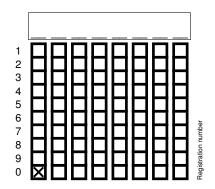
cit-logik-1-20230726-E0100-01

cit-logik-1-20230726-E0100-01

X

X



Note:

- · Cross your Registration number(with leading zero). It will be evaluated automatically.
- · Sign in the corresponding signature field.

Logik

IN2049 / Endterm Wednesday 26th July, 2023 Exam: Date:

Prof. Dr. Javier Esparza 13:30 - 15:30Examiner: Time:

	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8
I								
II								

Working instructions

- This exam consists of 20 pages with a total of 8 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 46 credits. Among them, 6 are bonus credits. In order to pass the exam, you will need at least 17 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources: a single hand-written cheat-sheet (you can write on both sides of the sheet)
- · Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/	Early submission at

cit-logik-1-20230726-E0100-01

Problem 1 Syntax of propositional logic (10 credits)

Recall that the syntax of propositional logic contains five logical operators: \neg (negation), \wedge (conjunction), \vee (disjunction), \rightarrow (implication) and \leftrightarrow (bi-implication). **All the formulas in this problem are formulas over propositional logic**.

In every subproblem, you will be asked to prove or disprove a given claim. If the claim is true, give a proof. If the claim is false, give a counter-example and prove that it does not satisfy the claim.

d ∧ as

	1	
	X	b) F
	X	
-E0100-03		
cit-logik-1-20230726-E0100-03	X	
cit-logik-		
		c) F logi
	X	
0100-03	X	
cit-logik-1-20230726-E0100-03		
cit-logik-1-		
	X	
	X	

p) Prove or disprove: For the logical operators.	or every formula <i>F</i> , the	ere is an equivalen	t formula G which o	contains only ¬ and	ightarrow as
c) Prove or disprove: Fogical operator.	or every formula F, th	nere is an equivale	ent formula G whic	th contains only \leftrightarrow	as its
					\neg $lacktriangle$

0		
1		
2		
3	Н	
	Ц	
4		

d) Bonus subproblem.	Prove or disprove: For ev	ery formula <i>F</i> , t	here is an equiva	alent formula G whic
contains only \neg and \leftrightarrow as	its logical operators.			

 Consider the parity of th	e number of satisfyr	ng assignments.	

Ķ

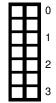
X

X

Problem 2 Sequent calculus (3 credits)

Give a proof tree using the rules	of sequent calculus to	prove that the following	ng formula over	propositional
logic is a tautology.	•			

$$(((P \land Q) \to R)) \to ((P \to R) \lor (Q \to R)))$$



Problem 3 Structures (6 credits)

Fix a signature $\tau = \{P, Q\}$ where P is a ternary relation symbol, and Q is a unary relation symbol. Consider the following formulas:

$$\varphi_1 = \forall x \exists y \ (P(x, x, y) \land \neg P(x, y, y))$$

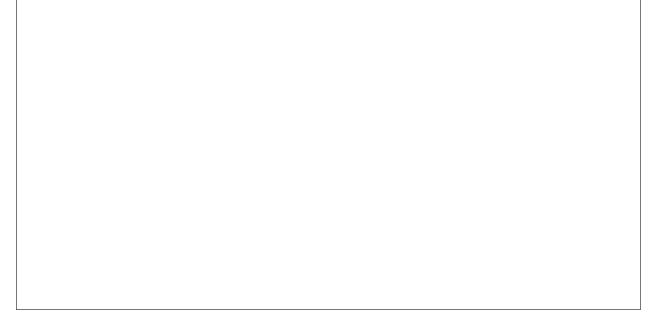
$$\varphi_2 = \exists z \ \neg Q(z)$$

$$\varphi_3 = \forall x \forall y \exists z \ (P(x, z, y) \lor Q(z))$$

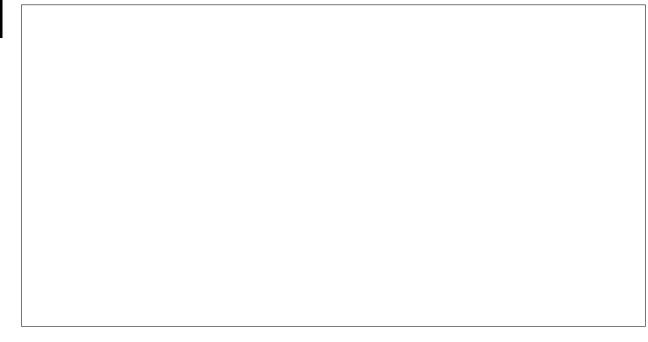
In each subproblem of this exercise, you will be asked to give a τ -structure satisfying some constraints. For each subproblem, if your solution is a τ -structure \mathcal{E} , present it in the following format:

