w-Automata



w-Automata

o Automata that accept (or reject) words of
Infinite length.

» Languages of infinite words appear:

— In verification, as encodings of non-terminating
executions of a program.

— In arithmetic, as encodings of sets of real
numbers.



w-Languages

An w-word is an infinite sequence of letters.
The set of all w-words is denoted by Z®.
An w-language is a subset of 2.

A language L, can be concatenated with an w-language L, to
yield the w-language L, L, but two w-languages cannot be
concatenated.

The w-iteration of a language L € X*, denoted by L%, is an w-
language.

Observe:

— {ab}" contains infinitely many words, {ab}® contains only
one

— QY ={e}¥ =10



w-Regular Expressions

e w-regular expressions have syntax

su=r®rs;|s; +s,

where r is an (ordinary) regular expression.

 The w-language L, (s) of an w-regular expression s Is
iInductively defined by

Loy (@) = (L))" Ly (rsy) = L(r)Le(sy)

Ly(s1+53) = Ly (51) U Ly (s2)

* An w-language is w-regular if it is the language of some
w-regular expression .



The Quest for a Trinity
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The Rules of the Quest

« Automata should still have states, transitions, and
Initial states, only the acceptance condition can
change.
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The Rules of the Quest

« Automata should still have states, transitions, and
Initial states, only the acceptance condition can
change.

 For automata on finite words the acceptance
condition depends only on the last state of a run
(l.e., runs that end in the same state are all
accepting or rejecting).

 For automata on infinite words we choose:
the acceptance condition depends only on the
set of states visited infinitely often by a run
(l.e., runs that visit the same states infinitely often
are all accepting or rejecting).



Basic notions: Semi-automata

e Asemi-automatonisatupleS = (Q,%, 6, 0Q,) of
states, alphabet, transitions, and initial states.



Basic notions: Runs

« Arun of a semi-automaton is an infinite sequence
of states and transitions starting at an initial state

a a a a
*P1—4q0> 91> 41> 41> (1
b b b b
* P2—qo>> 4o 4o 4o (o
a b a b

*P3s—qo>> 41> 4o 4o 41



Basic notions: Runs

* The set of states visited infinitely often by a run p
Is denoted inf(p)

a a a a ]
* P = qO: CI1_b) CI1_b) qlz qy - iNf(py) = {q1}
* P2=qo> G0 qo= Go— qo-r  Inf(py) ={q0}

a b a b ]
* P3=qo> Q1 Go— Qo q1  Inf(p3) ={q0, 91}



Basic notions: Acceptance conditions

e An acceptance condition is a mapping a: 29 — {0,1}
that determines for every set Q' € Q of states whether
the runs p with inf(p) = Q' are accepting or not.

* a1: {90+~ 0, {q1} ~ 0, {q0. 91}~ O
* az. {90}~ 0, {q:}~1 {q0.q1}~ 1



Basic notions: w-Automata

 An w-automatonisapair A = (S, a), where Sisa
semi-automaton and «a Is an acceptance condition



Basic notions: w-Language

An w-automaton A accepts an w-word if it has at least
one accepting run on it. The w-language L, (A) of A Is
the set of w-words it accepts.

* a1: {90}~ 0,{q1} » 0,{q0.q1} » O 0
* . {90}~ 0,{q1} ~ 1.{q0. 91}~ 1 ?



Basic notions: w-Language

An w-automaton A accepts an w-word if it has at least
one accepting run on it. The w-language L, (A) of A Is
the set of w-words it accepts.

* a;. {90}~ 0,{q1} ~ 0,{q0.q1} » O @
* a0 {q0} » 0,{q1} » 1,{q0, g1} = 1 infinitely many a



Basic notions: w-Language

An w-automaton A accepts an w-word if it has at least
one accepting run on it. The w-language L, (A) of A Is
the set of w-words it accepts.

