
Logic



Logics on words

• Regular expressions give operational descriptions 
of regular languages.

• Often the natural description of a language is 
declarative:
 even number of 풂's and even number of 풃's vs.
푎푎 + 푏푏 + 푎푏 + 푏푎 푎푎 + 푏푏 ∗ 푏푎 + 푎푏 ∗

 words not containing ‘hello’ 
• Goal: find a declarative language  able to express 

all the regular languages, and only the regular 
languages.



Logics on words

• Idea: use a logic that has an interpretation on words
• A formula expresses a property that each word may 

satisfy or not, like
– the word contains only 풂's
– the word has even length
– between every occurrence of an  풂 and a  풃 there 

is an occurrence of a  풄
• Every formula (indirectly) defines a language: the 

language of all the words over the given fixed 
alphabet that satisfy it. 



First-order logic on words

• Atomic formulas: 
– for each letter 푎 we introduce the formula 푄 (푥),

with intuitive meaning: the letter at position 풙 is 
an 풂.

– for every two variables 푥,푦 ∈ 푉 we introduce the
formula 푥 < 푦 with intuitive meaning: position 풙
is to the left of position 풚.



First-order logic on words: Syntax

• Formulas constructed out of atomic formulas 
by means of standard “logic machinery”:
– Alphabet Σ = {푎, 푏, … } and position variables       
푉 = {푥,푦, … }

– 푄 푥 is a formula for every 푎 ∈ Σ and 푥 ∈ 푉.
– 푥 < 푦 is a formula for every 푥, 푦 ∈ 푉
– If 휑,휑 ,휑 are formulas then so are ¬휑 and
휑 ∨ 휑

– If 휑 is a formula then so is ∃푥 휑 for every 푥 ∈ 푉



Abbreviations

휑 ∧ 휑 ≔ ¬ ¬ 휑 ∨ ¬휑

휑 → 휑  ≔ ¬휑 ∨ 휑

휑 ↔ 휑  ≔ 휑 ∧ 휑 ∨ ¬휑 ∧ ¬휑

∀푥 휑 ≔ ¬ ∃푥 ¬휑



Abbreviations

first 푥 ≔ ¬∃푦  푦 < 푥

last 푥 ≔ ¬∃푦  푥 < 푦

푦 = 푥 + 1 ≔ 푥 < 푦 ∧ ¬∃푧 (푥 < 푧 ∧ 푧 < 푦)

푦 = 푥 + 2 ≔ ∃푧 푧 = 푥 + 1 ∧ 푦 = 푧 + 1
…

푦 = 푥 + 푘 ≔ ∃푧 (푧 = 푥 + 1 ∧ 푦 = 푧 + (푘 − 1))

푥 < 푘 ≔ ∀푦∀푧 (first 푦 ∧ 푧 = 푦 + 푘 − 1) → 푥 < 푧) 

last < 푘 ≔ ∀푥 (last 푥 → 푥 < 푘)



Examples (without semantics yet)



Examples (without semantics yet)



Examples (without semantics yet)



Examples (without semantics yet)



Examples (without semantics yet)



First-order logic on words: Semantics

• Formulas are interpreted on pairs (푤,풱) called 
interpretations, where

– 푤 is a word, and

– 풱 assigns positions to the free variables of the 
formula (and maybe to others too).

• It does not make sense to say a formula is true or false: 
it can only be true or false for a given interpretation.

• If the formula has no free variables (if it is a sentence), 
then for each word it is either true or false.



• Satisfaction relation:

(푤,풱) ⊨ 푄 푥 iff 푤 풱 푥 = 푎

(푤,풱) ⊨ 푥 < 푦 iff 풱 푥 < 풱 푦

(푤,풱) ⊨ ¬휑 iff 푤 ⊭ 휑 

(푤,풱) ⊨ 휑 ∨ 휑 iff 푤 ⊨ 휑 or 푤 ⊨ 휑

(푤,풱) ⊨ ∃푥 휑 iff 푤 ≠ 휖 and 푤,풱[푖 푥]⁄ ⊨ 휑

for some 1 ≤ 푖 ≤ |푤|

• Observe that the empty word does not 
satisfy any formula of the form ∃푥 휑



• More logic jargon:
A formula is valid if it is true for all its 

interpretations
A formula is satisfiable if is is true for at least 

one of its interpretations
 Two formulas are equivalent if they have the

same interpretations and the same models



Can FOL express non-regular languages?
Can FOL express all regular languages?

• The language 퐿 휑 of a sentence 휑 is the set of 
words that satisfy 휑.

• A language 퐿 is expressible in first-order logic or  FO-
definable if some sentence 휑 satisfies 퐿 휑 = 퐿.

• Proposition: a language over a one-letter alphabet is 
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

• Consequence: we can only express regular 
languages, but not all, not even the language of 
words of even length.