- U^E :=
- P^E :=
- Q^E :=

a) Construct a τ -structure \mathcal{A} such that $\mathcal{A} \models \varphi_1$, $\mathcal{A} \models \varphi_2$ and $\mathcal{A} \models \varphi_3$.



b) Construct a τ -structure \mathcal{B} such that $\mathcal{B} \models \varphi_1, \mathcal{B} \models \varphi_2$ and $\mathcal{B} \not\models \varphi_3$.



	- 1
	v
	- o∱t
	- 1
-07	- 1
90	
71	
5-E010	
26	
-20230726	
23	- 1
20	
-1-	v
ij	Ą
õ	- !
cjt-	
	- 1
	- 1
	- !
	- 1
	Ą
	Ą
	- 1

X,

_
0
0
0
7
0
<u>=</u> 0
Ÿ
ι'n
χ,
7.0
1
0
23
٥í
Ċ
\approx
- 4
1
.1
\prec
`≍
\sim
_0
ī
:=
C

X

c) Construct a τ -structure \mathcal{C} such that $\mathcal{C} \not\models \varphi_1$, $\mathcal{C} \models \varphi_2$ and $\mathcal{C} \models \varphi_3$.	用
d) Construct a τ -structure \mathcal{D} such that $\mathcal{D} \not\models \varphi_1, \mathcal{D} \not\models \varphi_2$ and $\mathcal{D} \models \varphi_3$.	H
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D \not\models \varphi_1, \mathcal D \not\models \varphi_2$ and $\mathcal D \models \varphi_3$.	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D\not\models \varphi_1, \mathcal D\not\models \varphi_2$ and $\mathcal D\models \varphi_3.$	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D\not\models \varphi_1, \mathcal D\not\models \varphi_2$ and $\mathcal D\models \varphi_3.$	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D\not\models\varphi_1,\mathcal D\not\models\varphi_2$ and $\mathcal D\models\varphi_3.$	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D\not\models\varphi_1,\mathcal D\not\models\varphi_2$ and $\mathcal D\models\varphi_3.$	
d) Construct a $ au$ -structure $\mathcal D$ such that $\mathcal D \not\models \varphi_1$, $\mathcal D \not\models \varphi_2$ and $\mathcal D \models \varphi_3$.	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D \not\models \varphi_1, \mathcal D \not\models \varphi_2$ and $\mathcal D \models \varphi_3$.	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D \not\models \varphi_1, \mathcal D \not\models \varphi_2$ and $\mathcal D \models \varphi_3$.	
d) Construct a τ -structure $\mathcal D$ such that $\mathcal D \not\models \varphi_1, \mathcal D \not\models \varphi_2$ and $\mathcal D \models \varphi_3$.	

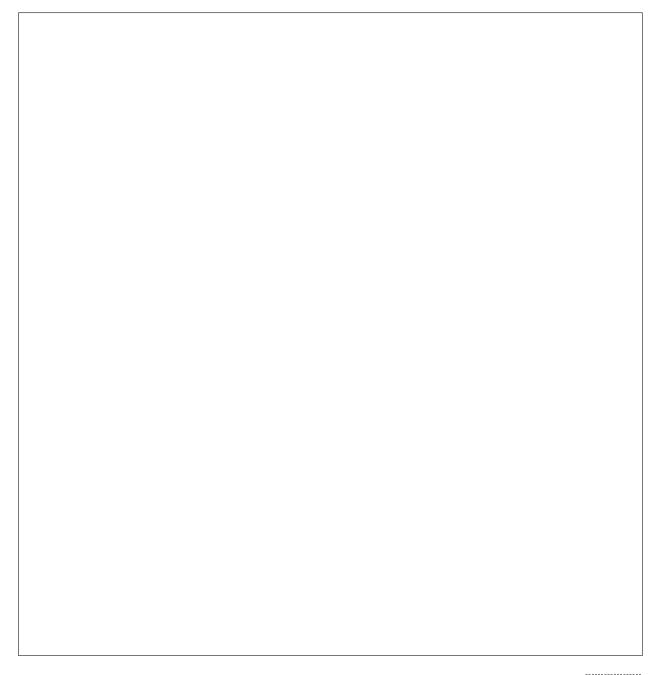
Problem 4 First order logic modeling (10 credits)

