
"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

1
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
1

Foundations of Software Reliability and Theoretical Computer Science
Informatik
Technical University of Munich

__ __ __ __ __ __ __ __

0

1
2
3
4
5
6
7
8
9

R
eg

is
tra

tio
n

nu
m

be
r

×

Signature

Note:
• Cross your Registration number(with leading zero). It will be evaluated automatically.
• Sign in the corresponding signature field.

Logik

Exam: IN2049 / Endterm Date: Wednesday 26th July, 2023
Examiner: Prof. Dr. Javier Esparza Time: 13:30 – 15:30

I

II

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

Working instructions
• This exam consists of 20 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 46 credits. Among them, 6 are bonus credits. In
order to pass the exam, you will need at least 17 credits.

• Detaching pages from the exam is prohibited.

• Allowed resources: a single hand-written cheat-sheet (you can write on both sides of the sheet)

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

Exam empty – Page 1 / 20 – cit-logik-1-20230726-E0100-01

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

2
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
2

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

2

0

1

2

Problem 1 Syntax of propositional logic (10 credits)

Recall that the syntax of propositional logic contains five logical operators: ¬ (negation), ∧ (conjunction), ∨
(disjunction),→ (implication) and↔ (bi-implication). All the formulas in this problem are formulas over
propositional logic.

In every subproblem, you will be asked to prove or disprove a given claim. If the claim is true, give a proof. If
the claim is false, give a counter-example and prove that it does not satisfy the claim.

a) Prove or disprove: For every formula F , there is an equivalent formula G which contains only ∨ and ∧ as
its logical operators.

cit-logik-1-20230726-E0100-02 – Page 2 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

3
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
3

b) Prove or disprove: For every formula F , there is an equivalent formula G which contains only ¬ and→ as
its logical operators.

c) Prove or disprove: For every formula F , there is an equivalent formula G which contains only↔ as its
logical operator.

0

1

2

0

1

2

Page empty – Page 3 / 20 – cit-logik-1-20230726-E0100-03

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

4
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
4

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

4

0

1

2

3

4

d) Bonus subproblem. Prove or disprove: For every formula F , there is an equivalent formula G which
contains only ¬ and↔ as its logical operators.
Hint: Consider the parity of the number of satisfying assignments.

cit-logik-1-20230726-E0100-04 – Page 4 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

5
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
5

Problem 2 Sequent calculus (3 credits)

Give a proof tree using the rules of sequent calculus to prove that the following formula over propositional
logic is a tautology.

(((P ∧ Q)→ R))→ ((P → R) ∨ (Q → R)))

0

1

2

3

Page empty – Page 5 / 20 – cit-logik-1-20230726-E0100-05

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

6
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
6

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

6

0

1

0

1

Problem 3 Structures (6 credits)

Fix a signature τ = {P, Q} where P is a ternary relation symbol, and Q is a unary relation symbol.
Consider the following formulas:

ϕ1 = ∀x∃y (P(x, x, y) ∧ ¬P(x, y, y))

ϕ2 = ∃z ¬Q(z)

ϕ3 = ∀x∀y∃z (P(x, z, y) ∨ Q(z))

In each subproblem of this exercise, you will be asked to give a τ -structure satisfying some constraints. For
each subproblem, if your solution is a τ -structure E , present it in the following format:

• UE :=

• PE :=

• QE :=

a) Construct a τ -structure A such that A |= ϕ1, A |= ϕ2 and A |= ϕ3.

b) Construct a τ -structure B such that B |= ϕ1, B |= ϕ2 and B 6|= ϕ3.

cit-logik-1-20230726-E0100-06 – Page 6 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

7
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
7

c) Construct a τ -structure C such that C 6|= ϕ1, C |= ϕ2 and C |= ϕ3.

d) Construct a τ -structure D such that D 6|= ϕ1, D 6|= ϕ2 and D |= ϕ3.

0

1

0

1

Page empty – Page 7 / 20 – cit-logik-1-20230726-E0100-07

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

8
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
8

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

8

0

1

2

3

Problem 4 First order logic modeling (10 credits)

Consider the following statements.

(S1) If a person has read somebody’s work, then it was taught by somebody.

(S2) All wise philosophers have read Aristotle’s work.

