
Checking emptiness of
generalized Büchi automata

Accepting lassos

• A NBA is nonempty iff it has an accepting lasso

• For NGA: the ``loop part’’ must visit all sets of
accepting states.

Setting

• We want on-the-fly algorithms that search for
an accepting lasso of a given NBA while
constructing it.

• The algorithms know the initial state, and have
access to an oracle that, called with a state 푞
returns all successors of 푞 (and for each
successor whether it is accepting or not).

• We think big: the NBA may have tens of millions
of states.

Two approaches

1. Compute the set of accepting states, and for
each accepting state, check if it belongs to
some cycle.
Nested-depth-first-search algorithm

2. Compute the set of states that belong to
some cycle, and for each such set, check if it
is accepting.
SCC-based algorithm

First approach: A naïve algorithm

1. Compute the set of accepting states by
means of a graph search (DFS, BFS, …).

2. For each accepting state 푞, conduct a second
search (DFS, BFS,…) starting at 푞 to decide if
푞 belongs to a cycle.

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We search for an 푂(푚) algorithm

푛 states
푚 transitions

First approach: A naïve algorithm

Runtime of the first search: 푂(푚)
Number of searches in the second step: 푂(푛)
Overall runtime of the second step: 푂(푛푚)
Overall runtime: 푂(푛푚). Too high!
We want an 푂(푚) algorithm.

푛 states
푚 transitions

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as “discovered” (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as “discovered” (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not yet discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack (first in last
out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack
(first in last out)

• Breadth-first search: workset is implemented as a queue (first in first
out)

Generic search in graphs

• Similar to a workset algorithm
• Initially the workset contains only the initial state. At every iteration:

– Choose a state from the workset and mark it as discovered (but
don’t remove it yet).

– If all successors of the state have already been discovered, then
remove the state from the workset.

– Otherwise, choose a not-yet-discovered successor and add it to
the workset.

• Depth-first search: workset is implemented as a stack
(first in last out)

• Breadth-first search: workset is implemented as a queue
(first in first out)

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered.

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,

d 푞 < 푡 ≤ 푓[푞]
– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 ≤ 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,
푑 푞 < 푡 ≤ 푓[푞]

– black: search has already backtracked from 푞, 푓 푞 < 푡 ≤ 2푛

Depth-first search: Terminology
• States are discovered by the search.
• After recursively exploring all successors, the search

backtracks from the state.
• The search assigns to a state 푞:

– a discovery time 푑[푞];
– a finishing time 푓 푞 ;
– a DFS-predecessor, the state from which 푞 is discovered (DFS-tree).

• Coloring scheme: at time 푡 state 푞 is either
– white: not yet discovered, 1 ≤ 푡 < 푑[푞]
– gray: discovered, but at least one successor not yet fully explored,
푑 푞 ≤ 푡 < 푓[푞]

– black: search has already backtracked from 푞, 푓 푞 ≤ 푡 ≤ 2푛

An example

Recursive implementation of DFS

Parenthesis theorem

• 퐼(푞) denotes the interval [푑 푞 ,푓[푞]].

• 퐼 푞 ≺ 퐼 푟 denotes 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval [푑 푞 , 푓 푞].

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval [푑 푞 , 푓 푞].

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and q ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

Parenthesis theorem

• 퐼(푞) denotes the interval [푑 푞 , 푓 푞].

• 퐼 푞 ≺ 퐼 푟 denotes that 푓 푞 < 푑 푟 holds
(i.e., 퐼(푞) is to the left of 퐼(푟) and does not overlap with it).

• 푞 ⇒ 푟 denotes that 푟 is a DFS-descendant of 푞 in the DFS-tree.