Consider the following statements.

- (S1) If a person has read somebody's work, then it was taught by somebody.
- (S2) All wise philosophers have read Aristotle's work.
- (S3) No philosopher is unwise.
- (S4) There exists at least one philosopher.
- (S5) Anybody who has taught somebody's work is a philosopher.
- (S6) No wise person has taught Aristotle's work.

a) Formalize each of the statements S1, S2, S3, S4, S5 and S6 as closed formulas in first-order logic without equality. The only predicate symbols that you are allowed to use are two unary predicates P, W and two binary predicates R and T. The only constant symbol you can use is a.

P(x) must be used to denote that x is a philosopher, W(x) must be used to denote that x is wise, R(x, y) must be used to denote that x has read y's work and T(x, y) must be used to denote that x has taught y's work. a must be used for Aristotle.



		0
L	Ц	1
L	Ц	
L		2

0		
1	Н	
2	Н	
2		

	- 1
	- 1
	J
	X
	ďρ
	- 1
_	i i
+	- 1
9	
7	- i
EC	- 1
9	
2	1
30	- 1
8	
2	X
+	X
έ	ا
9	
įį.	- 1
O	- 1
	- 1
	- 1
	1.0
	- 1
	1.0
	- 1
	1
	1.
	1.
	X
	X
	X
	X
	X
	*
	X
	X
1	X
-11	X
00-11	X
0100-11	X
-E0100-11	Y
26-E0100-11	X
7726-E0100-11	Y
:30726-E0100-11	X 000
:0230726-E0100-11	Y 000
-20230726-E0100-11	¥ o
k-1-20230726-E0100-11	*
ngik-1-20230726-E0100-11	X
-logik-1-20230726-E0100-11	Ž,
cit-logik-1-20230726-E0100-11	X
cit-logik-1-20230726-E0100-11	X
cit-logik-1-20230726-E0100-11	¥ o
cit-logik-1-20230726-E0100-11	X
cit-logik-1-20230726-E0100-11	×
cit-logik-1-20230726-E0100-11	*
cit-logik-1-20230726-E0100-11	×

d) Consider the formula <i>G</i> from the previous subproblem. Construct a finite unsatisfiable subset <i>K</i> of the clause Herbrand expansion of <i>G</i> . You have to prove that <i>K</i> is not satisfiable by using the Horn satisfiability algorithm.	0 1 2 3

Hence this indicates that the collection of statements S1, S2, S3, S4, S5 and S6 is unsatisfiable.

X

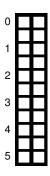
Problem 5 Herbrand theory (5 credits)

Let A be the structure defined as follows:

