
Logic

Logics on words

• Regular expressions give operational descriptions
of regular languages.

• Often the natural description of a language is
declarative:
 even number of ࢇ's and even number of ࢈'s vs.
ܽܽ + ܾܾ + ܾܽ + ܾܽ ܽܽ + ܾܾ ∗ ܾܽ + ܾܽ ∗

 words not containing ‘hello’
• Goal: find a declarative language able to express

all the regular languages, and only the regular
languages.

Logics on words

• Idea: use a logic that has an interpretation on words
• A formula expresses a property that each word may

satisfy or not, like
– the word contains only ࢇ's
– the word has even length
– between every occurrence of an ࢇ and a ࢈ there

is an occurrence of a ࢉ
• Every formula (indirectly) defines a language: the

language of all the words over the given fixed
alphabet that satisfy it.

First-order logic on words

• Atomic formulas:
– for each letter ܽ we introduce the formula ܳ௔(ݔ),

with intuitive meaning: the letter at position ࢞ is
an ࢇ.

– for every two variables ݕ,ݔ ∈ ܸ we introduce the
formula ݔ < ݕ with intuitive meaning: position ࢞
is to the left of position ࢟.

First-order logic on words: Syntax

• Formulas constructed out of atomic formulas
by means of standard “logic machinery”:
– Alphabet Σ = {ܽ, ܾ, … } and position variables
ܸ = ,ݕ,ݔ} … }

– ܳ௔ ݔ is a formula for every ܽ ∈ Σ and ݔ ∈ ܸ.
– ݔ < ݕ is a formula for every ݔ, ݕ ∈ ܸ
– If ߮,߮ଵ ,߮ଶ are formulas then so are ¬߮ and
߮ଵ ∨ ߮ଶ

– If ߮ is a formula then so is ∃ݔ ߮ for every ݔ ∈ ܸ

Abbreviations

߮ଵ ∧ ߮ଶ ≔ ¬ ¬ ߮ଵ ∨ ¬߮ଶ
߮ଵ → ߮ଶ ≔ ¬߮ଵ ∨ ߮ଶ
߮ଵ ↔ ߮ଶ ≔ ߮ଵ ∧ ߮ଶ ∨ ¬߮ଵ ∧ ¬߮ଶ

≕ ߮ ݔ∀ ߮¬ ݔ∃ ¬

Abbreviations

first ݔ ≔ ݕ ݕ∃¬ < ݔ

last ݔ ≔ ݔ ݕ∃¬ < ݕ

ݕ = ݔ + 1 ≔ ݔ < ݕ ∧ ݔ) ݖ∃¬ < ݖ ∧ ݖ < (ݕ

ݕ = ݔ + 2 ≔ ݖ ݖ∃ = ݔ + 1 ∧ ݕ = ݖ + 1
…

ݕ = ݔ + ݇ ≔ ݖ) ݖ∃ = ݔ + 1 ∧ ݕ = ݖ + (݇ − 1))

ݔ < ݇ ≔ first) ݖ∀ݕ∀ ݕ ∧ ݖ = ݕ + ݇ − 1) → ݔ < (ݖ

last < ݇ ≔ last) ݔ∀ ݔ → ݔ < ݇)

Examples (without semantics yet)

Examples (without semantics yet)

Examples (without semantics yet)

Examples (without semantics yet)

Examples (without semantics yet)

First-order logic on words: Semantics

• Formulas are interpreted on pairs (ݓ,ࣰ) called
interpretations, where

– ݓ is a word, and

– ࣰ assigns positions to the free variables of the
formula (and maybe to others too).

• It does not make sense to say a formula is true or false:
it can only be true or false for a given interpretation.

• If the formula has no free variables (if it is a sentence),
then for each word it is either true or false.

