
ω-Automata



ω-Automata

• Automata that accept (or reject) words of 
infinite length.

• Languages of infinite words appear:
– in verification, as encodings of non-terminating                   

executions of a program.
– in arithmetic, as encodings of sets of real 

numbers.



ω-Languages

• An ω-word is an infinite sequence of letters.
• The set of all ω-words is denoted by  Σఠ.
• An ω-language is a subset of Σఠ.
• A language ܮଵ can be concatenated with an ω-language ܮଶ to 

yield the ω-language ܮଵܮଶ, but two ω-languages cannot be 
concatenated.

• The ω-iteration of a language ܮ ⊆ Σ∗, denoted by -ఠ, is an ωܮ
language.

• Observe: 
– {ܾܽ}∗ contains infinitely many words, {ܾܽ}ఠ contains only 

one
– ∅ఠ = ߳ ఠ = ∅



ω-Regular Expressions

• ω-regular expressions have syntax

ݏ ∷= ଵݏ | ଵݏݎ |ఠݎ + ଶݏ

where ݎ is an (ordinary) regular expression.

• The ω-language ܮఠ(ݏ) of an ω-regular expression ݏ is 
inductively defined by 

ఠܮ ఠݎ = ܮ ݎ ఠ ఠܮ ଵݏݎ = ܮ ݎ (ଵݏ)ఠܮ

ఠܮ ଵݏ + ଶݏ = ఠܮ ଵݏ ∪ (ଶݏ)ఠܮ
• An ω-language is ω-regular if it is the language of some    

ω-regular expression .
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The Rules of the Quest

• Automata should still have states, transitions, and
initial states, only the acceptance condition can
change.

• For automata on finite words the acceptance
condition depends only on the last state of a run
(i.e., runs ending in the same state are all 
accepting or rejecting). 

• For automata on infinite words we choose: the
acceptance condition can depend only on the
set of states visited infinitely often by a run
(i.e., runs that visit the same states infinitely often
are all accepting or rejecting).
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The Rules of the Quest

• Automata should still have states, transitions, and
initial states, only the acceptance condition can
change.

• For automata on finite words the acceptance
condition depends only on the last state of a run
(i.e., runs that end in the same state are all 
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Basic notions: Semi-automata

• A semi-automaton is a tuple ܵ = (ܳ,Σ, (଴ܳ,ߜ of 
states, alphabet, transitions, and initial states.



Basic notions: Runs

• A run of a semi-automaton is an infinite sequence
of states and transitions starting at an initial state

• ଵߩ = ଴ݍ
௔
→ ଵݍ 

௔
→ ଵݍ 

௔
→ ଵݍ 

௔
→ ⋯ଵݍ 

• ଶߩ = ଴ݍ
௕
→ ଴ݍ 

௕
→ ଴ݍ 

௕
→ ଴ݍ 

௕
→ ⋯଴ݍ 

• ଷߩ = ଴ݍ
௔
→ ଵݍ 

௕
→ ଴ݍ 

௔
→ ଴ݍ 

௕
→ ⋯ଵݍ 



Basic notions: Runs

• The set of states visited infinitely often by a run ߩ
is denoted inf ߩ

• ଵߩ = ଴ݍ
௔
→ ଵݍ 

௔
→ ଵݍ 

௔
→ ଵݍ 

௔
→ ଵ⋯    infݍ  ଵߩ = {ଵݍ}

• ଶߩ = ଴ݍ
௕
→ ଴ݍ 

௕
→ ଴ݍ 

௕
→ ଴ݍ 

௕
→ ଴⋯    infݍ  ଶߩ = {଴ݍ}

• ଷߩ = ଴ݍ
௔
→ ଵݍ 

௕
→ ଴ݍ 

௔
→ ଴ݍ 

௕
→ ⋯ଵݍ  inf ଷߩ = ,଴ݍ} {ଵݍ



Basic notions: Acceptance conditions

• An acceptance condition is a mapping :ߙ 2ொ → {0,1}
that determines for every set ܳᇱ ⊆ ܳ of states whether
the runs ߩ with inf ߩ = ܳ′ are accepting or not.

