Implementing boolean operations for

 generalized Büchi automata
Generalized Büchi Automata

- An acceptance condition is a generalized Büchi condition if there are sets $F_{1}, \ldots, F_{k} \subseteq Q$ of accepting states such that a run ρ is accepting iff it visits each of F_{1}, \ldots, F_{k} infinitely often.

$$
\begin{aligned}
& F_{1}=\{q\} \\
& F_{2}=\{r\}
\end{aligned}
$$

From NGAs to NBAs

- Important fact:

All the sets F_{1}, \ldots, F_{k} are visited infinitely often is equivalent to
F_{1} is eventually visited and for every $1 \leq i \leq k$
every visit to F_{i} is eventually followed by a visit to " $F_{i \oplus 1}$ "

From NGAs to NBAs

Equivalent NBA with 3 copies of the NGA

NGAtoNBA(A)
Input: NGA $A=\left(Q, \Sigma, Q_{0}, \delta, \mathcal{F}\right)$, where $\mathcal{F}=\left\{F_{0}, \ldots, F_{m-1}\right\}$
Output: NBA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$
$Q^{\prime}, \delta^{\prime}, F^{\prime} \leftarrow \emptyset ; Q_{0}^{\prime} \leftarrow\left\{\left[q_{0}, 0\right] \mid q_{0} \in Q_{0}\right\}$
$W \leftarrow Q_{0}^{\prime}$
while $W \neq \emptyset$ do
pick $[q, i]$ from W
add $[q, i]$ to Q^{\prime}
if $q \in F_{0}$ and $i=0$ then add $[q, i]$ to F^{\prime}
for all $a \in \Sigma, q^{\prime} \in \delta(q, a)$ do if $q \notin F_{i}$ then
if $\left[q^{\prime}, i\right] \notin Q^{\prime}$ then add $\left[q^{\prime}, i\right]$ to W add $\left([q, i], a,\left[q^{\prime}, i\right]\right)$ to δ^{\prime} else /* $q \in F_{i}{ }^{*} /$
if $\left[q^{\prime}, i \oplus 1\right] \notin Q^{\prime}$ then add $\left[q^{\prime}, i \oplus 1\right]$ to W add $\left([q, i], a,\left[q^{\prime}, i \oplus 1\right]\right)$ to δ^{\prime}
14 return $\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$

NGA

$F_{1}=\{q\}$
$F_{2}=\{r\}$

NBA

Union of NGA: The NBA case

- Let $A_{1}=\left(S_{1},\left\{F_{1}\right\}\right)$ and $A_{2}=\left(S_{2},\left\{F_{2}\right\}\right)$
- Let S be the result of putting S_{1} and S_{2} „side by side"

$$
S:=\left(Q_{1} \cup Q_{2}, \Sigma, \delta_{1} \cup \delta_{2}, Q_{01} \cup Q_{02}\right)
$$

- Which NGA recognizes $L\left(A_{1}\right) \cup L\left(A_{2}\right)$?
- $\left(S,\left\{F_{1} \cup F_{2}\right\}\right)$
- $\left(S,\left\{F_{1}, F_{2}\right\}\right)$

Union of NGA: Another case

- Let $A_{1}=\left(S_{1},\left\{F_{1}^{1}, F_{1}^{2}\right\}\right)$ and $A_{2}=\left(S_{2},\left\{F_{2}^{1}, F_{2}^{2}\right\}\right)$
- Let S be the result of putting S_{1} and S_{2} „side by side"

$$
S:=\left(Q_{1} \cup Q_{2}, \Sigma, \delta_{1} \cup \delta_{2}, Q_{01} \cup Q_{02}\right)
$$

- Which NGA recognizes $L\left(A_{1}\right) \cup L\left(A_{2}\right)$?
- $\left(S,\left\{F_{1}^{1} \cup F_{2}^{1} \cup F_{1}^{2} \cup F_{2}^{2}\right\}\right)$
- $\left(S,\left\{F_{1}^{1} \cup F_{2}^{1}, F_{1}^{2} \cup F_{2}^{2}\right\}\right)$
- $\left(S,\left\{F_{1}^{1} \cup F_{2}^{1}, F_{1}^{1} \cup F_{2}^{2}, F_{1}^{2} \cup F_{2}^{1}, F_{1}^{2} \cup F_{2}^{2}\right\}\right)$

Union of NGA: The general case

- Let $A_{1}=\left(S_{1},\left\{F_{1}^{1}, \ldots, F_{1}^{k}\right\}\right)$

$$
A_{2}=\left(S_{2},\left\{F_{2}^{1}, \ldots, F_{2}^{k}, F_{2}^{k+1}, \ldots, F_{2}^{k+l}\right\}\right)
$$

