
Implementing boolean 
operations for

generalized Büchi automata 



Generalized Büchi Automata

• An acceptance condition is a generalized Büchi
condition if there are sets 퐹 , … ,퐹 ⊆ 푄 of
accepting states such that a run 휌 is accepting
iff it visits each of 퐹 , … ,퐹 infinitely often.

푭ퟏ = 푞
푭ퟐ = {푟}



From NGAs to NBAs

• Important fact: 

All the sets 퐹 , … ,퐹  are visited  infinitely often

is equivalent to  

퐹 is eventually visited
and for every 1 ≤ 푖 ≤ 푘

every visit  to 퐹 is eventually followed by a visit to “퐹⊕ ”



From NGAs to NBAs
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푭ퟏ = 푞
푭ퟐ = {푟}

NGA NBA



• Let 퐴 = (푆 , 퐹  ) and  퐴 = (푆 , 퐹  )

• Let 푆 be the result of putting 푆 and  푆 „side by side“ 

푆 ≔ (푄 ∪ 푄 , Σ, 훿 ∪ 훿 ,푄 ∪ 푄 )

• Which NGA recognizes 퐿 퐴 ∪ 퐿 퐴  ?

•  푆, 퐹 ∪ 퐹  

•  푆, 퐹 ,퐹  

Union of NGA: The NBA case



• Let  퐴 = (푆 ,  퐹 ,퐹  ) and  퐴 = (푆 ,  퐹 ,퐹  )

• Let 푆 be the result of putting 푆 and  푆 „side by side“ 

푆 ≔ (푄 ∪ 푄 , Σ, 훿 ∪ 훿 ,푄 ∪ 푄 )

• Which NGA recognizes 퐿 퐴 ∪ 퐿 퐴  ?

•  푆, 퐹 ∪ 퐹 ∪ 퐹 ∪ 퐹  

•  푆, 퐹 ∪ 퐹 ,퐹 ∪ 퐹  

•  푆, 퐹 ∪ 퐹 ,퐹 ∪ 퐹 ,퐹 ∪ 퐹 ,퐹 ∪ 퐹  

Union of NGA: Another case



• Let 퐴 = 푆 , { 퐹 , … ,퐹 }

퐴 = 푆 ,  퐹 , … ,퐹 ,퐹 , … ,퐹

• Let 푆 be the result of putting 푆 and  푆 „side by side“ 

푆 ≔ (푄 ∪ 푄 ,Σ, 훿 ∪ 훿 ,푄 ∪ 푄 )

• The following NGA recognizes 퐿 퐴 ∪ 퐿 퐴

퐴 = 푆,  
퐹
∪
퐹

 , … ,
퐹
∪
퐹

 ,
푄
∪

퐹
 , … ,

푄
∪

퐹
 

Union of NGA: The general case



Intersection of NGA: The NBA case

• Let 퐴 = (푆 , 퐹  ) and  퐴 = (푆 , 퐹  )

• Let 푆 be the pairing of 푆 and  푆

푆 ≔ 푄 × 푄  ,Σ , 훿 ,푄 × 푄

where 훿 푞 , 푞 ,푎 = 훿 푞 , 푎 × 훿 푞 ,푎

• Which NGA recognizes 퐿 퐴 ∩ 퐿 퐴  ?

•  푆, 퐹 × 퐹  

•  푆, 퐹 × 푄 ,푄 × 퐹  



Intersection of NGA: The general case

• Let 퐴 = 푆 , { 퐹 , … ,퐹 } , 퐴 = 푆 , { 퐹 , … ,퐹 }

• Let 푆 be the pairing of 푆 and  푆

푆 ≔ 푄 × 푄  ,Σ , 훿 ,푄 × 푄

where 훿 푞 , 푞 ,푎 = 훿 푞 , 푎 × 훿 푞 ,푎

• The following NGA recognizes 퐿 퐴 ∩ 퐿 퐴 :

  푆 , { 퐹 × 푄   , … ,퐹 × 푄  ,푄 × 퐹  , … ,푄 × 퐹 }
 

 



Intersection of NGA: The general case



Special case

• The intersection of (푆 , 퐹  ) and  (푆 , 퐹  ) is

 [푆 , 푆 ], 퐹 ×  푄 ,푄 × 퐹  

• Not a NBA in general.

• However, if 퐹 = 푄 then 퐹 ×  푄 ,푄 × 퐹 can 

be replaced by 푄 × 퐹 , and so the result is 

again a NBA.



