Checking emptiness of generalized Büchi automata

Accepting lassos

• A NBA is nonempty iff it has an accepting lasso

• For NGA: the ``loop part" must visit all sets of accepting states.

Setting

- We want on-the-fly algorithms that search for an accepting lasso of a given NBA while constructing it.
- The algorithms know the initial state, and have access to an oracle that, called with a state *q* returns all successors of *q* (and for each successor whether it is accepting or not).
- We think big: the NBA may have tens of millions of states.

Two approaches

 Compute the set of accepting states, and for each accepting state, check if it belongs to some cycle.

Nested-depth-first-search algorithm

2. Compute the set of states that belong to some cycle, and for each such set, check if it is accepting.

SCC-based algorithm

- 1. Compute the set of accepting states by means of a graph search (DFS, BFS, ...).
- For each accepting state q, conduct a second search (DFS, BFS,...) starting at q to decide if q belongs to a cycle.

Runtime of the first search: O(m)

Runtime of the first search: O(m)Number of searches in the second step: O(n)

Runtime of the first search: O(m)Number of searches in the second step: O(n)Overall runtime of the second step: O(nm)

Runtime of the first search: O(m)Number of searches in the second step: O(n)Overall runtime of the second step: O(nm)Overall runtime: O(nm). Too high!

Runtime of the first search: O(m)Number of searches in the second step: O(n)Overall runtime of the second step: O(nm)Overall runtime: O(nm). Too high! We want an O(m) algorithm.

• Similar to a workset algorithm

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.
- Depth-first search: workset is implemented as a stack (first in last out)

- Similar to a workset algorithm
- Initially the workset contains only the initial state. At every iteration:
 - Choose a state from the workset and mark it as discovered (but don't remove it yet).
 - If all successors of the state have already been discovered, then remove the state from the workset.
 - Otherwise, choose a not-yet-discovered successor and add it to the workset.
- Depth-first search: workset is implemented as a stack (first in last out)
- Breadth-first search: workset is implemented as a queue (first in first out)

• States are **discovered** by the search.

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];
 - a finishing time *f*[*q*];

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t \le d[q]$

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t \le d[q]$
 - gray: discovered, but at least one successor not yet fully explored, $d[q] < t \le f[q]$

- States are **discovered** by the search.
- After recursively exploring all successors, the search backtracks from the state.
- The search assigns to a state *q*:
 - a discovery time d[q];
 - a finishing time f[q];
 - a DFS-predecessor, the state from which q is discovered (DFS-tree).
- Coloring scheme: at time *t* state *q* is either
 - white: not yet discovered, $1 \le t < d[q]$
 - gray: discovered, but at least one successor not yet fully explored, $d[q] \le t < f[q]$
 - black: search has already backtracked from q, $f(q) \le t \le 2n$

An example

Recursive implementation of DFS

DFS(A)Input: NGA $A = (Q, \Sigma, \delta, Q_0, F)$

- 1 $S \leftarrow \emptyset$
- for all $q_0 \in Q_0$ do $dfs(q_0)$
- 3 proc dfs(q)
- 4 add q to S
- 5 for all $r \in \delta(q)$ do
- 6 **if** $r \notin S$ **then** dfs(r)
- 7 return

DFS_Tree(A) Input: NGA $A = (Q, \Sigma, \delta, Q_0, F)$ Output: Time-stamped tree (S, T, d, f) $1 \quad S \leftarrow \emptyset$

2
$$T \leftarrow \emptyset; t \leftarrow 0$$

3 $dfs(q_0)$

- 4 proc dfs(q)
- 5 $t \leftarrow t+1; d[q] \leftarrow t$
- 6 add q to S
- 7 for all $r \in \delta(q)$ do
- 8 if $r \notin S$ then
- 9 add (q,r) to T; dfs(r)
- 10 $t \leftarrow t+1; f[q] \leftarrow t$
- 11 **return** (*S*, *T*, *d*, *f*)

• I(q) denotes the interval [d[q], f[q]].

- I(q) denotes the interval [d[q], f[q]].
- *I(q)* ≺ *I(r)* denotes that *f[q]* < *d[r]* holds
 (i.e., *I(q)* is to the left of *I(r)* and does not overlap with it).