- Let S be the result of putting S_{1} and S_{2} „side by side"

$$
S:=\left(Q_{1} \cup Q_{2}, \Sigma, \delta_{1} \cup \delta_{2}, Q_{01} \cup Q_{02}\right)
$$

- The following NGA recognizes $L\left(A_{1}\right) \cup L\left(A_{2}\right)$

$$
A=\left(S,\left\{\begin{array}{ccccc}
F_{1}^{1} & F_{1}^{k} & Q_{1} & & Q_{1} \\
\cup, & , & \cup & \cup \\
F_{2}^{1} & F_{2}^{k} & F_{2}^{k+1} & & F_{2}^{k+l}
\end{array}\right\}\right)
$$

Intersection of NGA: The NBA case

- Let $A_{1}=\left(S_{1},\left\{F_{1}\right\}\right)$ and $A_{2}=\left(S_{2},\left\{F_{2}\right\}\right)$
- Let S be the pairing of S_{1} and S_{2}

$$
S:=\left(Q_{1} \times Q_{2}, \Sigma, \delta, Q_{01} \times Q_{02}\right)
$$

where $\delta\left(\left[q_{1}, q_{2}\right], a\right)=\delta\left(q_{1}, a\right) \times \delta\left(q_{2}, a\right)$

- Which NGA recognizes $L\left(A_{1}\right) \cap L\left(A_{2}\right)$?
- $\left(S,\left\{F_{1} \times F_{2}\right\}\right)$
- $\left(S,\left\{F_{1} \times Q_{2}, Q_{1} \times F_{2}\right\}\right)$

Intersection of NGA: The general case

- Let $A_{1}=\left(S_{1},\left\{F_{1}^{1}, \ldots, F_{1}^{k}\right\}\right), A_{2}=\left(S_{2},\left\{F_{2}^{1}, \ldots, F_{1}^{l}\right\}\right)$
- Let S be the pairing of S_{1} and S_{2}

$$
S:=\left(Q_{1} \times Q_{2}, \Sigma, \delta, Q_{01} \times Q_{02}\right)
$$

where $\delta\left(\left[q_{1}, q_{2}\right], a\right)=\delta\left(q_{1}, a\right) \times \delta\left(q_{2}, a\right)$

- The following NGA recognizes $L\left(A_{1}\right) \cap L\left(A_{2}\right)$:

$$
(S, \underbrace{\left\{F_{1}^{1} \times Q_{2}, \ldots, F_{1}^{k} \times Q_{2}, Q_{1} \times F_{2}^{1}, \ldots, Q_{1} \times F_{2}^{l}\right\}}_{k+l})
$$

Intersection of NGA: The general case

Special case

- The intersection of $\left(S_{1},\left\{F_{1}\right\}\right)$ and $\left(S_{2},\left\{F_{2}\right\}\right)$ is
$\left(\left[S_{1}, S_{2}\right],\left\{F_{1} \times Q_{2}, Q_{1} \times F_{2}\right\}\right)$
- Not a NBA in general.
- However, if $F_{1}=Q_{1}$ then $\left\{F_{1} \times Q_{2}, Q_{1} \times F_{2}\right\}$ can be replaced by $\left\{Q_{1} \times F_{2}\right\}$, and so the result is again a NBA.

Complementation of NGA

- Given a NBA A, we construct a NBA B such that $L_{\omega}(B)=\overline{L_{\omega}(A)}$
- We can then complement a NGA by transforming it first into a NBA
- Complementation construction radically different from the one for NFAs.

Problems

- The powerset construction does not work.

- Exchanging final and non-final states in DBAs also fails.

Solution

- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of $\operatorname{dag}(w)$ visits final states infinitely often.
- Goal: given NBA A, construct NBA \bar{A} such that:

A rejects w iff

no path of $\operatorname{dag}(w)$ visits accepting states of A i.o.

iff

some run of \bar{A} visits accepting states of \bar{A} i.o. iff
\bar{A} accepts w

Running example

Rankings

- M appings that associate to every node of dag(w) a rank (a natural number) such that
- ranks never increase along a path, and
- ranks of accepting nodes are even.

Odd rankings

- A ranking is odd if every infinite path of $\operatorname{dag}(w)$ visits nodes of odd rank i.o.

Odd rankings

Goal: given NBA A, construct NBA \bar{A} such that:

A rejects w
 iff

no path of $\operatorname{dag}(w)$ visits accepting states of A i.o.

> iff
> $\operatorname{dag}(w)$ has an odd ranking iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff
\bar{A} accepts w

Odd rankings

Prop:

no path of $\operatorname{dag}(w)$ visits accepting states of A i.o.

iff

$\operatorname{dag}(w)$ has an odd ranking
Further, all ranks of the odd ranking are in the range $[0,2 n]$, and all states of the first level rank have rank $2 n$.