• Parenthesis theorem. In a DFS-tree, for any two states 푞 and 푟,
exactly one of the following conditions hold:
– 퐼 푞 ⊆ 퐼 푟 and 푟 ⇒ 푞.
– 퐼 푟 ⊆ 퐼 푞 and 푞 ⇒ 푟.
– 퐼 푞 ≺ 퐼 푟 , and none of 푞, 푟 is a descendant of the other
– 퐼 푟 ≺ 퐼 푞 , and none of 푞, 푟 is a descendant of the other

White-path and gray-path theorems

• White-path theorem. 푞 ⇒ 푟 (and so
퐼 푟 ⊆ 퐼 푞) iff at time 푑 푞 − 1 state 푟 can
be reached from 푞 along a path of white
states.

• gray-path theorem. At every momnet in time,
all gray nodes form a simple path of the DFS
tree (the gray path).

White-path and gray-path theorems

• White-path theorem. 푞 ⇒ 푟 (and so
퐼 푟 ⊆ 퐼 푞) iff at time 푑 푞 − 1 state 푟 can
be reached from 푞 along a path of white
states.

• Gray-path theorem. At every moment in time,
all gray nodes form a simple path of the DFS
tree (the gray path).

Nested-DFS algorithm

• Modification of the naïve algorithm:
– Use a DFS to discover the accepting states

and sort them in a certain order 푞 , 푞 , … , 푞 ;
– conduct a DFS from each accepting state

in the order 푞 , 푞 , … , 푞 .

• The order will guarantee that if the search from 푞
hits a state already discovered during the search from
푞 , for some 푖 < 푗, then the search can backtrack.

• Runtime: 푂(푚), because every transition is explored
at most twice, once in each phase.

Nested-DFS algorithm

• Suitable order: postorder
• The postorder sorts the states according to

increasing finishing time.

푓 푞 ≤ 푓 푞 ≤ 푓[푞]

Why does it work?

DFS-tree
Back-edges

Cross-edges
Forward-edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞

What do we have to prove?

DFS-tree
Other edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞
푟

• State 푟 discovered during the search from 푞
• To prove: during the search from 푞 (or 푞), it

is safe to backtrack from 푟, because we do not
“miss any accepting lassos”

• Amounts to: proving that 푞 (or 푞) is not
reachable from 푟.

What do we have to prove?

DFS-tree
Other edges

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞
푟

• State 푟 discovered during the search from 푞
• To prove: during the search from 푞 (or 푞), it

is safe to backtrack from 푟, because we do not
“miss any accepting lassos”

• Amounts to: proving that 푞 (or 푞) is not
reachable from 푟.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑[푞] the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which together with 푑 푠 ≤ 푑[푞] contradicts
푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑 푞 − 1 the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑 푞 − 1 the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

If 퐼 푠 ≺ 퐼 푞 then, since at time 푑 푠 the subpath of 휋 from 푠
to 푟 is white, we have 퐼 푟 ⊆ 퐼 푠 , contradicting 푓 푞 < 푓[푟].
So 퐼 푞 ⊂ 퐼(푠) and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Notation. 푞 ↝ 푟 denotes “푞 is reachable from 푟”
Lemma. If 푞 ↝ 푟 and 푓 푞 < 푓[푟], then some cycle contains 푞.
Proof: Let 휋 = 푞 → ⋯ → 푟. Let 푠 be the first node of 휋 that is
discovered (so 푑 푠 ≤ 푑[푞]). We show 푠 ≠ 푞, 푞 ↝ 푠 , and 푠 ↝ 푞.

• 푠 ≠ 푞. Otherwise at time 푑 푞 − 1 the path 휋 is white and so
퐼 푟 ⊆ 퐼(푞), which contradicts 푓 푞 < 푓[푟].

• 푞 ↝ 푠. Obvious, because 푠 in 휋.
• 푠 ↝ 푞. Since 푑 푠 < 푑[푞] either 퐼 푞 ⊂ 퐼(푠) or 퐼 푠 ≺ 퐼 푞 .