- I(q) denotes the interval [d[q], f[q]].
- *I(q)* ≺ *I(r)* denotes that *f[q]* < *d[r]* holds
 (i.e., *I(q)* is to the left of *I(r)* and does not overlap with it).
- $q \Rightarrow r$ denotes that r is a DFS-descendant of q in the DFS-tree.

- I(q) denotes the interval [d[q], f[q]].
- *I(q)* ≺ *I(r)* denotes that *f[q]* < *d[r]* holds
 (i.e., *I(q)* is to the left of *I(r)* and does not overlap with it).
- $q \Rightarrow r$ denotes that r is a DFS-descendant of q in the DFS-tree.
- Parenthesis theorem. In a DFS-tree, for any two states q and r, exactly one of the following conditions hold:
 - $-I(q) \subseteq I(r) \text{ and } r \Rightarrow q.$
 - $I(r) \subseteq I(q) \text{ and } q \Rightarrow r.$
 - $-I(q) \prec I(r)$, and none of q, r is a descendant of the other
 - $-I(r) \prec I(q)$, and none of q, r is a descendant of the other

White-path and gray-path theorems

White-path theorem. q ⇒ r (and so
 I(r) ⊆ I(q)) iff at time d[q] - 1 state r can be reached from q along a path of white states.

White-path and gray-path theorems

- White-path theorem. q ⇒ r (and so
 I(r) ⊆ I(q)) iff at time d[q] 1 state r can be reached from q along a path of white states.
- Gray-path theorem. At every moment in time, all gray nodes form a simple path of the DFS tree (the gray path).

Nested-DFS algorithm

- Modification of the naïve algorithm:
 - Use a DFS to discover the accepting states and sort them in a certain order $q_1, q_2, ..., q_k$;
 - conduct a DFS from each accepting state in the order $q_1, q_2, ..., q_k$.
- The order will guarantee that if the search from q_j hits a state already discovered during the search from q_i, for some i < j, then the search can backtrack.
- Runtime: O(m), because every transition is explored at most twice, once in each phase.

Nested-DFS algorithm

- Suitable order: postorder
- The postorder sorts the states according to increasing finishing time.

Why does it work?

- Edges processed counterclockwise
 - → DFS-tree
 - → Back-edges
 - → Forward-edges
 - Cross-edges
- $f[q_2] \leq f[q_1] \leq f[q_3]$

What do we have to prove?

- Edges processed counterclockwise
 - → DFS-tree
 - Other edges
- $f[q_2] \le f[q_1] \le f[q_3]$

• State r discovered during the search from q_2

What do we have to prove?

- Edges processed counterclockwise
 - → DFS-tree
 - → Other edges
- $f[q_2] \le f[q_1] \le f[q_3]$

- State r discovered during the search from q_2
- To prove: during the search from q₁ (or q₃), it is safe to backtrack from r, because we do not "miss any accepting lassos"
- Amounts to: proving that q_1 (or q_3) is not reachable from r.

Notation. $q \sim r$ denotes "q is reachable from r"

Notation. $q \sim r$ denotes "q is reachable from r" Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q.

Notation. $q \sim r$ denotes "q is reachable from r" Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q. Proof: Let $\pi = q \rightarrow \cdots \rightarrow r$. Let s be the first node of π that is discovered (so $d[s] \leq d[q]$). We show $s \neq q, q \sim s$, and $s \sim q$.

Notation. $q \sim r$ denotes "q is reachable from r" Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q. Proof: Let $\pi = q \rightarrow \cdots \rightarrow r$. Let s be the first node of π that is discovered (so $d[s] \leq d[q]$). We show $s \neq q$, $q \sim s$, and $s \sim q$.

• $s \neq q$. Otherwise at time d[q] - 1 the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].

Notation. $q \sim r$ denotes "q is reachable from r"

Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q.

Proof: Let $\pi = q \rightarrow \cdots \rightarrow r$. Let *s* be the first node of π that is discovered (so $d[s] \leq d[q]$). We show $s \neq q$, $q \sim s$, and $s \sim q$.

- $s \neq q$. Otherwise at time d[q] 1 the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].
- $q \sim s$. Obvious, because s in π .

Notation. $q \sim r$ denotes "q is reachable from r"

Lemma. If $q \sim r$ and f[q] < f[r], then some cycle contains q.