* ;. {qo0} - 0,{q1}~ 0,{q0.q1} —~ O @
* a3 {q0}~ 0.{q1} ~ 1{q0. 91}~ 1 (b*a)®



Types of w-automata

* There are many different types of acceptance
conditions (BUchi, co-Blichi, Rabin, Streett, parity,
Muller, generalized Biichi, Emerson-Lei ...)

They lead to different types of w-automata:
Blichl automata, co-Blichi automata, etc.

« Atype is defined by stating a property that an
acceptance condition may or may not satisfy. The
type is the subset of all possible acceptance
conditions that satisfy the property.

e This set of slides explains why this variety Is
needed.



Blchi automata

 Invented by J.R. Buchi, swiss logician.




Blchi automata

» An acceptance condition a: 29 — {0,1}is a
Blchi condition if there isa set ' < ( of accepting
statessuch that «(Q') = 1iff Q" n F # @.

—{q0} » 0,{q1} » 1,{q0, 91} ~ 1 isBlchi F ={q,}
—{40} » 0,{q1} » 1,{q0,q1} ~ O Is not Blichi

By definition, arun p is accepting iff inf(p) N F + @
Iff (in words) p visits F infinitely often.

« A Bichi condition « Is completely determined by F.
WewriteA = (5,F) =(0Q,Z%, 6,04, F).



Some Buchi automata
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From w-regular expressions to NBAS
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From w-regular expressions to NBAS

O
O
NBA for s O
SN
O
O
A
O

NBA for s; + 57
NBA for s,



From NBASs to w-regular expressions

* Lemma: Let A be a NFA, and let g, g’ be states

of A . The language L‘ZI’ of words with runs

leading from g to g’ and visiting g’ exactly
once after leaving g Is regular.

/ !/
» Let 7,/ denote a regular expression for L, .



From NBASs to w-regular expressions

e Example:
b, c
.C‘ rg = (a+b+o)(b+c)
b c b re = (a+b+0)b
= (b+o)
% = b+(a+c)a+b+c)b

-]
u &
iy ~



From NBASs to w-regular expressions

 Given a NBA A , we look at it as a NFA, and
compute regular expressions r
* \We show:

Lo(4) =L (Z a (r;)‘”)

qeEF

— An w-word belongs to L, (A) iff it is accepted by a
run that starts at g, and visits some accepting
state g infinitely often.



From NBASs to w-regular expressions

e Example:

b, c

~

O == OO

(a+b+c)(b+c)
(a+b+c)b

(b +c)
b+(@a+c)a+b+c)b

~

<

~

a,b,c

L,(A) =1y (1) +15 (15)®



DBAs are less expressive than NBAs

e Prop.: The w-language (a + b)"b® of words containing
finitely many a is not recognized by any DBA.
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DBAs are less expressive than NBAs

e Prop.: The w-language (a + b)"b® of words containing
finitely many a is not recognized by any DBA.
 Proof: By contradiction. Assume some DBA recognizes
(a +b)*b?.
— DBA accepts h® — DFA accepts b™0
DBA accepts b™oa h® - DFA accepts b™oa b™
DBA accepts b™a b™ ab® - DFA accepts b™a b™a b™2 etc.



DBAs are less expressive than NBAs

e Prop.: The w-language (a + b)"b® of words containing
finitely many a is not recognized by any DBA.

 Proof: By contradiction. Assume some DBA recognizes
(a+b)'b®.

— DBA accepts h® — DFA accepts b0
DBA accepts b™oa h® - DFA accepts b™a b™

DBA accepts b™a b™ ab® - DFA accepts b™a b™a b™2 etc.
— By determinism and finite number of states, the DBA accepts
b™a b™qb™ .. ab™(abm+1 .. ab™)®

forsome i < j . This word does not belong to (a + b)*b®.



