EXERCISE SHEET: PROPOSITIONAL LOGIC

Exercise 1: CNF Conversion

(a) Prove that converting a formula into Negation Normal Form (NNF) terminates, by giving a weight function $w: \text{formula} \to \mathbb{N}$ such that the following inequalities hold for all F, G:

$$\begin{split} & w(\neg \neg F) > w(F) \\ & w(\neg (F \lor G)) > w(\neg F \land \neg G) \\ & w(\neg (F \land G)) > w(\neg F \lor \neg G) \end{split}$$

 $w({\cal F})$ should be defined recursively using only addition, subtraction, multiplication, division and exponentiation.

- (b) Prove that the result of converting a formula into NNF is unique: Let $F \rightsquigarrow G$ denote that G is obtained from F by using double negation elimination (DNE), or one of De Morgan's laws. Prove that \rightsquigarrow has the Church-Rosser property: if $F \rightsquigarrow G_1$ and $F \rightsquigarrow G_2$ then there exists a formula H such that $G_1 \rightsquigarrow^* H$ and $G_2 \rightsquigarrow^* H$.
- (c) Prove that the second step of converting a Formula to CNF terminates, by giving a weight function $w: \text{ formula} \to \mathbb{N}$ such that the following inequalities hold for all F, G, H:

$$w(F \lor (G \land H)) > w((F \land G) \lor (F \land H))$$
$$w((F \land G) \lor H) > w((F \land H) \lor (G \land H))$$

w(F) should be defined recursively using only addition, subtraction, multiplication, division and exponentiation.

(d) **Challenge:** find a weight function that fulfills the requirements of both (a) and (c).

Note: We do not have a solution for this.

Exercise 2: Large disjunctive normal form

- 1. Write down a **DNF**-formula equivalent to $(a_1 \vee b_1) \wedge (a_2 \vee b_2) \wedge \cdots \wedge (a_n \vee b_n)$.
- 2. Prove that any **DNF**-formula equivalent to the above formula must have at least 2^n clauses.

Exercise 3: Perfect matching

A **perfect matching** in an undirected graph G = (V, E) is a subset of the edges $M \subseteq E$ such that every vertex $v \in V$ is an endpoint of exactly one edge in M. Given a finite graph G, describe how to obtain a propositional formula F_G such that F_G is satisfiable if and only if G has a perfect matching. The formula F_G should be computable from G in time polynomial in |V|.