Proof:

(\Leftarrow) : In an odd ranking of $\operatorname{dag}(w)$, ranks along infinite paths stabilize to odd values.
Therefore, since accepting nodes have even rank, no path of $\operatorname{dag}(w)$ visits accepting nodes i.o.

Odd rankings

(\Rightarrow) : Assume no path of $\operatorname{dag}(w)$ visits accepting states of A i.o. Define an odd ranking of $\operatorname{dag}(w)$ as follows:

- Construct a sequence $D_{0} \supseteq D_{1} \supseteq D_{2} \cdots \supseteq D_{2 n} \supseteq D_{2 n+1}$ of dags, where
a) $D_{0}=\operatorname{dag}(w)$
b) $D_{2 i+1}$ is the result of removing from $D_{2 i}$ all nodes with finitely many descendants.
c) $D_{2 i+2}$ is the result of removing all nodes of $D_{2 i+1}$ with no accepting descendants (a node is a descendant of itself).
- We define the rank of a node of $\operatorname{dag}(w)$ as the index of the unique dag D_{j} in the sequence such that the node belongs to D_{j} but not to D_{j+1}.

- Even step: remove all nodes having only finitely many successors.
- Odd step: remove nodes with no accepting descendants
- This definition of rank guarantees:

1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can only be removed from dags with even index.

- It remains to prove:
- every node gets a rank, i.e., $D_{2 n+1}=\varnothing$.
- A round consists of two steps, an even step from $D_{2 i}$ to $D_{2 i+1}$, and an odd step from $D_{2 i+1}$ to $D_{2 i+2}$.
- Each level of a dag has a width

- Width of a dag: largest level width that appears infinitely often.
- Since no path of $\operatorname{dag}(w)$ visits accepting states of A i.0., each round decreases the width of the dag by at least 1.
- Since the initial width is at most n, after at most n rounds the width is 0 , and then a last step removes all nodes.
- Goal:

$\operatorname{dag}(w)$ has an odd ranking

 iffsome run of \bar{A} visits accepting states of \bar{A} i.o.

- Idea: design \bar{A} so that
- its runs on w are the rankings of $\operatorname{dag}(w)$, and
- its accepting runs on w are the odd rankings of dag(w).

Representing rankings

$$
\left[\begin{array}{l}
2 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
1 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \ldots
$$

Representing rankings

$\left[\begin{array}{l}1 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}0 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}0 \\ 0\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}0 \\ \perp\end{array}\right] \ldots$

Representing rankings

$$
\left[\begin{array}{l}
1 \\
\perp
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \ldots
$$

We can determine if $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \xrightarrow{l}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]$ may appear in a ranking by just looking at $n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}$ and l : ranks should not increase.

First draft for \bar{A}

- \bar{A} for or a two-state A (more states analogous):
- States: all $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where $0 \leq x_{i} \leq 2 n=4$ or $x_{i}=\perp$ and accepting states of A get even rank or \perp.
- Initial state: all states of the form $\left[\begin{array}{c}n_{1} \\ \perp\end{array}\right]$
- Transitions: all $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}n_{1}^{\prime} \\ n_{2}^{\prime}\end{array}\right]$ s.t . ranks do not increase
- The runs of the automaton on a word w correspond to all the rankings of $\operatorname{dag}(w)$.
- Observe: \bar{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

Accepting states?

- The accepting states should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Problem: no way to do so when the only information of a state is the ranking.

Owing states and breakpoints

- We use owing states and breakpoints again:
- A breakpoint of a ranking is now a level of the ranking such that no node of the level owes a visit to a node of odd rank.
- We have again: a ranking is odd iff it has infinitely many breakpoints.
- We enrich the states of \bar{A} with a set of owing states, and choose the accepting states as those in which the set is empty.

Owing states

$\left[\begin{array}{l}2 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 2\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}1 \\ \perp\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0\end{array}\right]$
\emptyset
$\left\{q_{1}\right\}$
\emptyset
$\left\{q_{1}\right\}$
\emptyset

Owing states

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
\perp
\end{array}\right] \xrightarrow{a}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \xrightarrow{b}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \stackrel{a}{\rightarrow}\left[\begin{array}{l}
0 \\
0
\end{array}\right] \stackrel{b}{\rightarrow}\left[\begin{array}{l}
0 \\
\perp
\end{array}\right] \ldots} \\
\emptyset
\end{gathered}\left\{q_{1}\right\} \quad\left\{q_{0}\right\} \quad\left\{q_{0}, q_{1}\right\} \quad\left\{q_{0}\right\},
$$