(S3) No philosopher is unwise.

(S4) There exists at least one philosopher.

(S5) Anybody who has taught somebody’s work is a philosopher.

(S6) No wise person has taught Aristotle’s work.

a) Formalize each of the statements S1, S2, S3, S4, S5 and S6 as closed formulas in first-order logic without
equality. The only predicate symbols that you are allowed to use are two unary predicates P, W and two
binary predicates R and T . The only constant symbol you can use is a.

P(x) must be used to denote that x is a philosopher, W (x) must be used to denote that x is wise, R(x, y)
must be used to denote that x has read y ’s work and T (x, y) must be used to denote that x has taught y ’s
work. a must be used for Aristotle.

cit-logik-1-20230726-E0100-08 – Page 8 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-0

9
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-0
9

b) For every i ∈ {1, 2, 3, 4, 5, 6}, let Fi be the formalization of the statement Si in first-order logic without
equality that you had obtained in the previous subproblem. Let F = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6. Note that F is
a closed formula. Convert F into an equivalent rectifed formula in prenex form F ′.

0

1

2

Page empty – Page 9 / 20 – cit-logik-1-20230726-E0100-09

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

0
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
0

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

0

0

1

2

c) Consider the formula F ′ from the previous subproblem. Convert F ′ into an equisatisfiable closed formula
in Skolem form G. The matrix of the formula G must be in CNF where each clause is a Horn clause.

cit-logik-1-20230726-E0100-10 – Page 10 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

1
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
1

d) Consider the formula G from the previous subproblem. Construct a finite unsatisfiable subset K of the
clause Herbrand expansion of G. You have to prove that K is not satisfiable by using the Horn satisfiability
algorithm.

Hence this indicates that the collection of statements S1, S2, S3, S4, S5 and S6 is unsatisfiable.

0

1

2

3

Page empty – Page 11 / 20 – cit-logik-1-20230726-E0100-11

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

2
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
2

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

2

0

1

2

3

4

5

Problem 5 Herbrand theory (5 credits)

Let A be the structure defined as follows:

UA = N \ {0}
cA = 5

fA(x, y) = x + y

(m, n) ∈ PA ⇔ m < n

n ∈ QA ⇔ n is divisible by 10

Let ϕ be the following formula:

∀x∀y P(x, f (x, y)) ∧ ¬P(f (x, y), y) ∧ Q(f (c, c)).

Note that A |= ϕ. Using the construction from the Fundamental theorem of predicate logic, construct a
Herbrand structure H that is a model for ϕ based on A.

cit-logik-1-20230726-E0100-12 – Page 12 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

3
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
3

Problem 6 Predicate logic resolution (3 credits)

Let c and d be constant symbols, let P be a unary predicate symbol and let Q be a ternary predicate symbol.
Consider the following clauses:

C1 = {¬Q(c, x, y), P(g(x))}
C2 = {Q(x, f (x), g(y))}
C3 = {¬Q(x, f (d), y), ¬P(y)}

Use the predicate logic resolution to prove unsatisfiability of C1 ∧C2 ∧C3. In each step explain which clauses
you are considering, what is their most general unifier and what is their resolvent.

0

1

2

3

Page empty – Page 13 / 20 – cit-logik-1-20230726-E0100-13

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

4
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
4

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

40

1

0

1

2

Problem 7 Compactness and completeness (5 credits)

a) Suppose Γ is a set of sentences in first-order logic with equality. For every m ∈ N, construct a formula ϕm

such that A is a model for Γ ∪ {ϕm} if and only if A is a model for Γ and the size of the universe of A is at
least m.

b) Suppose Γ is a set of sentences in first-order logic with equality such that for every m ∈ N, Γ has a model
whose universe has at least m elements. Prove that Γ has a model with an infinite universe.
Hint: You are allowed to use the formulas {ϕm : m ∈ N} from the previous subproblem.

cit-logik-1-20230726-E0100-14 – Page 14 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

5
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
5

c) Bonus subproblem. Let T be a theory in first-order logic. We have shown in the lectures that if all
models of T are elementary equivalent, then T is complete. Prove the following stronger statement here: If
all countable models of T are elementary equivalent, then T is complete.