Since at time 푑 푠 − 1 the subpath of 휋 from 푠 to 푟 is white, we
have 퐼 푟 ⊆ 퐼 푠 . If 퐼 푠 ≺ 퐼 푞 then 푓 푞 > 푓[푟]. So 퐼 푞 ⊂
퐼 푠 , and so s ⇒ 푞, which implies 푠 ↝ 푞.

Correctness proof

Theorem. Assume:
• 푞 and 푟 are accepting states such that 푓 푞 < 푓 푟 ;
• the search from 푞 has finished without an accepting lasso;

and
• the search from 푟 has just discovered a state 푠 that was also

discovered in the search from 푞.
Then 푟 is not reachable from 푠 (and so it is safe to backtrack
from 푠).
Proof: Assume 푠 ↝ 푟. Since 푞 ↝ 푠 we have 푞 ↝ 푟. By the lemma
some cycle contains 푞, contradicting that the search from 푞 was
unsuccessful.

Correctness proof

Theorem. Assume:
• 푞 and 푟 are accepting states such that 푓 푞 < 푓 푟 ;
• the search from 푞 has finished without an accepting lasso;

and
• the search from 푟 has just discovered a state 푠 that was also

discovered in the search from 푞.
Then 푟 is not reachable from 푠 (and so it is safe to backtrack
from 푠).
Proof: Assume 푠 ↝ 푟. Since 푞 ↝ 푠 we have 푞 ↝ 푟. By the lemma
some cycle contains 푞, contradicting that the search from 푞 was
unsuccessful.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• The problems can be solved by nesting the searches:
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Nesting the searches
• Two problems:

– The algorithm always examines all states and transitions at
least once.

– If the algorithm must return a witness of non-emptiness,
then it requires a lot of memory.

• Solution: nest the searches.
– Perform a DFS from the initial state 푞 .
– Whenever the search blackens an accepting state 푞,

launch a new (modified) DFS from 푞. If this DFS visits 푞
again, report NONEMPTY. Otherwise, after termination
continue with the first DFS.

– If the first DFS terminates, report EMPTY.

Evaluation

• Plus points:
– Very low memory consumption: two extra bits per

state.
– Easy to understand and prove correct.

• Minus points:
– Cannot be generalized to NGAs.
– It may return unnecessarily long witnesses.
– It is not optimal. An emptiness algorithm is optimal if

it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.

Evaluation

• Plus points:
– Very low memory consumption: two extra bits per

state.
– Easy to understand and prove correct.

• Minus points:
– Cannot be generalized to NGAs.
– It may return unnecessarily long witnesses.
– It is not optimal. An emptiness algorithm is optimal if

it answers NONEMPTY immediately after the explored
part of the NBA contains an accepting lasso.

Nested DFS is not optimal

Recall: Two approaches

1. Compute the set of accepting states, and for
each accepting state, check if it belongs to a
cycle.
Nested depth first search algorithm

2. Compute the set of states that belong to
some cycle, and for each of them, check if it
is accepting.
SCC-based algorithm

Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting
state 푞 start a new DFS from 푞 to check if it
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states

in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

Second approach: a naïve algorithm

• Conduct a DFS, and for each discovered accepting
state 푞 start a new DFS from 푞 to check if it
belongs to a cycle.

• Problem: too expensive.
• Goal: conduct one single DFS which marks states

in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

Second approach: a naïve algorithm

• Goal: conduct one single DFS which marks
states in such a way that
– every marked state belongs to a cycle, and
– every state that belongs to a cycle is eventually

marked.

The active graph

• Explored graph 퐴 at time 푡: subgraph of 퐴
containing the states and transitions explored by the
DFS until time 푡 (included).

• Strongly connected component (scc) of 퐴 : maximal
set of states mutually reachable in 퐴 .

• A scc of 퐴 is active if some state appears in the gray
path, and inactive otherwise. A state is active if its
scc in 퐴 is active.

• Active graph at time 푡: subgraph of 퐴 containing
the active states and the transitions between them.

The active graph

Time 5

Time
between
8 and 9

Time 11

Necklace structure of the active graph
• Def: The root of a scc of 퐴 is the first state of the scc visited by the DFS.