• :ଵߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 0, {ଵݍ,଴ݍ} ↦ 0

• :ଶߙ {଴ݍ}    ↦ 0, {ଵݍ}  ↦ 1, {ଵݍ,଴ݍ} ↦ 1



Basic notions: ߱-Automata

• An ߱-automaton is a pair ܣ = where ,(ߙ,ܵ) ܵ is a 
semi-automaton and ߙ is an acceptance condition



Basic notions: ω-Language

• An ߱-automaton ܣ accepts an ω-word if it has at least 
one accepting run on it. The ω-language ܮఠ ܣ of ܣ is 
the set of ω-words it accepts.

• :ଵߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 0, ,଴ݍ} {ଵݍ ↦ 0

• :ଶߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 1

∅
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Basic notions: ω-Language

• :ଵߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 0, ,଴ݍ} {ଵݍ ↦ 0

• :ଶߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 1

∅
infinitely many ܽ

• An ߱-automaton ܣ accepts an ω-word if it has at least 
one accepting run on it. The ω-language ܮఠ ܣ of ܣ is 
the set of ω-words it accepts.



Basic notions: ω-Language

• :ଵߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 0, ,଴ݍ} {ଵݍ ↦ 0

• :ଶߙ {଴ݍ}    ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 1

∅
ܾ∗ܽ ఠ

• An ߱-automaton ܣ accepts an ω-word if it has at least 
one accepting run on it. The ω-language ܮఠ ܣ of ܣ is 
the set of ω-words it accepts.



Types of ߱-automata 

• There are many different types of acceptance
conditions (Büchi, co-Büchi, Rabin, Streett, parity, 
Muller, generalized Büchi, Emerson-Lei …)

They lead to different types of ߱-automata: 
Büchi automata, co-Büchi automata, etc.  

• A type is defined by stating a property that an 
acceptance condition may or may not satisfy. The 
type is the subset of all possible acceptance
conditions that satisfy the property.

• This set of slides explains why this variety is 
needed.



Büchi automata

• Invented by J.R. Büchi, swiss logician.



Büchi automata

• An acceptance condition :ߙ 2ொ → {0,1} is a 
Büchi condition if there is a set ܨ ⊆ ܳ of accepting
states such that ߙ ܳᇱ = 1 iff ܳᇱ ∩ ܨ ≠ ∅.

– {଴ݍ} ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 1 is Büchi ܨ = {ଵݍ}
– {଴ݍ} ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 0 is not Büchi

• By definition, a run ߩ is accepting iff inf ߩ ∩ ܨ ≠ ∅
iff (in words) ߩ visits infinitely ܨ often.

• A Büchi condition is ߙ completely determined by  .ܨ
We write ܣ = ܨ,ܵ = ܳ,Σ, ܨ,଴ܳ,ߜ .



Some Büchi automata
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From NBAs to ω-regular expressions

• Lemma: Let ܣ be a NFA, and let ݍ, ᇱݍ be states 
of ܣ . The language ܮ௤

௤ᇲ of words with runs 
leading  from ݍ to ݍᇱ and visiting ݍᇱ exactly 
once after leaving .is regular ݍ

• Let ݎ௤
௤ᇲ denote a regular expression for ܮ௤

௤ᇲ.



From NBAs to ω-regular expressions

• Example:



From NBAs to ω-regular expressions

• Given a NBA ܣ , we look at it as a NFA, and 
compute regular expressions ݎ௤

௤ᇲ .
• We show:

ఠܮ ܣ = ܮ ෍ݎ௤బ
௤ ௤ݎ 

௤ ఠ

௤∈ி
– An ω-word belongs to ܮఠ ܣ iff it is accepted by a 

run that starts at ݍ଴ and visits some accepting 
state ݍ infinitely often.



From NBAs to ω-regular expressions

• Example:

ఠܮ ܣ = ଵଵݎ ଴ଵݎ ఠ ଶଶݎ ଴ଶݎ + ఠ



DBAs are less expressive than NBAs

• Prop.: The ω-language  ܽ + ܾ ∗ܾఠ of words containing
finitely many ܽ is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes 
ܽ + ܾ ∗ܾఠ.