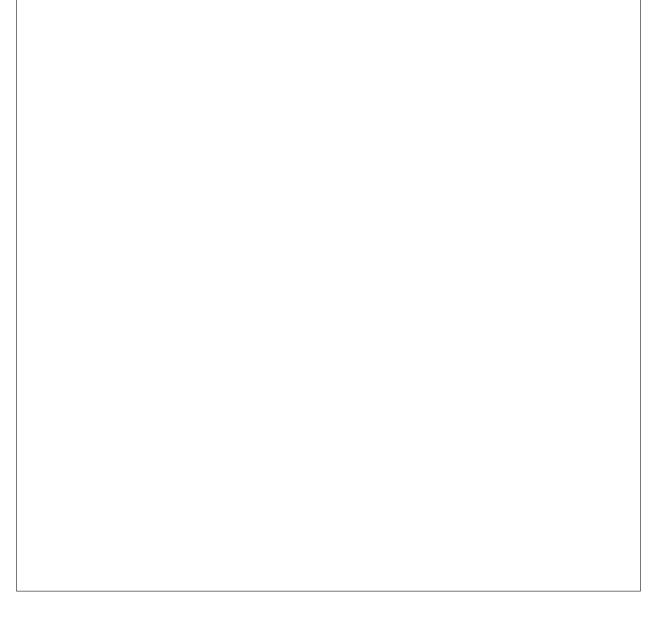
$$U_{\mathcal{A}} = \mathbb{N} \setminus \{0\}$$
 $c^{\mathcal{A}} = 5$
 $f^{\mathcal{A}}(x, y) = x + y$
 $(m, n) \in P^{\mathcal{A}} \Leftrightarrow m < n$
 $n \in Q^{\mathcal{A}} \Leftrightarrow n \text{ is divisible by } 10$

Let φ be the following formula:

$$\forall x \forall y \quad P(x, f(x, y)) \land \neg P(f(x, y), y) \land Q(f(c, c)).$$



Note that $A \models \varphi$. Using the construction from the Fundamental theorem of predicate logic, construct a Herbrand structure \mathcal{H} that is a model for φ based on \mathcal{A} .



cit-logik-1-20230726-E0100-12

X

X

Ķ

Problem 6 Predicate logic resolution (3 credits)

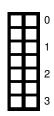
Let c and d be constant symbols, let P be a unary predicate symbol and let Q be a ternary predicate symbol. Consider the following clauses:

$$C_1 = \{ \neg Q(c, x, y), P(g(x)) \}$$

$$C_2 = \{ Q(x, f(x), g(y)) \}$$

$$C_3 = \{ \neg Q(x, f(d), y), \neg P(y) \}$$

Use the predicate logic resolution to prove unsatisfiability of $C_1 \wedge C_2 \wedge C_3$. In each step explain which clauses you are considering, what is their most general unifier and what is their resolvent.

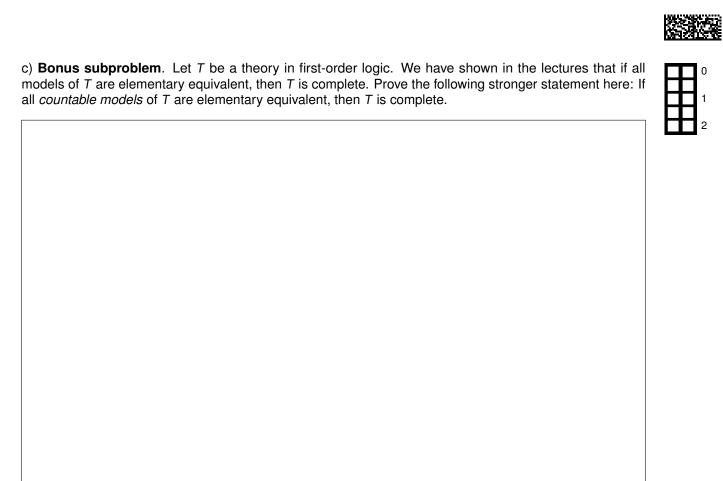


Maria P	
12.50	
17353	

Problem 7 Compactness and completeness (5 credits)

I					
					ery $m \in \mathbb{N}$, Γ has a universe.
whose univ	erse has at least	m elements. Prov	er logic with equalities that Γ has a momentum $m:m\in\mathbb{N}$ from the	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.
whose univ	erse has at least	m elements. Prov	re that Γ has a mo	del with an infinite	universe.

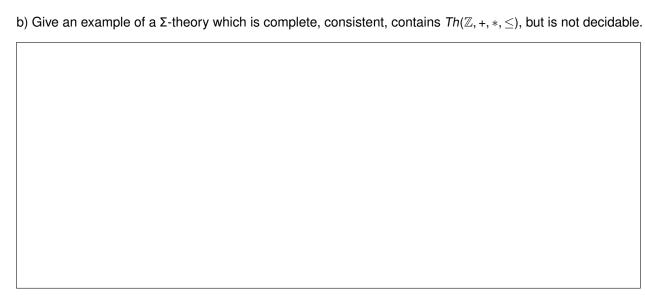
	i
	į.
	X
	1
	1
	بال
	X
	1
2	- 1
0-1	
010	1
i-E(
726	
023072	
	1
(-1-2	X
-logi	
cit	i i
	1
	1
	J
	X
	1
	i
	1
	- 1
2	1
0-1	X
10	X
Ę	
726	
30,	
202	1
(-1-	
žέ.	
i-10	
Ö	
	1
	Ü
	X
	1
	i
	Ü
	X
	1