Proof: Let $\pi = q \rightarrow \cdots \rightarrow r$. Let *s* be the first node of π that is discovered (so $d[s] \leq d[q]$). We show $s \neq q$, $q \sim s$, and $s \sim q$.

- $s \neq q$. Otherwise at time d[q] 1 the path π is white and so $I(r) \subseteq I(q)$, which contradicts f[q] < f[r].
- $q \sim s$. Obvious, because s in π .
- $s \rightsquigarrow q$. Since d[s] < d[q] either $I(q) \subset I(s)$ or $I(s) \prec I(q)$. Since at time d[s] - 1 the subpath of π from s to r is white, we have $I(r) \subseteq I(s)$. If $I(s) \prec I(q)$ then f[q] > f[r]. So $I(q) \subset I(s)$, and so $s \Rightarrow q$, which implies $s \rightsquigarrow q$.

Theorem. Assume:

- q and r are accepting states such that f[q] < f[r];
- the search from *q* has finished without an accepting lasso; and
- the search from *r* has just discovered a state *s* that was also discovered in the search from *q*.

Then r is not reachable from s (and so it is safe to backtrack from s).

Theorem. Assume:

- q and r are accepting states such that f[q] < f[r];
- the search from *q* has finished without an accepting lasso; and
- the search from *r* has just discovered a state *s* that was also discovered in the search from *q*.

Then *r* is not reachable from *s* (and so it is safe to backtrack from *s*).

Proof: Assume $s \sim r$. Since $q \sim s$ we have $q \sim r$. By the lemma some cycle contains q, contradicting that the search from q was unsuccessful.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .
 - Whenever the search blackens an accepting state q, launch a new (modified) DFS from q. If this DFS visits q again, report NONEMPTY. Otherwise, after termination continue with the first DFS.

- Two problems:
 - The algorithm always examines all states and transitions at least once.
 - If the algorithm must return a witness of non-emptiness, then it requires a lot of memory.
- Solution: nest the searches.
 - Perform a DFS from the initial state q_0 .
 - Whenever the search blackens an accepting state q, launch a new (modified) DFS from q. If this DFS visits q again, report NONEMPTY. Otherwise, after termination continue with the first DFS.
 - If the first DFS terminates, report EMPTY.

NestedDFS(A) **Input:** NBA $A = (Q, \Sigma, \delta, Q_0, F)$ **Output:** EMP if $\mathcal{L}_{\omega}(A) = \emptyset$ NEMP otherwise $S \leftarrow \emptyset$ 1 for all $q_0 \in Q_0$ do $dfs1(q_0)$ 2 report EMP 3 proc dfs1(q)4 add [q, 1] to S 5 for all $r \in \delta(q)$ do 6 if $[r, 1] \notin S$ then dfs1(r)7 if $q \in F$ then seed $\leftarrow q$; dfs2(q)8 return 9 proc dfs2(q)10 add [q, 2] to S 11 for all $r \in \delta(q)$ do 12 **if** *r* = *seed* **then report** NEMP 13 if $[r, 2] \notin S$ then dfs2(r)14 15 return

NestedDFSwithWitness(A) **Input:** NBA $A = (Q, \Sigma, \delta, Q_0, F)$ **Output:** EMP if $\mathcal{L}_{\omega}(A) = \emptyset$ NEMP otherwise $S \leftarrow \emptyset$; succ \leftarrow false 1 for all $q_0 \in Q_0$ do $dfs1(q_0)$ 2 report EMP 3 proc dfs1(q)4 add [q, 1] to S 5 for all $r \in \delta(q)$ do 6 if $[r, 1] \notin S$ then dfs1(r)7 if succ then return [q, 1] 8 if $q \in F$ then 9 seed $\leftarrow q$; dfs2(q) 10 if succ then return [q, 1] 11 return 12 proc dfs2(q)13 add [q, 2] to S 14 for all $r \in \delta(q)$ do 15 if $[r, 2] \notin S$ then dfs2(r)16 if r = seed then 17 $succ \leftarrow true$ 18

19 if succ then return [q, 2]

20 return

Evaluation

- Plus points:
 - Very low memory consumption: two extra bits per state.
 - Easy to understand and prove correct.

