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Working instructions
• This exam consists of 20 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 46 credits. Among them, 6 are bonus credits. In
order to pass the exam, you will need at least 17 credits.

• Detaching pages from the exam is prohibited.

• Allowed resources: a single hand-written cheat-sheet (you can write on both sides of the sheet)

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at
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Problem 1 Syntax of propositional logic (10 credits)

Recall that the syntax of propositional logic contains five logical operators: ¬ (negation), ∧ (conjunction), ∨
(disjunction),→ (implication) and↔ (bi-implication). All the formulas in this problem are formulas over
propositional logic.

In every subproblem, you will be asked to prove or disprove a given claim. If the claim is true, give a proof. If
the claim is false, give a counter-example and prove that it does not satisfy the claim.

a) Prove or disprove: For every formula F , there is an equivalent formula G which contains only ∨ and ∧ as
its logical operators.
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b) Prove or disprove: For every formula F , there is an equivalent formula G which contains only ¬ and→ as
its logical operators.

c) Prove or disprove: For every formula F , there is an equivalent formula G which contains only↔ as its
logical operator.
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d) Bonus subproblem. Prove or disprove: For every formula F , there is an equivalent formula G which
contains only ¬ and↔ as its logical operators.
Hint: Consider the parity of the number of satisfying assignments.
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Problem 2 Sequent calculus (3 credits)

Give a proof tree using the rules of sequent calculus to prove that the following formula over propositional
logic is a tautology.

(((P ∧ Q)→ R))→ ((P → R) ∨ (Q → R)))
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Problem 3 Structures (6 credits)

Fix a signature τ = {P, Q} where P is a ternary relation symbol, and Q is a unary relation symbol.
Consider the following formulas:

ϕ1 = ∀x∃y (P(x, x, y) ∧ ¬P(x, y, y))

ϕ2 = ∃z ¬Q(z)

ϕ3 = ∀x∀y∃z (P(x, z, y) ∨ Q(z))

In each subproblem of this exercise, you will be asked to give a τ -structure satisfying some constraints. For
each subproblem, if your solution is a τ -structure E , present it in the following format:

• UE :=

• PE :=

• QE :=

a) Construct a τ -structure A such that A |= ϕ1, A |= ϕ2 and A |= ϕ3.

b) Construct a τ -structure B such that B |= ϕ1, B |= ϕ2 and B 6|= ϕ3.
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c) Construct a τ -structure C such that C 6|= ϕ1, C |= ϕ2 and C |= ϕ3.

d) Construct a τ -structure D such that D 6|= ϕ1, D 6|= ϕ2 and D |= ϕ3.
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Problem 4 First order logic modeling (10 credits)

Consider the following statements.

(S1) If a person has read somebody’s work, then it was taught by somebody.

(S2) All wise philosophers have read Aristotle’s work.

(S3) No philosopher is unwise.

(S4) There exists at least one philosopher.

(S5) Anybody who has taught somebody’s work is a philosopher.

(S6) No wise person has taught Aristotle’s work.

a) Formalize each of the statements S1, S2, S3, S4, S5 and S6 as closed formulas in first-order logic without
equality. The only predicate symbols that you are allowed to use are two unary predicates P, W and two
binary predicates R and T . The only constant symbol you can use is a.

P(x) must be used to denote that x is a philosopher, W (x) must be used to denote that x is wise, R(x, y)
must be used to denote that x has read y ’s work and T (x, y) must be used to denote that x has taught y ’s
work. a must be used for Aristotle.
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b) For every i ∈ {1, 2, 3, 4, 5, 6}, let Fi be the formalization of the statement Si in first-order logic without
equality that you had obtained in the previous subproblem. Let F = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6. Note that F is
a closed formula. Convert F into an equivalent rectifed formula in prenex form F ′.
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c) Consider the formula F ′ from the previous subproblem. Convert F ′ into an equisatisfiable closed formula
in Skolem form G. The matrix of the formula G must be in CNF where each clause is a Horn clause.
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d) Consider the formula G from the previous subproblem. Construct a finite unsatisfiable subset K of the
clause Herbrand expansion of G. You have to prove that K is not satisfiable by using the Horn satisfiability
algorithm.

Hence this indicates that the collection of statements S1, S2, S3, S4, S5 and S6 is unsatisfiable.
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Problem 5 Herbrand theory (5 credits)

Let A be the structure defined as follows:

UA = N \ {0}
cA = 5

fA(x, y) = x + y

(m, n) ∈ PA ⇔ m < n

n ∈ QA ⇔ n is divisible by 10

Let ϕ be the following formula:

∀x∀y P(x, f (x, y)) ∧ ¬P(f (x, y), y) ∧ Q(f (c, c)).

Note that A |= ϕ. Using the construction from the Fundamental theorem of predicate logic, construct a
Herbrand structure H that is a model for ϕ based on A.
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Problem 6 Predicate logic resolution (3 credits)

Let c and d be constant symbols, let P be a unary predicate symbol and let Q be a ternary predicate symbol.
Consider the following clauses:

C1 = {¬Q(c, x, y), P(g(x))}
C2 = {Q(x, f (x), g(y))}
C3 = {¬Q(x, f (d), y), ¬P(y)}

Use the predicate logic resolution to prove unsatisfiability of C1 ∧C2 ∧C3. In each step explain which clauses
you are considering, what is their most general unifier and what is their resolvent.
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Problem 7 Compactness and completeness (5 credits)

a) Suppose Γ is a set of sentences in first-order logic with equality. For every m ∈ N, construct a formula ϕm

such that A is a model for Γ ∪ {ϕm} if and only if A is a model for Γ and the size of the universe of A is at
least m.

b) Suppose Γ is a set of sentences in first-order logic with equality such that for every m ∈ N, Γ has a model
whose universe has at least m elements. Prove that Γ has a model with an infinite universe.
Hint: You are allowed to use the formulas {ϕm : m ∈ N} from the previous subproblem.
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c) Bonus subproblem. Let T be a theory in first-order logic. We have shown in the lectures that if all
models of T are elementary equivalent, then T is complete. Prove the following stronger statement here: If
all countable models of T are elementary equivalent, then T is complete.
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Problem 8 Consistency (4 credits)

Suppose T is a theory in first-order logic. T is said to be consistent if for every sentence S, it does not
include both S and ¬S.

Consider the signature Σ = {+, ∗,≤}. Recall that (Z, +, ∗,≤) denotes the structure with universe Z and the
standard intepretations for the symbols +, ∗ and ≤.

a) Give an example of a Σ-theory which is complete, decidable, contains Th(Z, +, ∗,≤), and is not consistent.

b) Give an example of a Σ-theory which is complete, consistent, contains Th(Z, +, ∗,≤), but is not decidable.

c) Give an example of a Σ-theory which is complete, decidable, consistent, but does not contain Th(Z, +, ∗,≤).
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.
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