0

1

2

Page empty – Page 15 / 20 – cit-logik-1-20230726-E0100-15

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

6
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
6

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

6

0

1

0

1

0

1

2

Problem 8 Consistency (4 credits)

Suppose T is a theory in first-order logic. T is said to be consistent if for every sentence S, it does not
include both S and ¬S.

Consider the signature Σ = {+, ∗,≤}. Recall that (Z, +, ∗,≤) denotes the structure with universe Z and the
standard intepretations for the symbols +, ∗ and ≤.

a) Give an example of a Σ-theory which is complete, decidable, contains Th(Z, +, ∗,≤), and is not consistent.

b) Give an example of a Σ-theory which is complete, consistent, contains Th(Z, +, ∗,≤), but is not decidable.

c) Give an example of a Σ-theory which is complete, decidable, consistent, but does not contain Th(Z, +, ∗,≤).

cit-logik-1-20230726-E0100-16 – Page 16 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

7
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
7

Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.

Page empty – Page 17 / 20 – cit-logik-1-20230726-E0100-17

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

8
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
8

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

8

cit-logik-1-20230726-E0100-18 – Page 18 / 20 – Page empty

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-1

9
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-1
9

Page empty – Page 19 / 20 – cit-logik-1-20230726-E0100-19

"
"

"
"

"
"

"
"

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-2

0
ci

t-l
og

ik
-1

-2
02

30
72

6-
E

01
00

-2
0

ci
t-l

og
ik

-1
-2

02
30

72
6-

E
01

00
-2

0

cit-logik-1-20230726-E0100-20 – Page 20 / 20 – Page empty

	r10: Off
	r20: Off
	r30: Off
	r40: Off
	r50: Off
	r60: Off
	r70: Off
	r80: Yes
	r11: Off
	r21: Off
	r31: Off
	r41: Off
	r51: Off
	r61: Off
	r71: Off
	r81: Off
	r12: Off
	r22: Off
	r32: Off
	r42: Yes
	r52: Off
	r62: Off
	r72: Off
	r82: Off
	r13: Off
	r23: Yes
	r33: Off
	r43: Off
	r53: Off
	r63: Off
	r73: Off
	r83: Off
	r14: Off
	r24: Off
	r34: Off
	r44: Off
	r54: Off
	r64: Off
	r74: Off
	r84: Off
	r15: Off
	r25: Off
	r35: Off
	r45: Off
	r55: Yes
	r65: Off
	r75: Off
	r85: Off
	r16: Off
	r26: Off
	r36: Off
	r46: Off
	r56: Off
	r66: Off
	r76: Yes
	r86: Off
	r17: Off
	r27: Off
	r37: Yes
	r47: Off
	r57: Off
	r67: Off
	r77: Off
	r87: Off
	r18: Off
	r28: Off
	r38: Off
	r48: Off
	r58: Off
	r68: Off
	r78: Off
	r88: Off
	r19: Off
	r29: Off
	r39: Off
	r49: Off
	r59: Off
	r69: Yes
	r79: Off
	r89: Off
	e1: Off
	p1a1c0: Off
	p1a2c0: Off
	p1a1c1: Off
	p1a2c1: Off
	p1a1c2: Off
	p1a2c2: Off
	p1a1c3: Off
	p1a2c3: Off
	p1a1c4: Off
	p1a2c4: Off
	1.1.1: The statement does not hold. Negation is not expressable by con- and disjunctions. Counterexample \neg A.

The truth table is

A | \neg A
0 1
1 0

Using a conjunction A & B, we would have
A | A & B
0 | 0
1 | B
and thus in particular no suitable constant for B.