Evaluation

- Plus points:
 - Very low memory consumption: two extra bits per state.
 - Easy to understand and prove correct.
- Minus points:
 - Cannot be generalized to NGAs.
 - It may return unnecessarily long witnesses.
 - It is not optimal. An emptiness algorithm is optimal if it answers NONEMPTY immediately after the explored part of the NBA contains an accepting lasso.

Nested DFS is not optimal

Recall: Two approaches

1. Compute the set of accepting states, and for each accepting state, check if it belongs to a cycle.

Nested depth first search algorithm

2. Compute the set of states that belong to some cycle, and for each of them, check if it is accepting.

SCC-based algorithm

Second approach: a naïve algorithm

 Conduct a DFS, and for each discovered accepting state *q* start a new DFS from *q* to check if it belongs to a cycle.

Second approach: a naïve algorithm

- Conduct a DFS, and for each discovered accepting state *q* start a new DFS from *q* to check if it belongs to a cycle.
- Problem: too expensive.

Second approach: a naïve algorithm

- Goal: conduct one single DFS which marks states in such a way that
 - every marked state belongs to a cycle, and
 - every state that belongs to a cycle is eventually marked.

The active graph

- Explored graph A_t at time t: subgraph of A containing the states and transitions explored by the DFS until time t (included).
- Strongly connected component (scc) of A_t: maximal set of states mutually reachable in A_t.
- A scc of A_t is active if some state appears in the gray path, and inactive otherwise. A state is active if its scc in A_t is active.
- Active graph at time t: subgraph of A_t containing the active states and the transitions between them.

The active graph

Necklace structure of the active graph

- Def: The root of a scc of A_t is the first state of the scc visited by the DFS.
- The chain of the (open) necklace is the gray path. The beads are the active sccs.
- The chain contains all roots of the active sccs (and possibly other nodes).
- The scc of a root q contains all nodes s such that d[q] ≤ d[s] < d[r], where r is the next root.

- 1) The root of a scc of A_t is defined as the first state of the scc visited by the DFS.
- 2) The root of an scc of A_t is the last state of the scc from which the DFS backtracks.
 - Let *r* be the root of an scc. At time *d*[*r*] there are white paths from *r* to all states of the scc.
 - By the White-path Theorem, all states of the scc are discovered before the DFS backtracks from *r*.
 - By the Parenthesis Theorem, the DFS backtracks from all states of the scc before it backtracks from *r*.

- 3) An scc of A_t becomes inactive when the DFS backtracks from its root, i.e., when its root is blackened.
- 4) An inactive scc of A_t is also a scc of A.
 - When a scc of *A_t* becomes inactive, the DFS has already explored, and backtracked from, all states of *A* reachable from its root.
- 5) Roots of active sccs of A_t occur in the gray path.
 - If a scc is active then its root has already been discovered, and by (3) it is not yet black. So it is gray.

6) Let q be an active state of A_t , and let r be the root of its scc. No state discovered between q and r, i.e., no state s satisfying d[r] < d[s] < d[q], is an active root of A_t .

- 6) Let q be an active state of A_t, and let r be the root of its scc. No state discovered between q and r, i.e., no state s satisfying d[r] < d[s] < d[q], is an active root of A_t.
 - Assume s is active root and d[r] < d[s] < d[q]
 - Claim: *r* and *s* are in the same scc, contradicting that *r* is root.
 - r ∽ s. By (5), r and s are in the gray path. Further, r precedes s because d[r] < d[s].
 - s ~ q. Because, since s is active and d[s] < d[q], state q is discovered during the execution of dfs(s).
 - $q \sim r$. Because q and r belong to the same scc.

7) If q and r are active and d[q] < d[r] then $q \sim r$.

7) If q and r are active and d[q] < d[r] then $q \sim r$.

Let q' and r' be the roots of the sccs of q and r.

Since $q \sim q'$ and $r' \sim r$ it suffices to prove $q' \sim r'$.

Since q' and r' are roots, they belong to the gray path by (5). So at least one of $q' \sim r'$ and $r' \sim q'$ holds.

We have d[q'] < d[q] by the definition of root and d[q] < d[r] by assumption. So d[q'] < d[q] < d[r].

By (6), neither d[r'] < d[q'] < d[r] nor d[q'] < d[r'] < d[q] hold. Further, d[r'] < d[r] by the definition of root. So d[q'] < d[q] < d[r'] < d[r].

But then q' entered the gray path before r', and so $q' \sim r'$.