Blchi automata do not form a Trinity
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Co-Buchi automata

 An accepting condition «: 29 — {0,1} isa
co-Buchi condition if there is a set F of accepting states
suchthat a(Q") = 1i1ff Q' n F = .
- {40}~ 0.{q1} = 1.{q0. 41}~ O Is co-Buchi F = {q,}
—{q0} ~» 0,{q:} » 1,{q9,9,} —» 1 IS not co-Blchi

 Equivalently: p is accepting iff inf(p) N F = @
Iff (in words) p visits F finitely often.

A co-Buchi condition « Is completely determined by F.
WewriteAd = (5,F) = (Q,Z%, 6, Qy, F) (danger!)



Co-Buchi automata

Let A be a Blchi automaton, let B be the same co-
Blchi automaton (with the same set F), and let p be
arun:

— p Isaccepting in A if it visits F infinitely often
— p Isaccepting in B if it visits F finitely often

So an accepting run of A is a rejecting run of B and
vice versa.

Therefore: If A Is a DBA recognizing an w-language L,
then B is a DCA recognizing L.

Not necessarily true for NBA !



Which are the languages?
b a a,b b
b
b, c c,d

(o (o
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Determinizing co-Bilchi automata

e Given a NCA A we construct a DCA B such that
L(A) = L(B).

e We proceed in three steps:

— We assign to every w-word w a directed acyclic graph
dag(w) that contains™ all runs of A on w.

— We prove that w is accepted by A iff dag(w) Is infinite
but contains only finitely many breakpoints.

— We construct a DCA B such that w iIs accepted by B iff
dag(w) is infinite but contains only finitely many
breakpoints.



e Running example:

a
()



a

C) a

=0
dag(aba®)
T @
a b a a...
dag((ab)w)

Ca0 a1 @



» A accepts w Iff some infinite path of dag(w)
only visits accepting states finitely often




Levelsof adag

/&
\
A
g.¢

Level O Level 1 Level 2 Level 3 Level 4



Breakpoints of a dag

* We define inductively the set of levels that are
breakpoints:

— Level O is always a breakpoint

— If level [ is a breakpoint, then the next level [" such
that every path from [ to [’ visits an accepting
state at some level between [+1 and [’ is also a
breakpoint.



Only two breakpoints

Infinitely many breakpoints



Lemma: A accepts w iff dag(w) Is infinite and
has only finitely many breakpoints.

Proof:

(=) If A accepts w, then it has at least one run
on w, and so dag(w) is infinite.

Moreover, the run visits accepting states only
finitely often, and so after It stops visiting
accepting states there are no further
breakpoints.



Lemma: A accepts w iff dag(w) Is infinite and
has only finitely many breakpoints.

Proof:

(<) Assume dag(w) Is infinite and has only finitely many
breakpoints. Let [ be the last breakpoint.

Since dag(w) is infinite, for every [" = [ there is a path
from [ to [’ that visits no accepting states.

The subdag containing all these paths is infinite and has
finite degree.

By KOnig‘s Lemma the dag contains an infinite path.



Constructing the DCA

Level O Level 1 Level 2 Level 3 Level 4

/a
N
A
TG

If we could tell if a level is a breakpoint by looking at it
and to no other level, then we could take the set of all
levels/ breakpoints as the set of states/accepting states

of the DCA.




Constructing the DCA

Level O Level 1 Level 2 Level 3 Level 4

/a
N
A
g.¢

However, in oder to decide if a level is a breakpoint we
need information about its history™".

Solution: add that information to the level.



Constructing the DCA

 States: pairs [P, O] where:
— P Is the set of states of a level, and

— 0 € P is the set of states
“that owe a visit to the set of accepting states*"

e Formally: g € O if g Is the endpoint of a path
starting at the last breakpoint that has not yet
visited any accepting state.



Constructing the DCA

States: pairs [P, O]

Initial state: pair [Q,, @].

