Einführung in die Theoretische Informatik

Sommersemester 2024 - Quiz 6

Frage Q6.1. (zu H6.5)

1 Punkt

Einfachauswahl. Sei $\Sigma := \{a, b\}$ und G eine kontextfreie Grammatik über Σ in Chomsky-Normalform mit n > 1 Produktionen. Was ist das kleinste der folgenden k, sodass eine kontextfreie Grammatik mit k Produktionen für $L(G)^a$ existiert?

- (a) $\times n 1$
- (b) ✓ 2022n
- (c) $\times n^{2022}$
- (d) × 2022ⁿ

Lösungsskizze. Unsere Konstruktion verwendet genau 2n Produktionen. Es gibt kontextfreie Sprachen L mit $L^a = L$ (z.B. $L = \Sigma^*$), die minimale Grammatik für L ist also auch eine minimale Grammatik für L^a . Damit ist es unmöglich, eine Konstruktion für L^a zu haben, die nur n-1 Produktionen benötigt.

Frage Q6.2. (zu H6.5)

1 Punkt

Einfachauswahl. Sei $\Sigma := \{a, b\}$ und G eine kontextfreie Grammatik über Σ in Chomsky-Normalform mit n > 1 Produktionen. Was ist das kleinste der folgenden k, sodass eine kontextfreie Grammatik mit k Produktionen für $\{w \in L(G) : |w| \equiv 0 \pmod{7}\}$ existiert?

- (a) $\times n 1$
- (b) ✓ 2022n
- (c) $\times n^{2022}$
- (d) $\times 2022^n$

Lösungsskizze. Unsere Konstruktion verwendet höchstens $7^3n=343n$ Produktionen. Ebenso wie bei der letzten Frage, gibt es L mit $\{w\in L(G): |w|\equiv 0\pmod{7}\}=L$ (z.B. $L=\emptyset$, oder $L=\{a^7\}^*$).

Frage Q6.3. (zu H6.5)

1 Punkt

Mehrfachauswahl. Sei $\Sigma := \{a, b\}, L \subseteq \Sigma^*$ kontextfrei und $x \in \Sigma^*$. Welche der folgenden Sprachen sind kontextfrei?

- (a) $\checkmark L^x$
- (b) $\checkmark \{w \in L : |w| \equiv 3 \pmod{7}\}$

Lösungsskizze.

- (a) $L^x = (...(L^{x_1})^{x_2}...)^{x_k}$, wobei k := |x|, wir können also die Residualsprachen iterativ berechnen. Nach der Aufgabe bleiben wir in jedem Schritt kontextfrei.
- (b) Wir können unsere Konstruktion anpassen, indem wir S_3 als Startsymbol nehmen.

Angabe. Sei $\Sigma := \{a, b\}$ und $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik über Σ in Chomsky-Normalform. Wir wollen nun zeigen, dass die Sprache $L' := \{w \in L(G) : a \in w\}$ kontextfrei ist, d.h. die Sprache der Wörter aus L, die ein a enthalten. Dazu erstellen wir eine kontextfreie Grammatik $G' = (V', \Sigma, P', S')$.

Frage Q6.4. (zu H6.5)

1 Punkt

Einfachauswahl. Wir setzen $V' := V \cup \{X^* : X \in V\}$. Es soll $L_{G'}(X) = L_G(X)$ für alle $X \in V$ gelten. Welche der folgenden Eigenschaften für X^* ist zielführend?

- (a) $L_{G'}(X^*) = \{a\}L_G(X)$
- (b) $L_{G'}(X^*) = L_G(X)^a$
- (c) $K L_{G'}(X^*) = L_G(X) \cap \{a\} \Sigma^*$
- (d) $\checkmark L_{G'}(X^*) = L_G(X) \cap \Sigma^* \{a\} \Sigma^*$

Lösungsskizze. (d) ist zielführend, wie wir in den folgenden Fragen sehen werden. (a-c) enthalten kein Symbol $X \in V'$ mit $L_{G'}(X) = L'$, und können deshalb nicht funktionieren.

Frage Q6.5. (zu H6.5)

1 Punkt

Einfachauswahl. Welches Startsymbol S' wählen wir für G'?

- (a) **X** S
- (b) ✓ S*
- (c) X ein anderes

Lösungsskizze. Mit $S' = S^*$ gilt $L_{G'}(S') = L'$, dies ist also die richtige Wahl.

Frage Q6.6. (zu H6.5)

1 Punkt

Mehrfachauswahl. Sei $(X \to YZ) \in P$. Welche der folgenden Produktionen können wir zu P' hinzufügen, um die gewünschte Eigenschaft zu erhalten? (Es ist in Ordnung, redundante Produktionen hinzuzufügen.)

- (a) $X X^* \rightarrow YZ$
- (b) $\checkmark X^* \to Y^*Z$
- (c) $\checkmark X^* \rightarrow YZ^*$
- (d) $\checkmark X^* \to Y^*Z^*$

Lösungsskizze. X^* soll genau die Wörter erzeugen, die X erzeugt und die ein a enthalten. Da Y, Z auch Wörter erzeugen können, die kein a enthalten, dürfen wir (a) nicht wählen. Für (b-d) muss auf der rechten Seite ein a enthalten sein, diese sind also in Ordnung. (Wir merken an, dass (d) redundant ist.)

Frage Q6.7. (zu H6.5)

1 Punkt

Mehrfachauswahl. Sei $(X \to a), (Y \to b) \in P$. Welche der folgenden Produktionen können wir zu P' hinzufügen, um die gewünschte Eigenschaft zu erhalten? (Es ist in Ordnung, redundante Produktionen hinzuzufügen.)

- (a) $\checkmark X^* \to a$
- (b) $X X^* \rightarrow b$
- (c) $XY^* \rightarrow a$
- (d) $XY^* \rightarrow b$

Lösungsskizze. (a) funktioniert, da a ein a enthält. b aber nicht, also dürfen wir (b) und (d) nicht wählen. Bei (c) wissen wir nicht, dass $a \in L_G(Y)$ gilt, können es also nicht hinzufügen.

1 Punkt

Einfachaus wahl. Wenn wir die richtigen Produktionen aus den letzten beiden Fragen verwenden, ist G' dann korrekt, oder müssen wir noch weitere Produktionen hinzufügen?

- (a) X Ja, G' ist dann vollständig.
- (b) \checkmark Nein, wir müssen noch Produktionen hinzufügen.

 $L\ddot{o}sungsskizze.$ Wir müssen noch die Produktionen aus Phinzufügen.