mathcal{A}} t$.

Transitive Let $t_1 \sim_{\mathcal{A}} t_2$ and $t_2 \sim_{\mathcal{A}} t_3$. We know then that $t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$ and $t_2^{\mathcal{A}} = t_3^{\mathcal{A}}$. Note that $t_1^{\mathcal{A}} = t_3^{\mathcal{A}}$ and, therefore, $\mathcal{A} \models t_1 = t_3$ which imples the desired $t_1 \sim_{\mathcal{A}} t_3$.

2. Due to the symmetry of the statement it suffices to only show one direction. Thus, we assume $\mathcal{A} \models P(t_1, \ldots, t_k)$ and $t'_i \sim_{\mathcal{A}} t_i$ for $i \in \{1, \ldots, k\}$. Observe that $t_i^{\mathcal{A}} = t'^{\mathcal{A}}_i$ since $\mathcal{A} \models t_i = t'_i$ for all $i \in \{i, \ldots, k\}$. Hence,

$$\begin{split} \mathcal{A} &\models P(t_1, \dots, t_k) \\ \text{iff } \left\langle t_1^{\mathcal{A}}, \dots, t_k^{\mathcal{A}} \right\rangle \in P^{\mathcal{A}} \\ \text{iff } \left\langle t_1^{\prime \mathcal{A}}, \dots, t_k^{\prime \mathcal{A}} \right\rangle \in P^{\mathcal{A}} \\ \text{iff } \mathcal{A} &\models P(t_1^{\prime}, \dots, t_k^{\prime}) \end{split}$$

3. Let φ be a satisfiable closed τ formula in Skolem normal form in first-order logic with equality and let \mathcal{A} be a model of φ . Let \mathcal{U}_{τ} all ground terms of τ (as usual we assume that τ contains at least one constant symbol). We construct a Herbrand structure \mathcal{H} with universe $\mathcal{U}_{/\sim_{\mathcal{A}}} = \{[t]_{\sim_{\mathcal{A}}} : t \in \mathcal{U}\}$. First, we set for every constant symbol $c \in \tau$ that $c^{\mathcal{H}} = [c]_{\sim_{\mathcal{A}}}$. Moreover, let $f \in \tau$ be a function symbol with arity k. Then, we set $f^{\mathcal{H}}([t_1]_{\sim_{\mathcal{A}}}, \ldots, [t_k]_{\sim_{\mathcal{A}}}) = [f(t_1, \ldots, t_k)]_{\sim_{\mathcal{A}}}$. Finally, we fix for every predicate symbol $P \in \tau$ with arity ℓ that

$$\langle [t_1]_{\sim_A}, \dots, [t_\ell]_{\sim_A} \rangle \in P^{\mathcal{H}} \text{ iff } \mathcal{A} \models P(t_1, \dots, t_\ell)$$

Using question 2., we observe that this definition actually is well-defined; that is, it does not matter which representative of the equivalence classes we choose since they all behave the same w.r.t. interpretation of P under A.

It remains to show that $\mathcal{H} \models \varphi$. The proof, however, is very similar to the proof from the lecture. Hence, we may simply adapt it. Therefore, we proceed by induction on the number of universal quantifications in φ . The base case postulates no quantification in φ which is then a Boolean combination of terms of the form $P(t_1, \ldots, t_k)$ or $t_1 = t_2$. However, by construction of \mathcal{H} we see that $\mathcal{H} \models P(t_1, \ldots, t_k)$ if and only if $\mathcal{A} \models P(t_1, \ldots, t_k)$ and, more interestingly, $\mathcal{A} \models t_1 = t_2$ if and only if $t_1 \sim_{\mathcal{A}} t_2$ if and only if $[t_1]_{\sim_{\mathcal{A}}} = [t_2]_{\sim_{\mathcal{A}}}$ if and only if $\mathcal{H} \models t_1 = t_2$. Therefore, since $\mathcal{A} \models \varphi$ we get $\mathcal{H} \models \varphi$.