SCC-based algorithm

- The algorithm maintains the explored graph and the necklace structure of the active graph while the DFS is conducted.
- Data structures:
 - Set *S* of states visited by the DFS so far.
 - Mapping $rank: S \rightarrow \mathbb{N}$ assigning to each state a consecutive number in the order they are discovered.
 - Mapping *act*: *S* → {true, false} indicating which states are currently active.
 - Necklace stack neck, containing beads of the form (r, C), where C is the set of states of an active scc, and r its root. The oldest bead (i.e., the one with the oldest root) is at the bottom of the stack, and the newest at the top.

SCC-based algorithm

- After the initialization step, the DFS is always either
 - exploring a new edge (which may lead to a new state or to a state already visited), or
 - backtracking along an edge explored earlier.
- We show how to update *S*, *rank*, *act*, and *neck* after an initialization, exploration, or backtracking step.
- Further, we show how to check after each step whether the explored graph contains an accepting lasso.

Initialization

Initially the explored and active graphs only contain the initial state q_0 and no edges. So:

- $S \coloneqq \{q_0\}$
- $rank(q_0)$: = 1
- $act(q_0)$: = true
- neck: = $(q_0, \{q_0\})$

Exploration

Assume the DFS has just explored a transition $q \rightarrow r$. We show how to update the data structures. We consider five cases:

- i. r is a new state.
- ii. *r* has been visited by the DFS before, and is inactive.
- iii. r has been visited by the DFS before, is active, and was discovered strictly after q.
- iv. r has been visited by the DFS before, is active, and r = q.
- v. *r* has been visited by the DFS before, is active, and was discovered strictly before *q*.

Exploration: Case i

The DFS has just explored a transition $q \rightarrow r$.

Case i: r is a new state.

Then the explored graph is extended with r, which is active.

The updates are: $S \coloneqq S \cup \{r\}$, $rank(r) \coloneqq |S|$, act(r): = true, and $push(r, \{r\})$ to neck.

After that recursively call dfs(r)

Exploring $B \rightarrow C$: before and after

Exploration: Case ii

The DFS has just explored a transition $q \rightarrow r$.

Case ii: *r* has been visited by the DFS before, and is inactive.

Since r is inactive, its scc has already been completely explored by the DFS (see properties (2) and (3)).

So q and r belong to different sccs and $q \rightarrow r$ cannot create an accepting lasso.

So no update is needed, and no recursive DFS call is started.

Exploring $F \rightarrow C$: before and after

Exploration: Case iii

The DFS has just explored a transition $q \rightarrow r$.

Case iii: *r* has been visited by the DFS before, is active, and was discovered strictly after *q*.

In this case both q and r are active, and already belong to the necklace.

Since rank(r) > rank(q), either q and r belong to the same scc, or the scc of q is before the scc of r in the necklace. No accepting lasso can be created. There is nothing to do, and no recursive DFS call is started.

Exploring $D \rightarrow E$: before and after

Exploration: Case iv

The DFS has just explored a transition $q \rightarrow r$.

Case iv: r has been visited by the DFS before, is active, and r = q.

Then $q \rightarrow r$ is a self-loop. If q is accepting state, then an accepting lasso has been discovered, and the algorithm reports it. Otherwise, there is nothing to do.

Exploring $C \rightarrow C$: before and after

Exploration: Case v

The DFS has just explored a transition $q \rightarrow r$.

Case v: *r* has been visited by the DFS before, is active, and was discovered strictly before *q*.

By property (7) we have $r \sim q$. So q and r belong to the same scc.

All sccs of the necklace between the sccs of r and q must be merged.

For this, pop beads (s, C) from neck, merging the C's, and stopping when the popped bead satisfies $rank(s) \le rank(r)$.

Then push a new bead (s, D), where D is the result of the merge.

Exploring $E \rightarrow D$: before and after

Backtracking: Case vi

The DFS has already explored all edges leaving q, and now backtracks from q.

Case vi: q is a root of the active graph.

Then, before backtracking from q, the top bead of *neck* is (q, C) for some set C

After backtracking, q and its entire scc become inactive by property (3), and they do not belong to the active graph anymore.

So we pop (q, C) from *neck* and set act(r) to false for every $r \in C$

Backtracking from D

Backtracking: Case vii

The DFS has already explored all edges leaving q, and now backtracks from q.