• The chain of the (open) necklace is the gray path. The beads are the active sccs.

• The chain contains all roots of the active sccs (and possibly other nodes).

• The scc of a root 푞 contains all nodes 푠 such that 푑 푞 ≤ 푑[푠] < 푑[푟], where 푟 is
the next root.

Properties of the active graph

1) The root of a scc of 퐴 is defined as the first state of the
scc visited by the DFS.

2) The root of an scc of 퐴 is the last state of the scc from
which the DFS backtracks.
• Let 푟 be the root of an scc. At time 푑[푟] there are white paths

from 푟 to all states of the scc.
• By the White-path Theorem, all states of the scc are discovered

before the DFS backtracks from 푟.
• By the Parenthesis Theorem, the DFS backtracks from all states

of the scc before it backtracks from 푟.

Properties of the active graph

3) An scc of 퐴 becomes inactive when the DFS backtracks
from its root, i.e., when its root is blackened.

4) An inactive scc of 퐴 is also a scc of 퐴.
• When a scc of 퐴 becomes inactive, the DFS has already

explored, and backtracked from, all states of 퐴 reachable from
its root.

5) Roots of active sccs of 퐴 occur in the gray path.
• If a scc is active then its root has already been discovered, and

by (3) it is not yet black. So it is gray.

Properties of the active graph

6) Let 푞 be an active state of 퐴 , and let 푟 be the root of its
scc. No state discovered between 푞 and 푟, i.e., no state 푠
satisfying 푑[푟] < 푑[푠] < 푑[푞], is an active root of 퐴 .

• Assume 푠 is active root and 푑[푟] < 푑[푠] < 푑[푞]
• Claim: 푟 and 푠 are in the same scc, contradicting that 푟 is root.
 푟 ↝ 푠. By (5), 푟 and 푠 are in the gray path. Further, 푟 precedes 푠

because 푑[푟] < 푑[푠].
 푠 ↝ 푞. Because, since 푠 is active and 푑[푠] < 푑[푞], state 푞 is

discovered during the execution of dfs(푠).
 푞 ↝ 푟. Because 푞 and 푟 belong to the same scc.

Properties of the active graph

6) Let 푞 be an active state of 퐴 , and let 푟 be the root of its
scc. No state discovered between 푞 and 푟, i.e., no state 푠
satisfying 푑[푟] < 푑[푠] < 푑[푞], is an active root of 퐴 .

• Assume 푠 is active root and 푑[푟] < 푑[푠] < 푑[푞]
• Claim: 푟 and 푠 are in the same scc, contradicting that 푟 is root.
 푟 ↝ 푠. By (5), 푟 and 푠 are in the gray path. Further, 푟 precedes 푠

because 푑[푟] < 푑[푠].
 푠 ↝ 푞. Because, since 푠 is active and 푑[푠] < 푑[푞], state 푞 is

discovered during the execution of dfs(푠).
 푞 ↝ 푟. Because 푞 and 푟 belong to the same scc.

Properties of the active graph

7) If 푞 and 푟 are active and 푑[푞] < 푑[푟] then
푞 ↝ 푟 .
Let 푞′ and 푟′ be the roots of the sccs of 푞 and 푟.
Since 푞 ↝ 푞′ and 푟′ ↝ 푟 it suffices to prove 푞′ ↝ 푟′.
Since 푞′ and 푟′ are roots , they belong to the gray
path by (5). So at least one of 푞′ ↝ 푟′ and 푟′ ↝ 푞′
holds.
We have 푑 푞 < 푑 푞 by the definition of root and
푑[푞] < 푑[푟] by assumption.
So 푑 푞 < 푑 푞 < 푑[푟].

By (6), neither 푑 푟 < 푑 푞 < 푑[푟] nor
푑 푞 < 푑 푟 < 푑 푞 hold. Further, 푑 푟 < 푑 푟 by
the definition of root.
So 푑 푞 < 푑 푞 < 푑 푟′ < 푑[푟].
But then 푞′ entered the gray path before 푟′, and so
푞′ ↝ 푟′ .

