Technical University of Munich Prof. J. Esparza
Logic (IN2049), SS2025 V. Fischer

EXERCISE SHEET: PROPOSITIONAL LOGIC

Exercise 1: Validity and Satisfiability

Which of the following formulae are valid, and which are satisfiable? Give a short proof
of your claim.

(a) Fi=((p—q) —p) —p

(b) Fo=((p+rq) =r) = (pe (g—7))

() F3=(p<(@—r)—=((perq —r)
) Fy=(

—pVq) < (pA—q)

Solution

(a) Valid. Any Assignment A for which A(F}) = 0 would have to set A(p) = 0 and
A((p — q) — p) = 1. This in turn is only possible if A(p — ¢q) = 0, which is
impossible when A(p) = 1.

(b) Satisfiable but not valid. F5 is satisfied by A(z) =1 for z € {p, q,}, but not by
A(z) =0 for x € {p,q,7}.

(c) Valid. From A(F3) = 0it follows that A(p <> (¢ = r)) =land A((p > q) = 1) =
0. This in turn implies that A(r) =0 and A(p <> ¢) = 1, i.e. A(p) = A(q). How-
ever from A(p <> (¢ — r)) = 1 it follows that either A(p) =1 and A(q — r) =1
or A(p) = 0 and A(q¢ — r) = 0. The first case is impossible as we already deduced
A(q) = A(p) = 1 and A(r) = 0. The second case is also impossible as from
A(q) = A(p) = 0 it already follows that A(q — r) = 1.

(d) Unsatisfiable. Proof by truth table:

p q|l(= ® VvV 9 & @ A - ()
00l1 0 10 0 001 0
o1/1 0o 11 0 0 00 1
10/0 1 00 0 1 11 0
110 1 1 1 0 1 0 0 1

Exercise 2: Facts and deductions

Let F; G and H be formulas and let S be a set of formulas. Which of the following
statements are true? Justify your answer.

(a) If F is unsatisfiable, then —F is valid.



(b) If F — G is satisfiable and F' is satisfiable, then G is satisfiable.

(¢) S F and S = —F cannot both hold.

d) SEFVG SU{F} EHand SU{G} = H, then S = H.

(e) Assume F;G=H, F,H =G, and H,G |E F. Then F,G, H are all equivalent.

Solution

(a) True. Let A be an arbitrary assignment. Since F' is unsatisfiable we have
A(F) =0 and thus A(-F) = 1.

(b) False. A counterexample is P — | for an atomic proposition P.
(c) False. If S is unsatisfiable then S |= F' and S |= —F for any F.

(d) True. Let A be a model of S. Since S |= F'V G, A is a model of F or a model
of G. In the first case, since SU{F} = H, A is a model of H. Likewise in the
second case, since SU{G} = H, A is a model of H. Since the two cases are
exhaustive, A is a model of H. Thus every model of S is a model of H.

(e) False. A counterexampleis F=G =1l and H=T

Exercise 3: Equivalences

Prove that {nand} is a basis for propositional logic, i.e for every formula F there is an
equivalent formula F” using only the nand operator. You may use the fact that {A, =}
is a basis.

Solution
Proof by structural induction on F
Case F' =z Then F is already in the desired form.

Case F' = =G By IH there exists a formula G = G using only the nand operator.
Then F' = G’ nand G’

Case F' = G A H By IH there exist formulae G’ = G and H' = H using only the nand
operator. Then F = —~(GnandH) = =(G'nandH’) = (G'nand H)nand (G'nand H')

Exercise 4: Counting Models
Let F' # 1 be a formula where every operator is <.

(a) Prove that < is commutative (i.e F' <+ G = G  F for all formulae F,G) and
associative (i.e. F+ (G« H)=(F + G) + H).



(b) Prove that F is either valid or has an equivalent formula in the following normal
form: Let zg,x1,x2,... be an enumeration of all variables. A formula ¢ is in
normal form, if either ¢ = z; for a variable z;, or ¢ = z; <> ¥ where x; is a
variable and 1 is a formula in normal form, where for all z; € Vars(¢) is holds
that j < i.

(c¢) Prove that either F is valid, or exactly half of all assignments satisfy F.

Solution

(a) <+ is commutative as for any formulae F, G and any assignment A A(F < G) =
A(G < F) by definition.

<> is associative:

AF < (G+ H)) =1
iff A(F)=A(G < H)
iff A(F)=1and A(G) = A(H) or A(F) =0 and A(G) # A(H)
iff A(F)=1and A(G)=0and A(H) =0
or A(F)=1and A(G) =1and A(H) =1
or A(F)=0and A(G) =0and A(H) =1
or A(F)=0and A(G) =1and A(H) =0
iff A(F)=A(G) and A(H) =1 or A(F) # A(G) and A(H) =0

(
iff A(F < G) = A(H)
iff A(F+ G)+< H)=1

Alternatively: compare truth tables

(b) Proof by strong induction on max {i € N | z; € Vars(F')}

Case 0 Only the variable zy occurs. Then F' is either valid, or F' = xy. Proof by
structural induction:

Case F' = x¢ Then trivially F' = zg.

Case F' = G <> H By induction hypothesis G and H are both either valid
or equivalent to xg. If both are valid or both are equivalent to xg then
F' is valid. If one of them is valid, and the other is equivalent to xg,
then F = x.

Case k£ + 1 We have the following induction hypothesis (IHy): Any formula ¢
with max {i € N | x; € Vars(¢)} < k is either valid or equivalent to a formula
in normal form.

We now prove this case by structural induction on F"
Case I' = x; Then trivially F' = z;.
Case F' = G <+ H We have two induction hypotheses:

IHg: G is valid, or G = G’ in normal form.



IHg: F is valid, or H = H’ in normal form.

If G is valid then F' = H and the case follows from IHy. Analogous if
H is valid. If neither are valid then F' = G’ <+ H’ in normal form. We
perform a case analysis on G’ and H':

o If G’ =2; <+ G and H' = z; <> H" then one of the following cases
hold:

—i=jand F = (z; & zj) & (G" & H'") = G + H" by
associativity and commutativity. This formula no longer contains
k41 and by IHg it is either valid or has an equivalent formula in
normal form.

—i<jthen F=z; < (z; & (G" < H")). By IHy (z; & (G"
H'")) is either valid - then F' = x; - or equivalent to a formula F”
in normal form. then F = z; <> F’

e All other cases are analogous to one of the two above.

(¢) By (b) F is either valid or equivalent to F’ in normal form. In the first case
we are done. In the second, we prove that F” is satisfied by exactly half of all
assignments

Case " = x Then F is satisfied by the assignment z — 1 and not by 2 — 0

Case F' =z <> G with G in normal form and z ¢ Vars(G) and G. For any
assignment A € 2V2r3(G)U{#} we can define A’ which agrees with A on all
variables except x. Since z does not occur in G we have A(G) = A'(G) and
therfore

A(F)y=1
iff  A(z) = A(G)
iff  A'(z) # A(G)
iff A/(F') =0

This proves that exactly half of all assignments satisfy F’ and hence also F.



	Validity and Satisfiability
	Facts and deductions
	Equivalences
	Counting Models