Complementation of NGA

• Given a NBA 퐴, we construct a NBA 퐵 such 
that 퐿 퐵 =  퐿 (퐴)

• We can then complement a NGA by 
transforming it first into a NBA

• Complementation construction radically 
different from the one for NFAs.



Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs 
also fails.



Solution

• Extend the idea used to determinize co-Büchi 
automata with a new component.

• Recall: a NBA accepts a word 푤 iff some path of 
푑푎푔 푤 visits final states infinitely often.

• Goal: given NBA 퐴, construct NBA 퐴̅ such that:

퐴 rejects 푤
iff

no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
iff

some run of 퐴̅ visits accepting states of 퐴̅ i.o.
iff

퐴̅ accepts 푤



Running example



Rankings
• Mappings that associate to every node of 
푑푎푔(푤) a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even. 



Odd rankings

• A ranking is odd if every infinite path of 
푑푎푔 푤 visits nodes of odd rank i.o. 



Goal: given NBA 퐴, construct NBA 퐴̅ such that:

퐴 rejects 푤
iff

no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
iff

푑푎푔 푤 has an odd ranking
iff

some run of 퐴̅ visits accepting states of 퐴̅ i.o.
iff

퐴̅ accepts 푤

Odd rankings



Prop: 

Further, all ranks of the odd ranking are in the range 0,2푛 , and all 
states of the first level rank have rank 2푛.

Proof:  
(⇐): In an odd ranking of 푑푎푔 푤 , ranks along infinite paths stabilize
to odd values. 
Therefore, since accepting nodes have even rank, no path of 푑푎푔 푤
visits accepting nodes i.o.

no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
iff 

푑푎푔 푤 has an odd ranking

Odd rankings



(⇒): Assume no path of 푑푎푔 푤 visits accepting states of 퐴 i.o.
Define an odd ranking of 푑푎푔 푤 as follows:

• Construct a sequence 퐷 ⊇ 퐷 ⊇ 퐷 ⋯ ⊇ 퐷 ⊇ 퐷 of 
dags, where 

a) 퐷 = 푑푎푔 푤
b) 퐷 is the result of removing from 퐷 all nodes with

finitely many descendants.
c) 퐷 is the result of removing all nodes of 퐷 with no

accepting descendants (a node is a descendant of itself).
• We define the rank of a node of 푑푎푔 푤 as the index of the

unique dag 퐷 in the sequence such that the node belongs to
퐷 but not to 퐷 .

Odd rankings



• Even step: remove all nodes 
having only finitely many 
successors.

• Odd step: remove nodes with no
accepting descendants



• This definition of rank guarantees : 
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can 

only be removed from dags with even index.

• It remains to prove: 
– every node gets a rank, i.e., 퐷 = ∅.

• A round consists of two steps, an even step from
퐷 to 퐷 , and an odd step from 퐷 to 퐷 .



• Each level of a dag has a width

• Width of a dag: largest level width that appears 
infinitely often.

• Since no path of 푑푎푔 푤 visits accepting states of 퐴
i.o., each round decreases the width of the dag by at 
least 1.

• Since the initial width is at most 푛, after at most 푛
rounds the width is 0, and then a last step removes
all nodes.



• Goal: 푑푎푔 푤 has an odd ranking
iff

some run of 퐴̅ visits accepting states of 퐴̅ i.o.

• Idea: design 퐴̅ so that
 its runs on 푤 are the rankings of 푑푎푔(푤), and
 its accepting runs on 푤 are the odd rankings of 

푑푎푔 푤 .



Representing rankings

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0  … 



1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

Representing rankings



1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

We can determine if
푛
푛

→ 푛
푛 may appear in a 

ranking by just looking at 푛 ,푛 ,푛 ,푛 and 푙 : ranks 
should not increase.

Representing rankings



• 퐴̅ for or a two-state 퐴 (more states analogous): 

– States: all 
푥
푥 where 0 ≤ 푥 ≤ 2푛 = 4 or 푥 =⊥ and 

accepting states of 퐴 get even rank or ⊥.

– Initial state: all states of the form 
푛
⊥

– Transitions: all 
푛
푛

→ 푛
푛 s.t . ranks do not increase

• The runs of the automaton on a word 푤 correspond 
to all the rankings of 푑푎푔 푤 .

• Observe: 퐴̅ is a NBA even if 퐴 is a DBA, because 
there are many rankings for the same word.

First draft for 퐴̅



Accepting states?

• The accepting states should be chosen so that 
a run is accepted iff its corresponding ranking
is odd.