Transitions: 6 (|P,0],a) = [P’,0'] where
P" = 6(P,a) and O’ is given by:

—0' ' =6(0,a)\F if0O+0

(automaton updates set of owing states)
—0'=6(P,a)\F if0=0

(automaton starts search for next breakpoint)

Accepting states: pairs [P, @] (no owing states)



NCAtoDCA(A)
Input: NCA A = (0,2,08,Qo, F)
Output: DCA B = (0, X, 0, o, F) with L,(A) = L,,(B)
0,6, F « 0; go < [Qo,0]
W e—{qo}
while W = 0 do
pick [P, O] from W; add [P, O] to O
if O = 0 then add [P, O] to F
foralla € > do
P’ =6(P,a)
if O # 0 then O’ — 6(0,a) \ F else O’ — 6(P,a) \ F
add ([P, O],a,[P’,0’]) to 6
if [P,0’] ¢ O thenadd [P’,Q’] to W

O 0 1 &N W B~ W N -

[a—
-

e Complexity: at most 3" states



Running example




Co-Buchi Automata do not form a Trinity

Lemma: No DCA (and so no NCA) recognizes the
w-language (b*a)®.

Proof: Assume the contrary. Then the same automaton
seen as a DBA recognizes the complement w-language
(a + b)"b®. Contradiction.

It can be proven that all w-languages accepted
by NCA are w-regular (exercise!).
So NCA are strictly less expressive than NBA.



Co-Buchi Automata do not form a Trinity

w-Regular
languages
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Generalizing NBAs

e Recall: No DBA for (a + b)*b®

« Can be ,,repaired” by combining Blchi and
co-Blchi conditions:

a b
~+ — 2(%
Runs that visit g finitely often and moreover visit
r infinitely often recognize (a + b)"bh®




Rabin automata

e ARabin pairis a pair (F, G) of sets of states.

» An accepting condition a: 2¢ — {0,1} is a Rabin condition
iIf there is a set R of Rabin pairs such that

a(@)=1 iff 'nF+#0andQ' NG =0
for some pair (F,G) € R.

p Is accepting
Iff iInf(p) NF = @andinf(p) NG = @ forsome (F,G) ER
Iff (inwords) p visits F infinitely often and G finitely often
forsome (F,G) € R.



Rabin automata

The accepting condition

{90} » 1.{q1} » 1,{90. 91}~ O
IS neither Bichi nor co-Buchi, but it is the Rabin condition

{ ({qot{913), {g1}.1{90}) } (two Rabin pairs)
Blichi condition F = Rabin condition { (F,®)}

Co-Buichi condition ¢ = Rabin condition {{(0Q,G)}

Theorem (Safra): Any NRA with n states can be effectively
transformed into a DRA with n? ™ states.



From Rabin to Blichl automata

Let A be a NRA with condition {(F;, G,), ..., (F,,, G.,)}.

Let A, ..., A,,, be NRAs with the same semi-automaton
as A but Rabin conditions {(F;,G¢)}, ..., {(E,, G.,)}
respectively.

We have: L(A)=L(A,)U--UL(A,,)

We proceed in two steps:
1. we construct for each NRA A; an NBA A: such that
L(A;) = L(4;)
2. we (easily) construct an NBA A" such that
L(A) =LAV ..ULAp)



NRA

Transitions leaving
Y, Q\G; are duplicated
and redirected to

the copy of Q\G;
/

d1 1@
/
dm g

NBA with accepting
condition

Q\G)NEF'



Beyond Trinities

e (Can we find a class X of w-automata such that
 RE, NXA, DXA form a Trinity, and

e Boolean operations for DXAs can be implemented ,,as for
DFAs* ?