• Satisfaction relation:

(ࣰ,ݓ) ⊨ ܳ௔ ݔ iff ݓ ࣰ ݔ = ܽ

(ࣰ,ݓ) ⊨ ݔ < ݕ iff ࣰ ݔ < ࣰ ݕ

(ࣰ,ݓ) ⊨ ¬߮ iff ⊭ ݓ ߮

(ࣰ,ݓ) ⊨ ߮ଵ ∨ ߮ଶ iff ݓ ⊨ ߮ଵ or ݓ ⊨ ߮ଶ
(ࣰ,ݓ) ⊨ iff ߮ ݔ∃ ݓ ≠ ߳ and ݅]ࣰ,ݓ ⁄[ݔ ⊨ ߮ଶ

for some 1 ≤ ݅ ≤ |ݓ|

• Observe that the empty word does not
satisfy any formula of the form ∃ݔ ߮

• More logic jargon:
A formula is valid if it is true for all its

interpretations
A formula is satisfiable if is is true for at least

one of its interpretations
 Two formulas are equivalent if they have the

same interpretations and the same models

Can FOL express non-regular languages?
Can FOL express all regular languages?

• The language ܮ ߮ of a sentence ߮ is the set of
words that satisfy ߮.

• A language ܮ is expressible in first-order logic or FO-
definable if some sentence ߮ satisfies ܮ ߮ = .ܮ

• Proposition: a language over a one-letter alphabet is
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

• Consequence: we can only express regular
languages, but not all, not even the language of
words of even length.

Proof sketch

1. If ܮ is finite, then it is FO-definable

2. If ܮ is co-finite, then it is FO-definable.

Proof sketch

3. If ܮ is FO-definable (over a one-letter
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free
fragment)

2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.

1) The logic QF

• ݔ < ݇ ݔ > ݇
ݔ < ݕ + ݇ ݔ > ݕ + ݇
݇ < last ݇ > last
are formulas for every variable ݕ ,ݔ and every
݇ ≥ 0 .

• If ଵ݂, ଶ݂ are formulas, then so are ଵ݂ ∨ ଶ݂ and
ଵ݂ ∧ ଶ݂

ܮ (2 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is a positive boolean combination of formulas
݇ < last and ݇ > last.

݇)ܮ < last) = {݇ + 1, ݇ + 2, … } is co-finite (we identify
words and numbers)
݇)ܮ > last) = {0,1, … , ݇} is finite
ܮ ଵ݂ ∨ ଶ݂ = ܮ ଵ݂ ∪ ܮ ଶ݂ and so if ܮ(ଵ݂) and ܮ ଶ݂
finite or co-finite then ܮ is finite or co-finite.
ܮ ଵ݂ ∧ ଶ݂ = ܮ ଵ݂ ∩ ܮ ଶ݂ and so if ܮ(ଵ݂) and ܮ ଶ݂
finite or co-finite then ܮ is finite or co-finite.

ܮ (2 is QF-definable iff it is finite or co-finite

(←) If ܮ = {݇ଵ, … , ݇௡} is finite, then
݇ଵ − 1 < last ∧ last < ݇ଵ + 1 ∨ ⋯∨

(݇௡ − 1 < last ∧ last < ݇௡ + 1)

expresses ܮ.

If ܮ is co-finite, then its complement is finite, and so expressed by
some formula. We show that for every ݂ some formula neg(݂)
expresses ܮ(݂)

• neg ݇ < last = ݇ − 1 < last ∧ last < ݇ + 1 ∨ last < ݇

• neg ଵ݂ ∨ ଶ݂ = neg ଵ݂ ∧ neg ଶ݂

• neg(ଵ݂ ∧ ଶ݂) = neg(ଵ݂) ∨ neg(ଶ݂)

3) Every first-order formula ߮ has an equivalent
QF-formula ܳܨ(߮)

• ܨܳ ݔ < ݕ = ݔ < ݕ + 0

• ܨܳ ¬߮ = neg ܨܳ ߮
• ܨܳ ߮ଵ ∨ ߮ଶ = ܨܳ ߮ଵ ∨ ܨܳ ߮ଶ
• ܨܳ ߮ଵ ∧ ߮ଶ = ܨܳ ߮ଵ ∧ ܨܳ ߮ଶ
• ܨܳ ߮ ݔ∃ =

– Put ܳܨ ߮ in disjunctive normal form. Assume ܨܳ ߮ = (߮ଵ ∨ ... ∨
߮௡), where each ߮௜ is a conjunction of atomic formulas.