– DBA accepts ܾఠ → DFA accepts ܾ௡బ
DBA accepts ܾ௡బܽ ܾఠ → DFA accepts ܾ௡బܽ ܾ௡భ

DBA accepts ܾ௡బܽ ܾ௡భ  ܾܽఠ → DFA accepts ܾ௡బܽ ܾ௡భܽ ܾ௡మ etc.

– By determinism and finite number of states, the DBA accepts

 ܾ௡బܽ ܾ௡భܽ ܾ௡మ …ܽ ܾ௡೔ ܾܽ௡೔శభ … ܾܽ௡ೕ ఠ

which does not belong to ܽ + ܾ ∗ܾఠ.
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DBAs are less expressive than NBAs

• Prop.: The ω-language  ܽ + ܾ ∗ܾఠ of words containing
finitely many ܽ is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes 
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Büchi automata do not form a Trinity
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Co-Büchi automata

• An accepting condition :ߙ 2ொ → {0,1} is a 
co-Büchi condition if there is a set of ܨ accepting states
such that ߙ ܳᇱ = 1 iff ܳᇱ ∩ ܨ = ∅.

– {଴ݍ} ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 0 is co-Büchi ܨ = {଴ݍ}

– {଴ݍ} ↦ 0, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 1 is not co-Büchi

• Equivalently: ߩ is accepting iff inf ߩ ∩ ܨ = ∅
iff (in words) ߩ visits .finitely often ܨ

• A co-Büchi condition is ߙ completely determined by  .ܨ
We write ܣ = ܨ,ܵ = ܳ,Σ, ܨ,଴ܳ,ߜ (danger!)



Co-Büchi automata

• Let ܣ be a Büchi automaton, let ܤ be the same co-
Büchi automaton (with the same set and ,(ܨ let ߩ be
a run:
– ߩ is accepting in ܣ if it visits infinitely ܨ often
– ߩ is accepting in ܤ if it visits finitely often ܨ

• So an accepting run of ܣ is a rejecting run of ܤ and
vice versa.

• Therefore: If ܣ is a DBA recognizing an ߱-language  ,ܮ
then ܤ is a DCA recognizing  .ܮ

• Not necessarily true for NBA !



Which are the languages?



Determinizing co-Büchi automata

• Given a NCA ܣ we construct a DCA ܤ such that 
ܮ ܣ = ܮ ܤ .

• We proceed in three steps:
– We assign to every ω-word ݓ a directed acyclic graph 
(ݓ)݃ܽ݀ that ``contains´´ all runs of ܣ on ݓ.

– We prove that ݓ is accepted by ܣ iff ݀ܽ݃(ݓ) is infinite 
but contains only finitely many breakpoints.

– We construct a DCA ܤ such that ݓ is accepted by iff ܤ
(ݓ)݃ܽ݀ is infinite but contains only finitely many 
breakpoints.



• Running example:



݀ܽ݃(ܾܽܽன)

݀ܽ݃ ܾܽ ன



• ܣ accepts ݓ iff some infinite path of ݀ܽ݃ ݓ
only visits accepting states finitely often 



Levels of a ݀ܽ݃

Level 0 Level 1 Level 2 Level 3 Level 4



Breakpoints of a ݀ܽ݃

• We define inductively the set of levels that are 
breakpoints:
– Level 0 is always a breakpoint
– If level ݈ is a breakpoint, then the next level ݈′ such 

that every path from ݈ to ݈ᇱ visits an accepting 
state at some level between ݈+1 and ݈ᇱ is also a 
breakpoint.



Only two breakpoints

Infinitely many breakpoints



Lemma: ܣ accepts ݓ iff ݀ܽ݃ ݓ is infinite and
has only finitely many breakpoints.

Proof: 
(⇒) If ܣ accepts w, then it has at least one run 
on ݓ, and so ݀ܽ݃ ݓ  is infinite. 
Moreover, the run visits accepting states only 
finitely often, and so after it stops visiting 
accepting states there are no further 
breakpoints.



Proof: 
(⇐) Assume ݀ܽ݃ ݓ is infinite and has only finitely many
breakpoints. Let ݈ be the last breakpoint. 