Second draft for \bar{A}

- For our two-state A (the case of more states is analogous):
- States: pairs $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], 0$ where $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ as in the first draft, and O is a set of owing states (of even rank)
- Initial states: all states of the form $\left[\begin{array}{c}x_{1} \\ \perp\end{array}\right]$, \varnothing
- Transitions: all $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], O \xrightarrow{a}\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right], O^{\prime}$ s.t. ranks don't increase and owing states are correctly updated
- Final states: all states $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \varnothing$

Second draft for \bar{A}

- The runs of \bar{A} on a word w correspond to all the rankings of $\operatorname{dag}(w)$.
- The accepting runs of \bar{A} on a word w correspond to all the odd rankings of $\operatorname{dag}(w)$.
- Therefore: $L(\bar{A})=\overline{L(A)}$

Final \bar{A} (the final touch ...)

- We can reduce the number of initial states.
- For every ranking with ranks in the range [$0,2 n]$, changing the rank of all nodes of the first level to $2 n$ yields again a ranking. Further, if the old ranking is odd then the new ranking is also odd.
So we can simplify the definition of the initial states to:
- Initial state: $\left[\begin{array}{c}2 n \\ \perp\end{array}\right], \varnothing$

An example

- We construct the complements of
$A_{1}=(\{q\},\{a\}, \delta,\{q\},\{q\})$ with $\delta(q, a)=\{q\}$
$A_{2}=(\{q\},\{a\}, \delta,\{q\}, \varnothing)$ with $\delta(q, a)=\{q\}$
- States of $\bar{A}_{1}:\langle 0, \emptyset\rangle,\langle 2, \varnothing\rangle,\langle 0,\{q\}\rangle,\langle 2,\{q\}\rangle$
- States of $\bar{A}_{2}:\langle 0, \varnothing\rangle,\langle 1, \emptyset\rangle,\langle 2, \varnothing\rangle,\langle 0,\{q\}\rangle,\langle 2,\{q\}\rangle$
- Initial state of \bar{A}_{1} and $\bar{A}_{2}:\langle 2, \emptyset\rangle$
- Final states of $\bar{A}_{1}:\langle 2, \varnothing\rangle,\langle 0, \varnothing\rangle$ (unreachable)
- Final states of $\bar{A}_{2}:\langle 2, \emptyset\rangle,\langle 1, \emptyset\rangle,\langle 0, \emptyset\rangle$ (unreachable)

An example

$\overline{A_{1}}$

Complexity

- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number of [$0,2 n$] or the symbol \perp.
- So the complement NBA has at most $(2 n+2)^{n} \cdot 2^{n} \in n^{O(n)}=2^{O(n \log n)}$ states.
- Compare with 2^{n} for the NFA case.
- We show that the $\log n$ factor is unavoidable.

We define a family $\left\{L_{n}\right\}_{n \geq 1}$ of ω-languages s.t.
$-L_{n}$ is accepted by a NBA with $n+2$ states.

- Every NBA accepting $\overline{L_{n}}$ has at least $n!\in 2^{\Theta(n \log n)}$ states.
- The alphabet of L_{n} is $\Sigma_{n}=\{1,2, \ldots, n, \#\}$.
- Assign to a word $w \in \Sigma_{n}$ a graph $G(w)$ as follows:
- Vertices: the numbers $1,2, \ldots, n$.
- Edges: there is an edge $i \rightarrow j$ iff w contains infinitely many occurrences of $i j$.
- Define: $w \in L_{n}$ iff $G(w)$ has a cycle.
- L_{n} is accepted by a NBA with $n+2$ states.

Every NBA accepting $\overline{L_{n}}$ has at least $n!\in$

 $2^{\Theta(n \log n)}$ states.- Let τ denote a permutation of $1,2, \ldots, n$.
- We have:
a) For every τ, the word $(\tau \#)^{\omega}$ belongs to $\overline{L_{n}}$ (i.e., its graph contains no cycle).
b) For every two distinct τ_{1}, τ_{2}, every word containing inf. many occurrences of τ_{1} and inf. many occurrences of τ_{2} belongs to L_{n}.

Every NBA accepting $\overline{L_{n}}$ has at least $n!\in$

 $2^{\Theta(n \log n)}$ states.- Assume A recognizes $\overline{L_{n}}$ and let τ_{1}, τ_{2} distinct. By (a), A has runs $\rho_{1}, \rho_{2} \operatorname{accepting}\left(\tau_{1} \#\right)^{\omega}$, $\left(\tau_{2} \#\right)^{\omega}$. The sets of accepting states visited i.o. by ρ_{1}, ρ_{2} are disjoint.
- Otherwise we can "interleave" ρ_{1}, ρ_{2} to yield an acepting run for a word with inf. many occurrences of τ_{1}, τ_{2}, contradicting (b).
- So A has at least one accepting state for each permutation, and so at least n ! states.