Proof sketch

1. If 퐿 is finite, then it is FO-definable

2. If 퐿 is co-finite, then it is FO-definable.



Proof sketch

3. If 퐿 is FO-definable (over a one-letter 
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free 
fragment)

2) We show that a language is QF-definable iff it is 
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.



1) The logic QF

• 푥 < 푘 푥 > 푘
푥 < 푦 + 푘 푥 > 푦 + 푘
푘 < last 푘 > last
are formulas for every variable 푥, 푦 and every 
푘 ≥ 0 .

• If 푓 ,푓 are formulas, then so are 푓 ∨ 푓 and 
푓 ∧ 푓



2) 퐿 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is a positive boolean combination of formulas 
푘 < last and 푘 > last.

퐿(푘 < last) = {푘 + 1, 푘 + 2, … } is co-finite (we identify 
words and numbers)
퐿(푘 > last) = {0,1, … , 푘} is finite
퐿 푓 ∨ 푓 = 퐿 푓  ∪ 퐿 푓 and so if 퐿(푓 ) and 퐿 푓
finite or co-finite then 퐿 is finite or co-finite.
퐿 푓 ∧ 푓 = 퐿 푓  ∩ 퐿 푓 and so if 퐿(푓 ) and 퐿 푓
finite or co-finite then 퐿 is finite or co-finite.



2) 퐿 is QF-definable iff it is finite or co-finite

(←) If  퐿 =  {푘 , … , 푘 } is finite, then
푘 − 1 < last ∧  last < 푘 + 1 ∨ ⋯∨

(푘 − 1 < last ∧  last < 푘 + 1)              

expresses 퐿.

If 퐿 is co-finite, then its complement is finite, and so expressed by 
some formula. We show that for every  푓 some formula  neg(푓)
expresses  퐿(푓)

• neg 푘 < last = 푘 − 1 < last ∧  last < 푘 + 1 ∨  last < 푘

• neg 푓 ∨ 푓 = neg 푓 ∧ neg 푓

• neg(푓 ∧ 푓 ) = neg(푓 ) ∨ neg(푓 )



3) Every first-order formula 휑 has an equivalent 
QF-formula 푄퐹(휑)

• 푄퐹 푥 < 푦 = 푥 < 푦 + 0

• 푄퐹 ¬휑 = neg 푄퐹 휑
• 푄퐹 휑 ∨ 휑 = 푄퐹 휑 ∨ 푄퐹 휑  
• 푄퐹 휑 ∧ 휑 = 푄퐹 휑 ∧ 푄퐹 휑  
• 푄퐹 ∃푥 휑 =

– Put 푄퐹 휑 in  disjunctive normal form. Assume 푄퐹 휑 = (휑 ∨ ... ∨
휑 ), where each 휑 is a conjunction of atomic formulas.

– Since ∃x (휑 ∨ ... ∨ 휑 ) ≡ ∃x 휑 ∨  ... ∨ ∃x 휑 , it suffices to define
푄퐹 ∃푥 휑 for the case in which 휑 is a conjunction of atomic
formulas of QF

– For this case, see example in the next slide.



• Consider the formula

∃푥     푥 < 푦 + 3     ∧
푧 < 푥 + 4     ∧
푧 < 푦 + 2     ∧
푦 < 푥 + 1 

• The equivalent QF-formula is

푧 < 푦 + 8  ∧   푦 < 푦 + 5  ∧   푧 < 푦 + 2



Monadic second-order logic (MSOL)

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted 

on sets of positions.
– Diadic second-order variables: interpreted on 

relations over positions
– Monadic third-order variables: interpreted on sets 

of sets of positions
• New atomic formula:  푥 ∈ 푋
• New quantification: ∃푋 휑



Expressing „even length“

• Express 
There is a set 푿of positions such that
– 푿 contains exactly the even positions, and
– the last position belongs to 푿.

• Express 
푿 contains exactly the even positions 

as 
A position is in 푿 iff it is the second position or 
the second successor of another position of 푿



Syntax and semantics of MSOL

• New set 푋,푌,푍, … of second-order variables
• New syntax:  푥 ∈ 푋 and ∃푋 휑
• New semantics:

– Interpretations now also assign sets of positions to 
the free second-order variables.

– Satisfaction defined as expected.



Expressing „even length“

• second 푥 = ∃푦 (first 푦 ∧ 푥 = 푦 + 1)

• Even 푋 = ∀푦 푥 ∈ 푋 ↔
second 푥

∨
∃푦 푥 = 푦 + 2 ∧ 푦 ∈ 푋

• EvenLength = ∃푋
Even 푋

∧
∀푥 last 푥 → 푥 ∈ 푋



Expressing 푐∗ 푎푏 ∗푑∗

• Express: 
There is a block 푿 of consecutive positions such that 
– before 푿 there are only 풄‘s; 
– after 푿 there are only 풅‘s; 
– 풂‘s and 풃‘s alternate in 푿; 
– the first letter in 푿 is an 풂, and the last is a 풃.