Since ݀ܽ݃ ݓ is infinite, for every ݈ᇱ > ݈ there is a path
from ݈ to ݈ᇱ that visits no accepting states. 

The subdag containing all these paths is infinite and has
finite degree. 

By König‘s Lemma the dag contains an infinite path. 

Lemma: ܣ accepts ݓ iff ݀ܽ݃ ݓ is infinite and
has only finitely many breakpoints.



Constructing the DCA 

If we could tell if a level is a breakpoint by looking at it
and to no other level, then we could take the set of all 
levels/ breakpoints as the set of states/accepting states
of the DCA.

Level 0 Level 1 Level 2 Level 3 Level 4



Constructing the DCA 

However, in oder to decide if a level is a breakpoint we
need information about its ``history´´.
Solution: add that information to the level.

Level 0 Level 1 Level 2 Level 3 Level 4



Constructing the DCA 

• States: pairs [ܲ,ܱ] where:
– ܲ is the set of states of a level, and
– ܱ ⊆ ܲ is the set of states

``that owe a visit to the set of accepting states‘‘. 

• Formally: ݍ ∈ ܱ if ݍ is the endpoint of a path 
starting at the last breakpoint that has not yet 
visited any accepting state.



Constructing the DCA 

• States: pairs [ܲ,ܱ]
• Initial state: pair [ܳ଴,∅].
• Transitions: ߜ ܲ,ܱ ,ܽ = [ܲᇱ,ܱᇱ] where 
ܲᇱ = ,ܲ)ߜ ܽ) and ܱᇱ is given by:
– ܱᇱ = ߜ ܱ,ܽ ∖ ܨ if  ܱ ≠ ∅
(automaton updates set of owing states)
– ܱᇱ = ߜ ܲ,ܽ ∖ ܱ  if ܨ = ∅
(automaton starts search for next breakpoint)

• Accepting states: pairs [ܲ,∅] (no owing states)



• Complexity: at most 3௡ states



Running example



Co-Büchi Automata do not form a Trinity

Lemma: No DCA (and so no NCA) recognizes the 
߱-language ܾ∗ܽ ன.

Proof: Assume the contrary. Then the same automaton 
seen as a DBA recognizes the complement ߱-language 
ܽ + ܾ ∗ܾன. Contradiction.

It can be proven that all ߱-languages accepted
by NCA are ߱-regular (exercise!). 
So NCA are strictly less expressive than NBA.



Co-Büchi Automata do not form a Trinity

DCANCA

ω-RE

ω-Regular
languages



• Recall: No DBA for ܽ + ܾ ∗ܾఠ

Generalizing NBAs

• Can be „repaired“ by combining Büchi and
co-Büchi conditions:

Runs that visit ݍ finitely often and moreover visit
ݎ infinitely often recognize ܽ + ܾ ∗ܾఠ



Rabin automata

• A Rabin pair is a pair 〈ܩ,ܨ〉 of sets of states.

• An accepting condition :ߙ 2ொ → {0,1} is a Rabin condition
if there is a set ज of Rabin pairs such that

ߙ ܳᇱ = 1 iff ܳᇱ ∩ ܨ ≠ ∅ and ܳᇱ ∩ ܩ = ∅
for some pair ܩ,ܨ ∈ ज.

ߩ is accepting
iff inf ߩ ∩ ܨ ≠ ∅ and inf ߩ ∩ ܩ = ∅ for some ܩ,ܨ ∈ज
iff (in words)  ߩ visits infinitely ܨ often and G finitely often

for some ܩ,ܨ ∈ ज.



Rabin automata

• The accepting condition
{଴ݍ} ↦ 1, {ଵݍ} ↦ 1, ,଴ݍ} {ଵݍ ↦ 0

is neither Büchi nor co-Büchi, but it is the Rabin condition
଴ݍ  } , ଵݍ  , ଵݍ , ଴ݍ   } (two Rabin pairs)

• Büchi condition ܨ ≡ Rabin condition ∅,ܨ }  }

• Co-Büchi condition ܩ ≡ Rabin condition ܩ,ܳ }   }

• Theorem (Safra): Any NRA with ݊ states can be effectively 
transformed into a DRA with ݊ை ௡ states.