Case vii: q is not a root of the active graph.

Then, by properties (2) and (3) the root of the scc of q is active and remains so after backtracking. The active graph does not change, and there is nothing to do.

Backtracking from E

Pseudocode

SCCsearch(A)**Input:** NBA $A = (Q, \Sigma, \delta, Q_0, F)$ **Output:** EMP if $\mathcal{L}_{\omega}(A) = \emptyset$, NEMP otherwise $S, N \leftarrow \emptyset; n \leftarrow 0$ 1 2 for all $q_0 \in Q_0$ do $dfs(q_0)$ report EMP 3 proc dfs(q)4 $n \leftarrow n+1$; rank(q) $\leftarrow n$ 5 add q to S; $act(q) \leftarrow true$; push $(q, \{q\})$ onto N 6 for all $r \in \delta(q)$ do 7 if $r \notin S$ then dfs(r)8 else if act(r) then 9 $D \leftarrow \emptyset$ 10 repeat 11 **pop** (s, C) from N; if $s \in F$ then report NEMP 12 $D \leftarrow D \cup C$ 13 until $rank(s) \leq rank(r)$ 14 push (s, D) onto N 15 if q is the top root in N then 16 **pop** (q, C) from N 17 for all $r \in C$ do $act(r) \leftarrow$ false 18

- Initialization and Case (i): Line 5
- Case (ii): conditions at 7,8 do not hold and nothing happens
- Cases (iii)-(v): repeat-until loop

Pseudocode: runtime

```
SCCsearch(A)
Input: NBA A = (Q, \Sigma, \delta, Q_0, F)
Output: EMP if \mathcal{L}_{\omega}(A) = \emptyset, NEMP otherwise
      S, N \leftarrow \emptyset; n \leftarrow 0
  1
  2 for all q_0 \in Q_0 do dfs(q_0)
      report EMP
  3
      proc dfs(q)
  4
         n \leftarrow n+1; rank(q) \leftarrow n
  5
         add q to S; act(q) \leftarrow true; push (q, \{q\}) onto N
  6
         for all r \in \delta(q) do
  7
           if r \notin S then dfs(r)
  8
            else if act(r) then
  9
              D \leftarrow \emptyset
 10
              repeat
 11
                  pop (s, C) from N; if s \in F then report NEMP
 12
                  D \leftarrow D \cup C
 13
               until rank(s) \leq rank(r)
 14
               push (s, D) onto N
 15
         if q is the top root in N then
 16
            pop (q, C) from N
 17
            for all r \in C do act(r) \leftarrow false
 18
```

• 2m steps of type (i)-(vii)

Each step of type (i)-(iv) or (vii) takes constant time

Step of type (v):

- At most *n* primary beads enter the necklace
- Secondary beads are merges of primary beads, at most n enter the necklace.
- So line 13 is executed O(n) times
- Implementing sets as linked lists with pointers to first and last elements: O(n) time

Step of type (vi): each state is deactivated exactly once at line 18, so O(n) time.

Extension to NGAs

- A NGA *A* with accepting condition $\{F_0, \dots, F_{k-1}\}$ is nonempty iff some scc *S* satisfies $S \cap F_i \neq \emptyset$ for every $i \in [k]$
- Label each state q with the index set Iq of the acceptance sets it belongs to.
- Extend beads with a third component: (q, C, I), where I is an index set.

line	SCCsearch for NBA	SCCsearch for NGA
6	$push(q, \{q\})$	$\mathbf{push}(q, \{q\}, I_q)$
10	$D \leftarrow \emptyset$	$D \leftarrow \emptyset; J \leftarrow \emptyset$
12	pop (s , C); if $s \in F$ then report NEMP	$\mathbf{pop}(s, C, I)$
13	$D \leftarrow D \cup C$	$D \leftarrow D \cup C; J \leftarrow J \cup I;$
15	push(s, D)	push(s, D, J); if $J = K$ then report NEMP
17	$\mathbf{pop}(q, C)$	$\mathbf{pop}(q, C, I)$

What do we have to prove?

- Edges processed counterclockwise
 - → DFS-tree
 - → Back-edges
 - Forward-edges
 - Cross-edges
- $f[q_2] \leq f[q_1] \leq f[q_3]$

• State r discovered during the search from q_2