• Then we can take the formula

∃푋 
Block 푋 ∧ Boc 푋 ∧ Aod 푋

∧
Alt 푋 ∧ Fa 푋 ∧ Lb 푋



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate

Block(푋) :=  ∀푥 ∈ 푋  ∀푦 ∈ 푋  ∀푧 ( 푥 < 푧 ∧ 푧 < 푦 → 푧 ∈ 푋)Block(푋) :=  ∀푥 ∈ 푋  ∀푦 ∈ 푋  ∀푧 ( 푥 < 푧 ∧ 푧 < 푦 → 푧 ∈ 푋)



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate

Block(푋) :=  ∀푥 ∈ 푋  ∀푦 ∈ 푋  ∀푧 ( 푥 < 푧 ∧ 푧 < 푦 → 푧 ∈ 푋)

Before 푥,푋 ≔ ∀푦 ∈ 푋 푥 < 푦
Boc (푋) ≔ ∀푥 (Before 푥,푋 → 푄 (푥))



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate

Block(푋) :=  ∀푥 ∈ 푋  ∀푦 ∈ 푋  ∀푧 ( 푥 < 푧 ∧ 푧 < 푦 → 푧 ∈ 푋)

Before 푥,푋 ≔ ∀푦 ∈ 푋 푥 < 푦
Boc (푋) ≔ ∀푥 (Before 푥,푋 → 푄 (푥))

Alt (푋) :=  ∀푥 ∈ 푋 ∀푦 ∈ 푋 
푦 = 푥 + 1

→
푄 푥 ∧ 푄 푦 ∨ 푄 푥 ∧ 푄 푦



Every regular language is expressible in 
MSOL

• Goal: given an arbitrary regular language 퐿, construct an 
MSO sentence 휑 s.t. 퐿 = 퐿(휑).

• It suffices to construct휑 s.t.푤 ∈ 퐿 iff 푤 ∈ 퐿 휑 for every 
nonempty word 푤. 
(Avoid the corner-case of the empty word.)

• We use: if 퐿 is regular, then there is a DFA 퐴 recognizing 퐿. 

• Idea: construct a formula expressing 

the run of 푨 on this word ends in an accepting state



• Fix a regular language 퐿. 
• Fix a DFA 퐴 with states 푞 , … , 푞 recognizing 퐿.
• Fix a nonempty word 푤 = 푎 푎 … 푎 . 
• Let 푅(푞) be the set of positions 푖 such that after 

reading 푎 푎 …푎 the automaton 퐴 is in state 푞.
• We have: 
퐴 accepts 푤 iff 푚 ∈ 푅(푞) for some final state 푞.





• Assume we can construct a formula 
Visits(푋 , … ,푋 )

which  is true for 푤, 퓘  iff
 퓘 푋 = 푅(푞 ), … , 퓘 푋 = 푅 푞

• Then (푤, 퓘) satisfies the formula

iff the state after the last position is accepting, 
and we easily get a formula expressing 퐿 .



• To construct Visits(푋 , … ,푋 ) we observe that 
the sets 푅(푞) are the unique sets satisfying
a) 1 ∈ 푅(훿 푞 ,푎 )

After reading the first letter the DFA is in state 
훿 푞 ,푎 .

b) If 푖 ∈ 푅(푞) then  푖 + 1 ∈ 푅 푞  iff 훿 푞,푎 = 푞′
The sets „match“ 훿.

• We give formulas for a) and b).



Formula for a):

Formula for b):



Every language expressible in MSOL is 
regular

• An interpretation of a formula is a pair (푤,풱 ,풱 )
consisting of a word 푤 and assignments 풱 ,풱 to the 
free first and second-order variables (and perhaps to 
others).



• We encode interpretations as words.



• Given a formula with 푛 free variables, we 
encode an interpretation (푤,풱 ,풱 ) as a word 
푒푛푐(푤,풱 ,풱 ) over the alphabet Σ × 0,1 .

• The language of the formula 휑 , denoted by 
퐿(휑), is given by 

퐿 휑 :={푒푛푐 푤,풱 ,풱 | 푤,풱 ,풱 ⊨ 휑}

• We prove by induction on the structure of 휑
that 퐿 휑 is regular (and explicitely construct 
an automaton for it).