Properties of the active graph

7) If 푞 and 푟 are active and 푑[푞] < 푑[푟] then
푞 ↝ 푟 .
Let 푞′ and 푟′ be the roots of the sccs of 푞 and 푟.
Since 푞 ↝ 푞′ and 푟′ ↝ 푟 it suffices to prove 푞′ ↝ 푟′.
Since 푞′ and 푟′ are roots , they belong to the gray
path by (5). So at least one of 푞′ ↝ 푟′ and 푟′ ↝ 푞′
holds.
We have 푑 푞 < 푑 푞 by the definition of root and
푑[푞] < 푑[푟] by assumption.
So 푑 푞 < 푑 푞 < 푑[푟].

By (6), neither 푑 푟 < 푑 푞 < 푑[푟] nor
푑 푞 < 푑 푟 < 푑 푞 hold. Further, 푑 푟 < 푑 푟 by
the definition of root.
So 푑 푞 < 푑 푞 < 푑 푟′ < 푑[푟].
But then 푞′ entered the gray path before 푟′, and so
푞′ ↝ 푟′ .

SCC-based algorithm

• The algorithm maintains the explored graph and the necklace
structure of the active graph while the DFS is conducted.

• Data structures:

• Set 푆 of states visited by the DFS so far.

• Mapping 푟푎푛푘: 푆 → ℕ assigning to each state a consecutive
number in the order they are discovered.

• Mapping 푎푐푡: 푆 → {true, false} indicating which states are
currently active.

• Necklace stack 푛푒푐푘, containing beads of the form (푟,퐶),
where 퐶 is the set of states of an active scc, and 푟 its root.
The oldest bead (i.e., the one with the oldest root) is at the
bottom of the stack, and the newest at the top.

SCC-based algorithm

• After the initialization step, the DFS is always either

• exploring a new edge (which may lead to a new state
or to a state already visited), or

• backtracking along an edge explored earlier.

• We show how to update 푆, 푟푎푛푘, 푎푐푡, and 푛푒푐푘 after an
initialization, exploration, or backtracking step.

• Further, we show how to check after each step whether
the explored graph contains an accepting lasso.

Initialization

Initially the explored and active graphs only
contain the initial state 푞 and no edges. So:

• 푆 ≔ {푞 }
• 푟푎푛푘 푞 : = 1
• 푎푐푡 푞 : = true
• 푛푒푐푘: = (푞 , 푞)

Exploration

Assume the DFS has just explored a transition 푞 → 푟.
We show how to update the data structures.
We consider five cases:

i. 푟 is a new state.

ii. 푟 has been visited by the DFS before, and is inactive.

iii. 푟 has been visited by the DFS before, is active, and was
discovered strictly after 푞.

iv. 푟 has been visited by the DFS before, is active, and 푟 = 푞.

v. 푟 has been visited by the DFS before, is active, and was
discovered strictly before 푞.

Exploration: Case i
The DFS has just explored a transition 푞 → 푟.

Case i: 푟 is a new state.

Then the explored graph is extended with 푟, which is active.

The updates are: 푆 ≔ 푆 ∪ 푟 , 푟푎푛푘 푟 ≔ 푆 , 푎푐푡(푟): = true, and
푝푢푠ℎ 푟, 푟 to 푛푒푐푘.

After that recursively call dfs(푟)

Exploring B→C: before and after

Exploration: Case ii

The DFS has just explored a transition 푞 → 푟.

Case ii: 푟 has been visited by the DFS before, and is inactive.

Since 푟 is inactive, its scc has already been completely explored by the DFS (see
properties (2) and (3)).

So 푞 and 푟 belong to different sccs and 푞 → 푟 cannot create an accepting lasso.

So no update is needed, and no recursive DFS call is started.