1) Forevery DXA A = (S, ) thereisaDXA 4 = (S, @)
recognizing L, (A)

2) ForeverytwoDXAs A, = (S{,a;)and A, = (5,5, ay) theres
aDXA A, = ([S51,5,], a,) recognizing L, (A1) U L, (A5)

3) ForeverytwoDXAsA; = (S;,a;)and A, = (55, a1) theres
aDXA A, = ([S1,S,], an) recognizing L, (A;) N L, (A5)



Beyond Trinities

e Rabinautomata: 1): No. 2):Yes. 3): No.

e GiventwoDRAsS A, = (S;,ay)and 4, = (S,, a,),
the DRA A, = ([S¢,S,], &) where

{(FL X Q3,G; XQ3): (F1,Gy) Eay }
a = U

{(Q1 X F;,Q1 X Gy) : (F,,Gy) Eay }

recognizes L, (A;) U L, (A,)



Beyond Trinities

* Two further Trinities (see notes):

— Street automata: 1):Yes. 2): No. 3): No.
— Parity automata: 1): No. 2):No. 3): Yes.

o Afinal Trinity:

— Muller automata: 1): Yes. 2):Yes. 3): Yes.



Muller automata

Automata with arbitrary acceptance conditions.

A Muller automaton (NMA) is an automaton 4 = (S, )
where a: 29 — {0,1} is an arbitrary acceptance
condition.

We represent a by the set F of all sets of states Q' < Q
such that «(Q") = 1.

A run is accepting Iif the set of states it visits infinitely
often is equal to one of the sets in .

Theorem: RE, NMA, and DMA form a Trinity.



Muller automata

e Infinitely many a

{ {92} 1909} 190 9c} {90, qp. qc} }
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Muller automata

e Infinitely many a

{ {92} 1909} 190 9c} {90, qp. qc} }

* Infinitely many a or infinitely many b

{ {Qa} ’ {QD}a {Qa’ Qb}a {Qa’ CIC} ’ {Qa’ CIC} ’ {Qa’ dp CIC} }

e Infinitely many a and infinitely many b

{ {9099 3190:9p. qc} }

 Finitely many a or finitely many b



Muller automata

e Infinitely many a

{ {92} 1909} 190 9c} {90, qp. qc} }

* Infinitely many a or infinitely many b

{ {Qa} ’ {QD}a {Qa’ Qb}a {Qa’ QC} ’ {Qa’ QC} ’ {Qa’ dp QC} }

e Infinitely many a and infinitely many b

{ {9099 3190:9p. qc} }

 Finitely many a or finitely many b

{ 190} 193 19c} 19a:4c} 9 qct }



Boolean operations on DMAS

e LetA = (S,F)beaDMA.The DRA A = (S, F), where
F={R<SQ:R¢&FTF}

recognizes L, (A).



Boolean operations on DMAS

e LetA = (S,F)beaDMA.The DRA A = (S, F), where
F={R<SQ:R¢&FTF}

recognizes L, (A).

Problem: F can be exponentially larger than F !!



Boolean operations on DMAs

let A, = (S{,F,)and 4, = (5,,F,) be DMAs

Given R € Q, < Q,, let R|, and R|, denote the projections of
R on Q, and Q,.

The DRAs A, = ([5,S5,],Fy)and A, = ([S¢,S,], F,) , where
Fo={RS Q,*xQ,:R|, €Fi0rR|, € F,}
Fa={RCS Q. *xQ,:R|, €eFiand R|, € F,}

recognize L, (A,)U L,(A,)and L, (A;) N L,(A,).

Same problem as for complementation: F, and ¥ can be
exponentially larger than F.



Summary

Automaton Type Expr. Det. | Union Inters. Comp.
NFA/DFA ¥ Y ¥ ¥ Y
NBA/DBA (Biichi) ¥ N ¥ N N
NCA/DCA (Co-Biichi) N ¥ N Y N
NRA/DRA  (Rabin) ¥ ¥ ¥ N N
NSA/DSA (Streett) ¥ ¥ N Y N
NPA/DPA (Parity) ¥ ¥ N N Y
NMA/DMA (Muller)  § 4 Y ¥ ¥

Expr: Is there a conversion from RE to NXA?

Det: Is there a conversion from NXA to DXA?

Union: Does pairing work for DXA and union?

Inters: Does pairing work for DXA and intersection?

Comp: Can DXA be complemented without changing
the semi-automaton?

Y: the underlying conversion or operation has polynomial blow-up