• Problem: no way to do so when the only
information of a state is the ranking.



Owing states and breakpoints

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the 

ranking such that no node of the level owes a visit 
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely 
many breakpoints.

– We enrich the states of 퐴̅ with a set of owing 
states, and choose the accepting states as those in 
which the set is empty. 



Owing states

2
⊥ → 1

2 → 1
⊥ → 1

0 → 1
0  … 

∅ {푞 } ∅ {푞 } ∅



Owing states

1
⊥ → 1

0 → 0
⊥ → 0

0 → 0
⊥ … 

∅ {푞 } {푞 } {푞 , 푞 } {푞 }



• For our two-state 퐴 (the case of more states is 
analogous): 

– States: pairs
푥
푥 ,푂 where 

푥
푥 as in the first

draft, and 푂 is a set of owing states (of even rank)

– Initial states: all states of the form 
푥
⊥ ,∅

– Transitions: all 
푥
푥

,푂 → 푥
푥 ,푂′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
푥
푥 ,∅

Second draft for 퐴̅



• The runs of 퐴̅ on a word 푤 correspond to all 
the rankings of 푑푎푔 푤 .

• The accepting runs of 퐴̅ on a word 푤
correspond to all the odd rankings of 
푑푎푔 푤 .

• Therefore:  퐿 퐴̅ = 퐿(퐴)  

Second draft for 퐴̅



• We can reduce the number of initial states.
• For every ranking with ranks in the range

[0,2푛], changing the rank of all nodes of the
first level to 2푛 yields again a ranking.  
Further, if the old ranking is odd then the new
ranking is also odd.
So we can simplify the definition of the initial 
states to:

– Initial state: 2푛
⊥ ,∅

Final 퐴̅ (the final touch …) 



An example
• We construct the complements of 

퐴 = ( 푞 , 푎 , 훿, 푞 , 푞 ) with 훿 푞, 푎 = {푞}

퐴 = ( 푞 , 푎 , 훿, 푞 ,∅) with 훿 푞,푎 = {푞}

• States of 퐴̅ :  0,∅ , 2,∅ , 0, {푞} , 2, {푞}

• States of 퐴̅ :  0,∅ , 1,∅ , 2,∅ , 0, {푞} , 2, {푞}

• Initial state of 퐴̅ and 퐴̅ : 2,∅

• Final states of 퐴̅ : 2,∅ ,   0,∅ (unreachable)

• Final states of 퐴̅ : 2,∅ , 1,∅ , 0,∅ (unreachable)



An example

퐴 퐴



Complexity

• A state consists of a level of a ranking and a 
set of owing states.

• A level assigns to each state a number of
[0,2푛] or the symbol ⊥.

• So the complement NBA has at most 
2푛 + 2 2 ∈ 푛 = 2 states. 

• Compare with 2 for the NFA case.
• We show that the log 푛 factor is unavoidable.



We define a family 퐿 of 휔-languages s.t.
– 퐿 is accepted by a NBA with 푛 + 2 states.
– Every NBA accepting 퐿 has at least 푛! ∈ 2

states.

• The alphabet of 퐿 is Σ = {1,2, … ,푛, #}.
• Assign to a word 푤 ∈ Σ a graph 퐺(푤) as 

follows:
– Vertices: the numbers 1,2, … ,푛 .
– Edges: there is an edge 푖 → 푗 iff 푤 contains infinitely 

many occurrences of  푖푗.
• Define: 푤 ∈ 퐿 iff 퐺(푤) has a cycle.



• 퐿 is accepted by a NBA with 푛 + 2 states.



Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Let 휏 denote a permutation of 1,2, … ,푛 . 
• We have:

a) For every 휏, the word 휏 # belongs to 퐿
(i.e., its graph contains no cycle).

b) For every two distinct  휏 , 휏 , every word 
containing  inf. many occurrences of 휏 and
inf. many occurrences of 휏 belongs to 퐿 .



Every NBA accepting 퐿 has at least 푛! ∈
2 states.
• Assume 퐴 recognizes 퐿 and let 휏 , 휏 distinct. 

By (a), 퐴 has runs 휌 , 휌  accepting 휏  # , 
휏  # .  The sets of accepting states visited 

i.o. by 휌 , 휌 are disjoint.
– Otherwise we can ``interleave‘‘휌 ,휌 to yield an 

acepting run for a word with inf. many occurrences 
of 휏 , 휏 , contradicting (b).

• So 퐴 has at least one accepting state for each 
permutation, and so at least 푛! states.