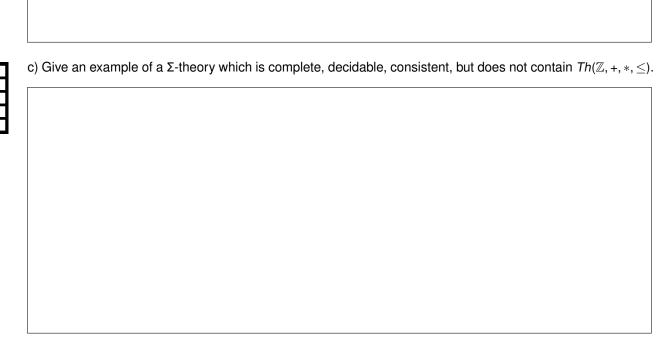


Problem 8 Consistency (4 credits)

Suppose T is a theory in first-order logic. T is said to be *consistent* if for every sentence S, it **does not** include both S and $\neg S$.

Consider the signature $\Sigma = \{+, *, \leq\}$. Recall that $(\mathbb{Z}, +, *, \leq)$ denotes the structure with universe \mathbb{Z} and the standard intepretations for the symbols +, * and \leq .





X

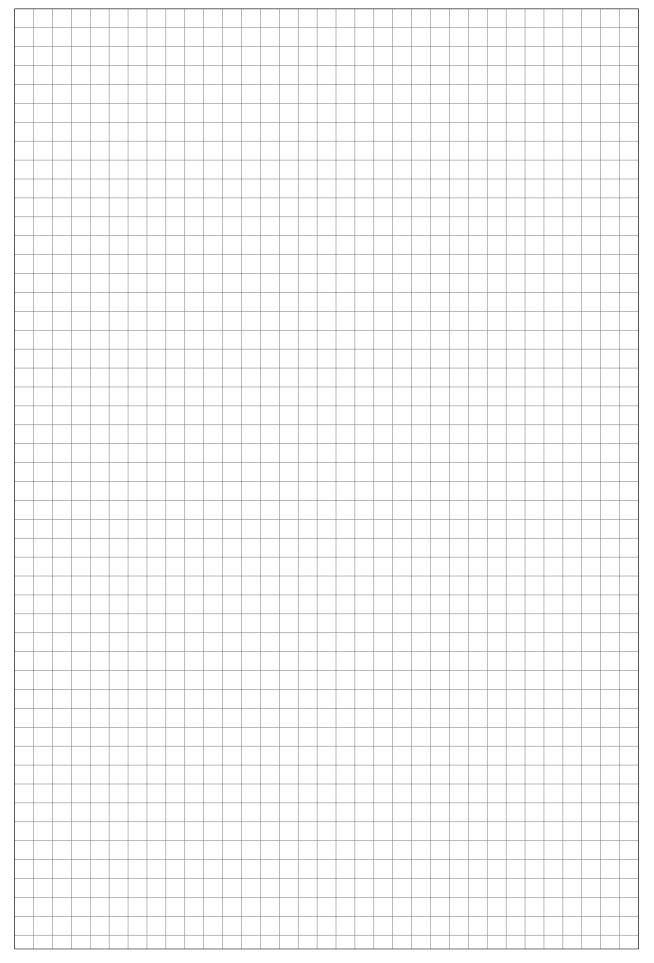
X

Ķ

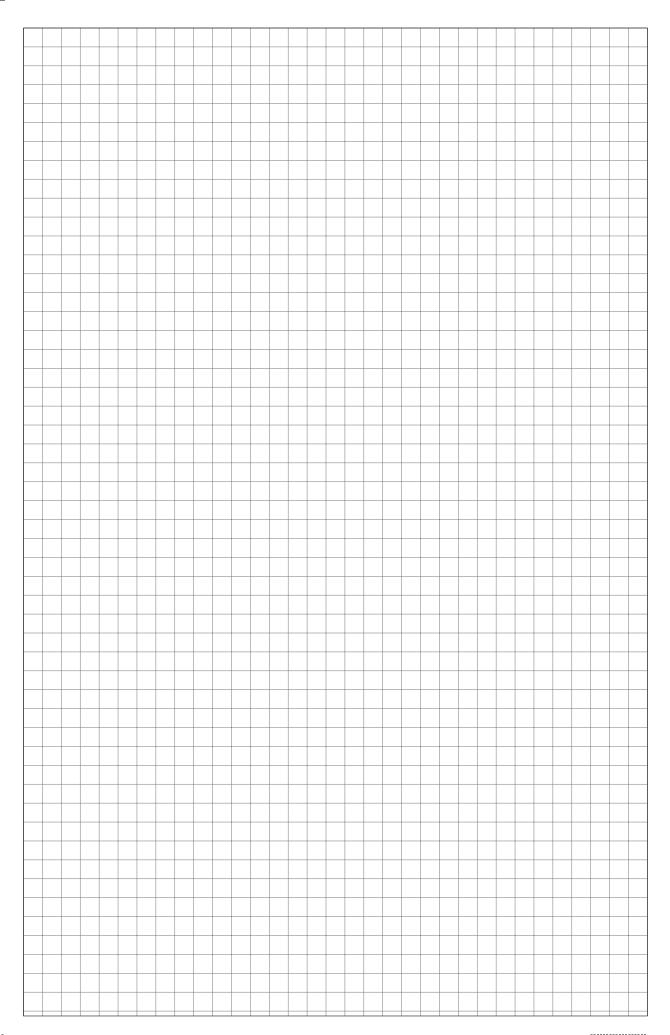
X

X

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.



X



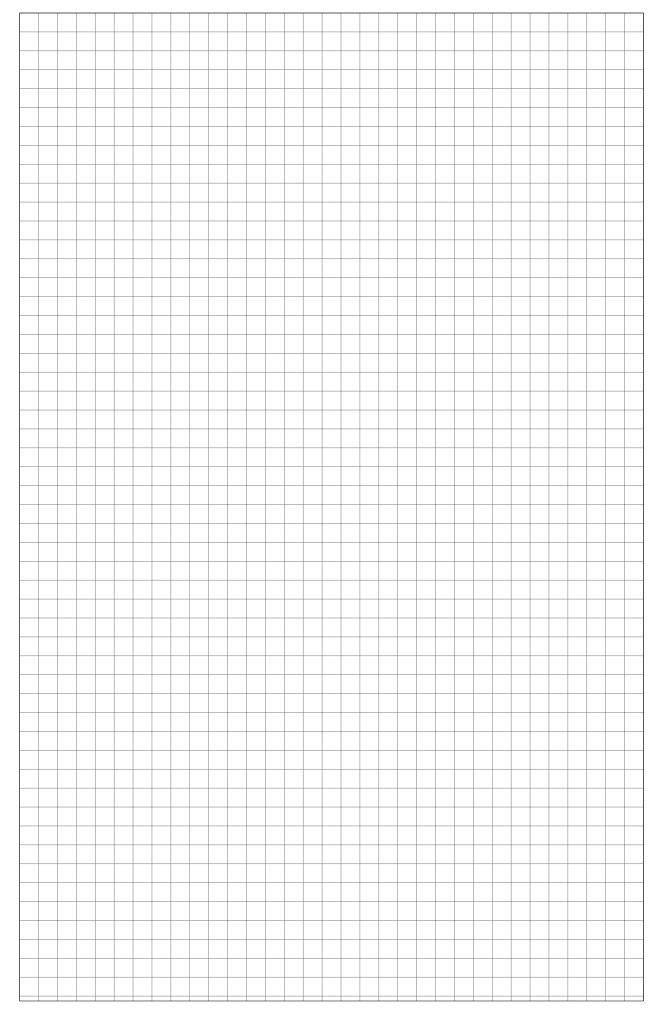
X,

Ķ

X

X

X



X