Case  휑 = 푄 (푥)

• 휑 has one free variable, and so its interpretations are 
encoded as words over Σ × {0,1}



Case  휑 = 푥 < 푦

• 휑 has two free variables, and so its interpretations 
are encoded as words over Σ × {0,1}



Case  휑 = 푥 ∈ 푋

• 휑 has two free variables, and so its interpretations 
are encoded as words over Σ × {0,1}



• Then free 휑 = free(휓) . By i.h. 퐿 휓 is regular.
• 퐿 휑 is equal to 퐿 휓 minus the words that do not encode any 

implementation („the garbage“).
• Equivalently, 퐿 휑 is equal to the intersection of 퐿 휓 and the 

encodings of all interpretations of 휓.
• We show that the set of these encodings is regular.

– Condition for encoding: Let 푥 be a free first-oder variable of 
휓 . The projection of an encoding onto 푥 must belong to 
0∗10∗ (because it represents one position). 

– So we just need an automaton for the words satisfying this 
condition for every free first-order variable.

Case  휑 = ¬휓



Example: free 휑 = {푥,푦}



• Then free 휑 = free 휑 ∪ free 휑 . By i.h. 퐿 휑
and 퐿 휑  are regular.

• If free 휑 = free 휑 then 퐿 휑 = 퐿 휑 ∪ 퐿(휑 )
and so 퐿 휑 is regular.

• If free 휑 ≠ free 휑 then we extend 퐿 휑 to 퐿
encoding all interpretations of free 휑 ∪ free 휑
whose projection onto free 휑 belongs to 퐿 휑 . 
Similarly we extend 퐿 휑 to 퐿 . We have

 퐿 and 퐿 are regular.

 퐿 휑 = 퐿 ∪ 퐿 ∩ 퐸푛푐(휑), where 퐸푛푐 휑 is the
set of encodings of all interpretations of 휑. 

Case  휑 = 휑 ∨ 휑



Example: 휑 = 푄 푥 ∨ 푄 (푦)

• 퐿 contains the encodings of all 
interpretations (푤, 푥 ⟼ 푛 , 푦 ⟼ 푛 ) such 
that the encoding of (푤, 푥 ⟼ 푛 ) belongs 
to 퐿 푄 푥 .

• Automata for 퐿 푄 푥 and 퐿 :



• Then free(휑)= free 휓   ⃥ {푥} or 
free(휑)= free 휓   ⃥ {푋}

• By i.h. 퐿(휓) is regular. 
• 퐿 휑 is the result of projecting 퐿(휓) onto the 

components for free 휓   ⃥ {푥} or for 
free 휓   ⃥ 푋 .

Cases  휑 = ∃푥 휓 and 휑 = ∃푋 휓



• Automata for  푄 푥 and   ∃푥 푄 푥

Example: 휑 = 푄 푥



The mega-example

• We compute an automaton for
∃푥 last 푥 ∧ 푄 푥 ∧ ∀푥 ¬last 푥 → 푄 푥

• First we rewrite it into
∃푥 last 푥 ∧ 푄 푥 ∧ ¬∃푥 ¬last 푥 ∧ ¬푄 푥

• In the next slides we 
1. compute a DFA for last 푥
2. compute DFAs for ∃푥 last 푥 ∧ 푄 푥 and 

¬∃푥 ¬last 푥 ∧ ¬푄 푥
3. compute a DFA for the complete formula.

• We denote the DFA for a formula 휓 by [휓].



[last 푥 ]
[풙 < 풚]



[last 푥 ]
[풙 < 풚] [∃풚 풙 < 풚]



[last 푥 ]
[풙 < 풚] [∃풚 풙 < 풚]

[푬풏풄(∃풚 풙 < 풚)] [∃풚 풙 < 풚]



[last 푥 ]
[풙 < 풚] [∃풚 풙 < 풚]

[푬풏풄(∃풚 풙 < 풚)] [∃풚 풙 < 풚]

[퐥퐚퐬퐭(풙)]



∃푥 last 푥 ∧ 푄 푥

푸풃 풙 ∃풙 퐥퐚퐬퐭 풙 ∧ 푸풃 풙



¬푄 푥

[푸풂 풙 ]

[푸풂 풙 ]

[푬풏풄(푸풂 풙 )] [¬푸풂 풙 ]



¬∃푥 ¬last 푥 ∧ ¬푄 푥

[¬푸풂 풙 ] [¬퐥퐚퐬퐭(풙)]

∃풙 ¬퐥퐚퐬퐭 풙 ∧ ¬푸풂 풙

¬∃풙 ¬퐥퐚퐬퐭 풙 ∧ ¬푸풂 풙



∃푥 last 푥 ∧ 푄 푥 ∧ ¬∃푥 ¬last 푥 ∧ ¬푄 푥

[∃풙 퐥퐚퐬퐭 풙 ∧ 푸풃 풙 ¬∃풙 ¬퐥퐚퐬퐭 풙 ∧ ¬푸풂 풙

∃풙 퐥퐚퐬퐭 풙 ∧ 푸풃 풙 ∧ ¬∃풙 ¬퐥퐚퐬퐭 풙 ∧ ¬푸풂 풙