Assume \mathcal{H} is a model for those closed formulae with n universal quantifications for which \mathcal{A} is a model. We establish now that for every formula with n + 1universal quantifications for which \mathcal{A} is a model \mathcal{H} is a model too. Let now $\varphi = \forall x_0 \psi$ where $\psi = \forall x_1 \dots \forall x_n \eta$ where η is a quantifier free formula. Assume $\mathcal{A} \models \varphi$. Pick an arbitrary term $t \in \mathcal{U}_{\tau}$ and consider the formula $\psi[t/x_0]$. i.e. we substituted every occurence of x_0 with t. Since $\mathcal{A} \models \varphi$ also $\mathcal{A} \models \psi[t/x_0]$. By induction hypothesis we get $\mathcal{H} \models \psi[t/x_0]$ since $\mathcal{A} \models \psi$ and ψ contains n universal quantifications. However, since $t^{\mathcal{H}} = [t]_{\sim_{\mathcal{A}}}$ we get get that $\mathcal{H}_{x_0 \mapsto [t]_{\sim_{\mathcal{A}}}} \models \psi$. By the arbitrary choice of t we observe that for every $t \in \mathcal{U}_{\tau}$ we have $\mathcal{H}_{x_0 \mapsto [t]_{\mathcal{A}_{\sim}}} \models \psi$ and, consequently,

$$\mathcal{H} \models \underbrace{\forall x_0 \psi}_{=\varphi}$$

Hence, we may state that for every closed sastisfiable formula in Skolem normal form in first-order logic with equality there is a Herbrand model of the form above.

4. Our example is $\varphi = \forall x \forall y ((x = y) \land (f(x) = x))$ which is satisfiable with $\mathcal{A} = \langle \{a\}, \{a \mapsto a\} \rangle$. We now add one arbitrary constant symbol c to \mathcal{A} such that $c^{\mathcal{A}} = a$, i.e. $\mathcal{A} = \langle \{a\}, \{a \mapsto a\}, a \rangle$. The set of ground terms becomes $\mathcal{U} = \{c, f(c), f(f(c)), \ldots\}$. However, we observe that $\mathcal{A} \models t = f(t)$ for every ground term $t \in \mathcal{U}$. Consequently, we get $\sim_{\mathcal{A}} = \mathcal{U} \times \mathcal{U}$ by simple inductive reasoning. Hence, $\mathcal{H} = \langle \{[c]_{\sim_{\mathcal{A}}}\}, \{[c]_{\sim_{\mathcal{A}}}\}, [c]_{\sim_{\mathcal{A}}}\rangle$. We observe that $\mathcal{H} \models \varphi$ and, moreover, \mathcal{A} and \mathcal{H} are isomorphic.

- 5. (a) Let $\mathcal{U}^{\mathcal{A}} = \mathcal{U}^{\mathcal{B}} = \mathbb{Z}$ We choose $f^{\mathcal{A}} \colon x \mapsto x$ as the identity function and $f^{\mathcal{B}} \colon x \mapsto -x$ as negation. Both are clearly self inverse.
 - (b) Since F does not contain a constant, we add the constant c and extend our models with $c^{\mathcal{A}}c^{\mathcal{B}} = 1$. The set of ground terms generated by $\{f, c\}$ is:

$$\mathcal{U} = \{ f^k(c) \mid k \in \mathbb{N} \}$$

In $\mathcal{A} f(x) = x$ therefore $[f^k(c)]_{\sim_{\mathcal{A}}} = [f^{k'}(c)]_{\mathcal{A}} = \mathcal{U}$ and hence

$$\mathcal{U}_{/\sim_{\mathcal{A}}} = \{\mathcal{U}\}$$

In \mathcal{B} we have $f^k(c) = f^{k'}(c)$ iff $k \equiv k' \pmod{2}$ which results in $\mathcal{U}_{/\sim_{\mathcal{B}}} = \{[c]_{\sim_{\mathcal{B}}}, [f(c)]_{\sim_{\mathcal{B}}}\}$ with the following two equivalence classes:

$$[c]_{\sim_{\mathcal{B}}} = \{ f^{2k}(c) \mid k \in \mathbb{N} \}$$
$$[f(c)]_{\sim_{\mathcal{B}}} = \{ f^{2k+1}(c) \mid k \in \mathbb{N} \}$$