EXERCISE SHEET: PROPOSITIONAL LOGIC

Exercise 1: Validity and Satisfiability

Which of the following formulae are valid, and which are satisfiable? Give a short proof of your claim.

- (a) $F_1 := ((p \to q) \to p) \to p$
- (b) $F_2 := ((p \leftrightarrow q) \to r) \to (p \leftrightarrow (q \to r))$
- (c) $F_3 \coloneqq (p \leftrightarrow (q \to r)) \to ((p \leftrightarrow q) \to r)$
- (d) $F_4 \coloneqq (\neg p \lor q) \leftrightarrow (p \land \neg q)$

Exercise 2: Facts and deductions

Let F, G and H be formulas and let S be a set of formulas. Which of the following statements are true? Justify your answer.

- (a) If F is unsatisfiable, then $\neg F$ is valid.
- (b) If $F \to G$ is satisfiable and F is satisfiable, then G is satisfiable.
- (c) $\mathcal{S} \models F$ and $\mathcal{S} \models \neg F$ cannot both hold.
- (d) If $\mathcal{S} \models F \lor G$, $\mathcal{S} \cup \{F\} \models H$ and $\mathcal{S} \cup \{G\} \models H$, then $\mathcal{S} \models H$.
- (e) Assume $F, G \models H, F, H \models G$, and $H, G \models F$. Then F, G, H are all equivalent.

Exercise 3: Equivalences

Prove that $\{nand\}$ is a basis for propositional logic, i.e for every formula F there is an equivalent formula F' using only the nand operator. You may use the fact that $\{\land, \neg\}$ is a basis.

Exercise 4: Counting Models

Let F be a formula where every operator is \leftrightarrow .

(a) Prove that \leftrightarrow is commutative (i.e $F \leftrightarrow G \equiv G \leftrightarrow F$ for all formulae F, G) and associative (i.e. $F \leftrightarrow (G \leftrightarrow H) \equiv (F \leftrightarrow G) \leftrightarrow H$).

- (b) Prove that F is either valid or has an equivalent formula in the following normal form: Let x_0, x_1, x_2, \ldots be an enumeration of all variables. A formula φ is in normal form, if either $\varphi = x_i$ for a variable x_i , or $\varphi = x_i \leftrightarrow \psi$ where x_i is a variable and ψ is a formula in normal form, where for all $x_j \in \text{Vars}(\psi)$ it holds that j < i.
- (c) Prove that either F is valid, or exactly half of all assignments satisfy F.