From Rabin to Büchi automata

• Let  ܣ be a NRA with condition 〈ܨଵ,ܩଵ〉, … , 〈௠ܩ,௠ܨ〉 .

• Let  ܣଵ, … ௠ܣ, be NRAs with the same semi-automaton 
as  ܣ but Rabin conditions 〈ܨଵ,ܩଵ〉 ,  … , ௠ܨ〉  〈௠ܩ,
respectively.

• We have:    ܮ ܣ = ܮ ଵܣ ∪⋯∪ ܮ ௠ܣ
• We proceed in two steps:

1. we construct for each NRA  ܣ௜ an NBA ܣ௜ᇱ such that 
ܮ ௜ܣ = (௜ᇱܣ)ܮ

2. we (easily) construct an NBA  ܣ′ such that 
ܮ ′ܣ = ܮ ଵ′ܣ ∪  …∪ ܮ ௠′ܣ



௜ܩ\ܳ NRA

NBA with accepting 
condition

  ܳ ∖ ௜ᇱܩ ∩  ′௜ܨ

Transitions leaving
௜ܩ\ܳ are duplicated
and redirected to
the copy of ௜ܩ\ܳ

ଵݍ

௠ݍ

ଵᇱݍ

௠ᇱݍ



Beyond Trinities

• Can we find a class X of ߱-automata such that
• RE, NXA, DXA form a Trinity, and
• Boolean operations for DXAs can be implemented „as for

DFAs“ ?

1) For every DXA ܣ = (ߙ,ܵ) there is a DXA ܣ = (ߙ,ܵ)
recognizing ܮఠ ܣ

2) For every two DXAs ܣଵ = (ܵଵ,ߙଵ) and ଶܣ = (ܵଶ,ߙଶ) there is 
a DXA ܣ∪ = ([ܵଵ, ܵଶ],ߙ∪) recognizing ܮఠ ଵܣ ∪ (ଶܣ)ఠܮ

3) For every two DXAs ܣଵ = (ܵଵ,ߙଵ) and ଶܣ = (ܵଶ,ߙଵ) there is 
a DXA ܣ∪ = ([ܵଵ, ܵଶ],ߙ∩) recognizing ܮఠ ଵܣ ∩ (ଶܣ)ఠܮ



Beyond Trinities

• Rabin automata:   1): No. 2): Yes.   3): No.

• Given two DRAs ܣଵ = ( ଵܵ,ߙଵ) and ଶܣ = (ܵଶ,ߙଶ),
the DRA ܣ∪ = ([ ଵܵ, ܵଶ],ߙ) where

ߙ =  
ଵܨ } × ܳଶ,ܩଵ × ܳଶ ∶ ଵܩ,ଵܨ ∈ { ଵߙ

∪
{ ܳଵ × ଶ,ܳଵܨ × ଶܩ ∶ ଶܩ,ଶܨ ∈ { ଶߙ

recognizes ఠܮ ଵܣ ∪ (ଶܣ)ఠܮ



Beyond Trinities

• Two further Trinities (see notes):
– Street automata: 1): Yes. 2): No. 3): No.
– Parity automata: 1): No. 2): No. 3): Yes.

• A final Trinity: 
– Muller automata: 1): Yes. 2): Yes. 3): Yes.



Muller automata

• Automata with arbitrary acceptance conditions.

• A Muller automaton (NMA) is an automaton ܣ = (ߙ,ܵ)
where :ߙ 2ொ → {0,1} is an arbitrary acceptance
condition.

• We represent ߙ by the set ऐ of all sets of states ܳ′ ⊆ ܳ
such that ߙ ܳ′ = 1.

• A run is accepting if the set of states it visits infinitely 
often is equal to one of the sets in ऐ.