And using a disjunction:
A | A | B
0 | B
1 | 1
which also does not give the desired table.

	e2: Off
	1.2.1: A | B = \neg A -> B
A & B = \neg (A -> \neg B)
A <-> B = A -> B & B -> A (which we can write as above)
Thus every formula can be written with only the two operators
	1.3.1: We show a stronger result in exercise d. If we could express formulae with only <->, we could also express them with <-> and negation, which we can not.
	p1b1c0: Off
	p1b2c0: Off
	p1b1c1: Off
	p1b2c1: Off
	p1b1c2: Off
	p1b2c2: Off
	p1b1c3: Off
	p1b2c3: Off
	p1b1c4: Off
	p1b2c4: Off
	p1c1c0: Off
	p1c2c0: Off
	p1c1c1: Off
	p1c2c1: Off
	p1c1c2: Off
	p1c2c2: Off
	p1c1c3: Off
	p1c2c3: Off
	p1c1c4: Off
	p1c2c4: Off
	e3: Off
	p1d1c0: Off
	p1d2c0: Off
	p1d1c1: Off
	p1d2c1: Off
	p1d1c2: Off
	p1d2c2: Off
	p1d1c3: Off
	p1d2c3: Off
	p1d1c4: Off
	p1d2c4: Off
	p1d1c5: Off
	p1d2c5: Off
	p1d1c6: Off
	p1d2c6: Off
	p1d1c7: Off
	p1d2c7: Off
	p1d1c8: Off
	p1d2c8: Off
	1.4.1: Negation does not alter the parity of the number of satisfying assignments - if #sat is odd, 2^n - #sat is also odd (and that's the number of unsatisfying assignments, thus satisfying \neg F) and if #sat is even, 2^n - #sat is also even.

However, bi-implication always results in an even number of satisfying assignments.
W.l.o.g., consider A <-> B. We will do a case distinction on the parity of the number of satisfying assignments (#satA) of A.
Assume #satA is even.
Then there are #satA * #satB + #unsatA * #unsatB satisfying assignments for A <-> B. From #satA even we get #unsatA is even and thus #satA * #satB + #unsatA * #unsatB is even.

Assume #satA is odd. Now we need to do a case distinction on #satB.
Assume #satB is even, then the argument is symmetrical to the previous case.
Assume #satB is odd, then we get #satA * #satB is odd and #unsatA * #unsatB is odd but the sum of two odd number is even, which is what was to be proven.

Thus we can not express formulas with an odd number of satisfying assignments and more than one variable, e.g. A | B.
	e4: Off
	2.1.1:
---------Ax ----------Ax
P,Q => P P,Q => Q
-------------------- &R -------------- Ax
P, Q => P & Q R => R, R
--- -> L
(P & Q) -> R, P, Q=> R, R
-- -> R
(P & Q) -> R, P=> R, (Q -> R)
-- -> R
(P & Q) -> R => (P -> R), (Q -> R)
-- |R
(P & Q) -> R => (P -> R) | (Q -> R)
-- -> R
=> (((P & Q) -> R) -> ((P -> R) | (Q -> R)))
	p2a1c0: Off
	p2a2c0: Off
	p2a1c1: Off
	p2a2c1: Off
	p2a1c2: Off
	p2a2c2: Off
	p2a1c3: Off
	p2a2c3: Off
	p2a1c4: Off
	p2a2c4: Off
	p2a1c5: Off
	p2a2c5: Off
	p2a1c6: Off
	p2a2c6: Off
	e5: Off
	p3a1c0: Off
	p3a2c0: Off
	p3a1c1: Off
	p3a2c1: Off
	p3a1c2: Off
	p3a2c2: Off
	p3a1c3: Off
	p3a2c3: Off
	p3b1c0: Off
	p3b2c0: Off
	p3b1c1: Off
	p3b2c1: Off
	p3b1c2: Off
	p3b2c2: Off
	p3b1c3: Off
	p3b2c3: Off
	3.1.1: U := {a,b}
P := {(a,a,b), (b,b,a), (a,a,a), (b,b,a)}
Q := {}
	3.2.1: U := {a,b}
P := {(a,a,b), (b,b,a)}
Q := {}
	e6: Off
	3.3.1: U := {a,b}
P := U³
Q := {}
	3.4.1: U := {a,b}
P := U³
Q := U
	p3c1c0: Off
	p3c2c0: Off
	p3c1c1: Off
	p3c2c1: Off
	p3c1c2: Off
	p3c2c2: Off
	p3c1c3: Off
	p3c2c3: Off
	p3d1c0: Off
	p3d2c0: Off
	p3d1c1: Off
	p3d2c1: Off
	p3d1c2: Off
	p3d2c2: Off
	p3d1c3: Off
	p3d2c3: Off
	e7: Off
	p4a1c0: Off
	p4a2c0: Off
	p4a1c1: Off
	p4a2c1: Off
	p4a1c2: Off
	p4a2c2: Off
	p4a1c3: Off
	p4a2c3: Off
	p4a1c4: Off
	p4a2c4: Off
	p4a1c5: Off
	p4a2c5: Off
	p4a1c6: Off
	p4a2c6: Off
	4.1.1: S1: \forall p . (\exists s . R(p,s) --> \exists t . T(t,s))