Exploring F→C: before and after

Exploration: Case iii

The DFS has just explored a transition 푞 → 푟.

Case iii: 푟 has been visited by the DFS before, is active, and was discovered
strictly after 푞.

In this case both 푞 and 푟 are active, and already belong to the necklace.

Since 푟푎푛푘 푟 > 푟푎푛푘(푞), either 푞 and 푟 belong to the same scc, or the scc of 푞
is before the scc of 푟 in the necklace. No accepting lasso can be created. There is
nothing to do, and no recursive DFS call is started.

Exploring D→E: before and after

Exploration: Case iv

The DFS has just explored a transition 푞 → 푟.

Case iv: 푟 has been visited by the DFS before, is active, and 푟 = 푞.

Then 푞 → 푟 is a self-loop. If 푞 is accepting state, then an accepting lasso has been
discovered, and the algorithm reports it. Otherwise, there is nothing to do.

Exploring C→C: before and after

Exploration: Case v
The DFS has just explored a transition 푞 → 푟.

Case v: 푟 has been visited by the DFS before, is active, and was discovered strictly
before 푞.

By property (7) we have 푟 ↝ 푞 . So 푞 and 푟 belong to the same scc.

All sccs of the necklace between the sccs of 푟 and 푞 must be merged.

For this, pop beads (푠,퐶) from neck, merging the 퐶’s, and stopping when the popped bead
satisfies 푟푎푛푘 푠 ≤ 푟푎푛푘(푟).

Then push a new bead (푠,퐷), where 퐷 is the result of the merge.

Exploring E→D: before and after

Backtracking: Case vi
The DFS has already explored all edges leaving 푞, and now backtracks from 푞.

Case vi: 푞 is a root of the active graph.

Then, before backtracking from 푞, the top bead of 푛푒푐푘 is (푞,퐶) for some set C

After backtracking, 푞 and its entire scc become inactive by property (3), and they
do not belong to the active graph anymore.

So we pop (푞,퐶) from 푛푒푐푘 and set 푎푐푡(푟) to false for every 푟 ∈ C

Backtracking from D

Backtracking: Case vii
The DFS has already explored all edges leaving 푞, and now backtracks from 푞.

Case vii: 푞 is not a root of the active graph.

Then, by properties (2) and (3) the root of the scc of 푞 is active and remains so
after backtracking. The active graph does not change, and there is nothing to do.

Backtracking from E

Pseudocode

• Initialization and Case (i): Line 5
• Case (ii): conditions at 7,8 do not hold

and nothing happens
• Cases (iii)-(v): repeat-until loop

Pseudocode: runtime
• 2m steps of type (i)-(vii)

• Each step of type (i)-(iv) or (vii) takes
constant time

• Step of type (v):

• At most n primary beads enter the
necklace

• Secondary beads are merges of
primary beads, at most n enter the
necklace.

• So line 13 is executed 푂(푛) times

• Implementing sets as linked lists with
pointers to first and last elements:
푂(푛) time

• Step of type (vi): each state is deactivated
exactly once at line 18, so 푂(푛) time.

Extension to NGAs

• A NGA 퐴 with accepting condition {퐹 , … ,퐹 } is nonempty iff
some scc 푆 satisfies 푆 ∩ 퐹 ≠ ∅ for every 푖 ∈ 푘

• Label each state 푞 with the index set 퐼 of the acceptance sets it
belongs to.

• Extend beads with a third component: (푞,퐶, 퐼), where 퐼 is an
index set.

What do we have to prove?

푞

푞

푞

• Edges processed counterclockwise

• 푓 푞 ≤ 푓 푞 ≤ 푓 푞

푟

• State 푟 discovered during the search from 푞
• To prove: during the search from 푞 , it is safe

to backtrack from 푟, because we do not “miss
any accepting lassos”

• Amounts to: proving that 푞 is not reachable
from 푟.

DFS-tree
Back-edges

Cross-edges
Forward-edges