• Theorem: RE, NMA, and DMA form a Trinity. 
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Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ



Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ
௔ݍ  }  , ௕ݍ , ௔ݍ , ௕ݍ , ௔ݍ , ௖ݍ  , ௔ݍ , ௖ݍ  , ௔ݍ , ௕ݍ , ௖ݍ   }



Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ
௔ݍ  }  , ௕ݍ , ௔ݍ , ௕ݍ , ௔ݍ , ௖ݍ  , ௔ݍ , ௖ݍ  , ௔ݍ , ௕ݍ , ௖ݍ   }

• Infinitely many ܽ and infinitely many ܾ



Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ
௔ݍ  }  , ௕ݍ , ௔ݍ , ௕ݍ , ௔ݍ , ௖ݍ  , ௔ݍ , ௖ݍ  , ௔ݍ , ௕ݍ , ௖ݍ   }

• Infinitely many ܽ and infinitely many ܾ

௔ݍ  } ௕ݍ, , ௔ݍ ௕ݍ, , ௖ݍ   }



Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ
௔ݍ  }  , ௕ݍ , ௔ݍ , ௕ݍ , ௔ݍ , ௖ݍ  , ௔ݍ , ௖ݍ  , ௔ݍ , ௕ݍ , ௖ݍ   }

• Infinitely many ܽ and infinitely many ܾ

௔ݍ  } ௕ݍ, , ௔ݍ ௕ݍ, , ௖ݍ   }

• Finitely many ܽ or finitely many ܾ



Muller automata

• Infinitely many ܽ

௔ݍ  }  , ௔ݍ ௕ݍ,  , ௔ݍ ௖ݍ,  , ௔ݍ ௕ݍ, ௖ݍ,   }

• Infinitely many ܽ or infinitely many ܾ
௔ݍ  }  , ௕ݍ , ௔ݍ , ௕ݍ , ௔ݍ , ௖ݍ  , ௔ݍ , ௖ݍ  , ௔ݍ , ௕ݍ , ௖ݍ   }

• Infinitely many ܽ and infinitely many ܾ

௔ݍ  } ௕ݍ, , ௔ݍ ௕ݍ, , ௖ݍ   }

• Finitely many ܽ or finitely many ܾ

௔ݍ  }  , ௕ݍ , ௖ݍ , ௔ݍ ௖ݍ,  , ௕ݍ , ௖ݍ  }



Boolean operations on DMAs

• Let ܣ = (ܵ,ऐ) be a DMA. The DRA ̅ܣ = (ܵ,ऐഥ), where

ऐഥ = {ܴ ⊆ ܳ ∶ ܴ ∉ ऐ}

recognizes ఠܮ ܣ .



Boolean operations on DMAs

• Let ܣ = (ܵ,ऐ) be a DMA. The DRA ̅ܣ = (ܵ,ऐഥ), where

ऐഥ = {ܴ ⊆ ܳ ∶ ܴ ∉ ऐ}

recognizes ఠܮ ܣ .

Problem: ऐഥ can be exponentially larger than ऐ !! 



Boolean operations on DMAs

• Let ܣଵ = (ܵଵ,ऐଵ) and ଶܣ = ܵଶ,ऐଶ be DMAs

• Given ܴ ⊆ ܳଵ × ܳଶ, let ܴ|ଵ and ܴ|ଶ denote the projections of
ܴ on ܳଵ and ܳଶ.

• The DRAs ܣ∪ = ([ܵଵ,ܵଶ],ऐ∪) and ܣ∩ = ([ܵଵ,ܵଶ],ऐ∩) , where

ऐ∪ = {ܴ ⊆ ܳଵ × ܳଶ ∶ ܴ|ଵ ∈ ऐଵ or ܴ|ଶ ∈ ऐଶ}

ऐ∩ = ܴ ⊆ ܳଵ × ܳଶ ∶ ܴ|ଵ ∈ ऐଵ and ܴ|ଶ ∈ ऐଶ

recognize ఠܮ ଵܣ ∪ (ଶܣ)ఠܮ and ܮఠ ଵܣ ∩ (ଶܣ)ఠܮ .

• Same problem as for complementation: ऐ∪ and ऐ∩ can be
exponentially larger thanऐ.



Summary

Y:  the underlying conversion or operation has polynomial blow-up

Expr: Is there a conversion from RE to NXA?
Det: Is there a conversion from NXA to DXA?
Union: Does pairing work for DXA and union?
Inters: Does pairing work for DXA and intersection?
Comp: Can DXA be complemented without changing

the semi-automaton?