S2: \forall p . (W(p) & P(p)) --> R(p, a)

S3: \neg \exists p . P(p) & \neg W(p)

S4: \exists p . P(p)

S5: \forall x . \exists y . T (x,y) --> P(x)

S6: \neg \exists p . (W(p) & T(p,a))
	e8: Off
	4.2.1: F:
(\forall p . (\exists s . R(p,s) --> \exists t . T(t,s))
& (\forall p . (W(p) & P(p)) --> R(p, a))
& (\neg \exists p . P(p) & \neg W(p))
& (\exists p . P(p))
& (\forall x . \exists y . T (x,y) --> P(x))
& (\neg \exists p . (W(p) & T(p,a)))

rectified:
(\forall p . (\exists s . R(p,s) --> \exists t . T(t,s))
& (\forall d . (W(d) & P(d)) --> R(d, a))
& (\neg \exists e . P(e) & \neg W(e))
& (\exists f . P(f))
& (\forall x . \exists y . T (x,y) --> P(x))
& (\neg \exists g . (W(g) & T(g,a)))

prenex:
\exists f. \forall p. \forall s. \exists t. \forall d. \forall e. \forall x. \exists y. \forall g.
(\neg R (p,s) | T(t,s)) & ((W(d) & P(d)) --> R(d,a))) & (\neg(P(e) & \neg W(e))) & P(f) & (T(x,y) --> P(x)) & \neg (W(g) & T(g,a))

	p4b1c0: Off
	p4b2c0: Off
	p4b1c1: Off
	p4b2c1: Off
	p4b1c2: Off
	p4b2c2: Off
	p4b1c3: Off
	p4b2c3: Off
	p4b1c4: Off
	p4b2c4: Off
	e9: Off
	p4c1c0: Off
	p4c2c0: Off
	p4c1c1: Off
	p4c2c1: Off
	p4c1c2: Off
	p4c2c2: Off
	p4c1c3: Off
	p4c2c3: Off
	p4c1c4: Off
	p4c2c4: Off
	4.3.1: Let b be a fresh constant, f be a fresh function.
\forall p. \forall s. \forall d. \forall e. \forall x. \forall g.
(\neg R (p,s) | T(f(p,s),s)) & ((W(d) & P(d)) --> R(d,a))) & (\neg P(e)) & (\neg W(e)) & P(b) & (T(x,(f(p,s,d,e,x)) --> P(x)) & \neg (W(g) & T(g,a))

Written as horn clauses:
(\neg R (p,s) | T(f(p,s),s)) & ((\neg W(d) | P(d)) | R(d,a))) & (\neg P(e)) & (\neg W(e)) & P(b) & (\negT(x,(f(p,s,d,e,x)) | P(x)) & (\neg W(g) | \neg T(g,a))
	e10: Off
	4.4.1: Notice that we have P(b) and \neg P(b) in the clause Herbrand expansion. (The second follows from using b as a term for e).

Using the algorithm, we want to set P(b) to true, and then get UNSAT as will not be able to set \neg P(b) to true.
	p4d1c0: Off
	p4d2c0: Off
	p4d1c1: Off
	p4d2c1: Off
	p4d1c2: Off
	p4d2c2: Off
	p4d1c3: Off
	p4d2c3: Off
	p4d1c4: Off
	p4d2c4: Off
	p4d1c5: Off
	p4d2c5: Off
	p4d1c6: Off
	p4d2c6: Off
	e11: Off
	p5a1c0: Off
	p5a2c0: Off
	p5a1c1: Off
	p5a2c1: Off
	p5a1c2: Off
	p5a2c2: Off
	p5a1c3: Off
	p5a2c3: Off
	p5a1c4: Off
	p5a2c4: Off
	p5a1c5: Off
	p5a2c5: Off
	p5a1c6: Off
	p5a2c6: Off
	p5a1c7: Off
	p5a2c7: Off
	p5a1c8: Off
	p5a2c8: Off
	p5a1c9: Off
	p5a2c9: Off
	p5a1c10: Off
	p5a2c10: Off
	5.1.1: U = {c,f(c,c),f(f(c,c))...} (or: {c} \cup {f^k(c,c) | k \in N})
where c=5
f^H = f^A
P^H = P^A
Q^H = Q^A
	e12: Off
	6.1.1: Unify C1, C3 with [g(x)/y] and get C4: {~Q(c,x,g(x)), ~Q(x,f(d),g(x))}
Unify C4, C2 with [x/d][x/y] and get C5: {~Q(c,x,g(x))}

	p6a1c0: Off
	p6a2c0: Off
	p6a1c1: Off
	p6a2c1: Off
	p6a1c2: Off
	p6a2c2: Off
	p6a1c3: Off
	p6a2c3: Off
	p6a1c4: Off
	p6a2c4: Off
	p6a1c5: Off
	p6a2c5: Off
	p6a1c6: Off
	p6a2c6: Off
	e13: Off
	p7a1c0: Off
	p7a2c0: Off
	p7a1c1: Off
	p7a2c1: Off
	p7a1c2: Off
	p7a2c2: Off
	p7b1c0: Off
	p7b2c0: Off
	p7b1c1: Off
	p7b2c1: Off
	p7b1c2: Off
	p7b2c2: Off
	p7b1c3: Off
	p7b2c3: Off
	p7b1c4: Off
	p7b2c4: Off
	7.1.1: \varphi_m := \exists x_m . \exists x_{m-1} ... \exists x_1 . &_i=1^m &_j=1^m (i != j) . ~neg (x_i = x_j)
(Read as: there are variables x_1 ... x_m s.t. for all i != j, x_i != x_j - i.e. there are m pairwise distinct variables)
	7.2.1: Assume that \Gamma would not have an infinite universe. Then there would be some largest universe of size n. Then, \Gamma \union {\varphi_{n+1}} would be unsatisfiable. However, this contradicts the statement that there is a model of size n+1 which we have from the assumption and thus \Gamma needs to have an infinite universe.
	e14: Off
	7.3.1: If all countable models of T are elementary equivalent, this also holds for all Herbrand models of T. We know that whenever a formula has an uncounctable model, it also has a corresponding countable Herbrand model, of which we assume the elementary equivalence.

If T has no uncountable models or all uncountable models are elementary equivalent, we have no proof obligation.

Thus, wlog, we can assume that there are two uncountable models A B of T, such that A and B are not elementary equivalent.

We know that we can construct corresponding countable Herbrand models of which we do have the elementary equivalence. Then A and B are equivalent "enough" so that we can use the argument from the lecture.
	p7c1c0: Off
	p7c2c0: Off
	p7c1c1: Off
	p7c2c1: Off
	p7c1c2: Off
	p7c2c2: Off
	p7c1c3: Off
	p7c2c3: Off
	p7c1c4: Off
	p7c2c4: Off
	e15: Off
	p8a1c0: Off
	p8a2c0: Off
	p8a1c1: Off
	p8a2c1: Off
	p8a1c2: Off
	p8a2c2: Off
	p8b1c0: Off
	p8b2c0: Off
	p8b1c1: Off
	p8b2c1: Off
	p8b1c2: Off
	p8b2c2: Off
	p8c1c0: Off
	p8c2c0: Off
	p8c1c1: Off
	p8c2c1: Off
	p8c1c2: Off
	p8c2c2: Off
	p8c1c3: Off
	p8c2c3: Off
	p8c1c4: Off
	p8c2c4: Off
	8.1.1: Th(Z,+,*,\leq) \union {5+5 \leq 5}
	8.2.1: Th(R,+,*,\leq)
	8.3.1: Th(F_2,+,*,\leq) where F_2 = {0,1}
	e16: Off
	8.3.2:
	e17: Off
	8.3.3:
	e18: Off
	8.3.4:
	e19: Off
	8.3.5:
	e20: Off