– Since ∃x (߮ଵ ∨ ... ∨ ߮௡) ≡ ∃x ߮ଵ ∨ ... ∨ ∃x ߮௡, it suffices to define
ܨܳ ߮ ݔ∃ for the case in which ߮ is a conjunction of atomic
formulas of QF

– For this case, see example in the next slide.

• Consider the formula

ݔ ݔ∃ < ݕ + 3 ∧
ݖ < ݔ + 4 ∧
ݖ < ݕ + 2 ∧
ݕ < ݔ + 1

• The equivalent QF-formula is

ݖ < ݕ + 8 ∧ ݕ < ݕ + 5 ∧ ݖ < ݕ + 2

Monadic second-order logic (MSOL)

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted

on sets of positions.
– Diadic second-order variables: interpreted on

relations over positions
– Monadic third-order variables: interpreted on sets

of sets of positions
• New atomic formula: ݔ ∈ ܺ
• New quantification: ∃ܺ ߮

Expressing „even length“

• Express
There is a set ࢄof positions such that
– ࢄ contains exactly the even positions, and
– the last position belongs to ࢄ.

• Express
ࢄ contains exactly the even positions

as
A position is in ࢄ iff it is the second position or
the second successor of another position of ࢄ

Syntax and semantics of MSOL

• New set ܺ,ܻ,ܼ, … of second-order variables
• New syntax: ݔ ∈ ܺ and ∃ܺ ߮
• New semantics:

– Interpretations now also assign sets of positions to
the free second-order variables.

– Satisfaction defined as expected.

Expressing „even length“

• second ݔ = first) ݕ∃ ݕ ∧ ݔ = ݕ + 1)

• Even ܺ = ݔ ݕ∀ ∈ ܺ ↔
second ݔ

∨
ݔ ݕ∃ = ݕ + 2 ∧ ݕ ∈ ܺ

• EvenLength = ∃ܺ
Even ܺ

∧
last ݔ∀ ݔ → ݔ ∈ ܺ

Expressing ܿ∗ ܾܽ ∗݀∗

• Express:
There is a block ࢄ of consecutive positions such that
– before ࢄ there are only ࢉ‘s;
– after ࢄ there are only ;s‘ࢊ
– ;ࢄ s alternate in‘࢈ s and‘ࢇ
– the first letter in ࢄ is an ࢇ, and the last is a ࢈.

• Then we can take the formula

∃ܺ
Block ܺ ∧ Boc ܺ ∧ Aod ܺ

∧
Alt ܺ ∧ Fa ܺ ∧ Lb ܺ

• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ

• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ

Block(ܺ) ݔ∀ =: ∈ ݕ∀ ܺ ∈) ݖ∀ ܺ ݔ < ݖ ∧ ݖ < ݕ → ݖ ∈ ܺ)Block(ܺ) ݔ∀ =: ∈ ݕ∀ ܺ ∈) ݖ∀ ܺ ݔ < ݖ ∧ ݖ < ݕ → ݖ ∈ ܺ)

• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ

Block(ܺ) ݔ∀ =: ∈ ݕ∀ ܺ ∈) ݖ∀ ܺ ݔ < ݖ ∧ ݖ < ݕ → ݖ ∈ ܺ)

Before ܺ,ݔ ≔ ݕ∀ ∈ ݔ ܺ < ݕ
Boc (ܺ) ≔ Before) ݔ∀ ܺ,ݔ → ܳ௖(ݔ))

• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ

Block(ܺ) ݔ∀ =: ∈ ݕ∀ ܺ ∈) ݖ∀ ܺ ݔ < ݖ ∧ ݖ < ݕ → ݖ ∈ ܺ)

Before ܺ,ݔ ≔ ݕ∀ ∈ ݔ ܺ < ݕ
Boc (ܺ) ≔ Before) ݔ∀ ܺ,ݔ → ܳ௖(ݔ))

Alt (ܺ) ݔ∀ =: ∈ ݕ∀ ܺ ∈ ܺ
ݕ = ݔ + 1

→
ܳ௔ ݔ ∧ ܳ௕ ݕ ∨ ܳ௕ ݔ ∧ ܳ௔ ݕ

Every regular language is expressible in
MSOL

• Goal: given an arbitrary regular language ܮ, construct an
MSO sentence ߮ s.t. ܮ = .(߮)ܮ

• It suffices to construct߮ s.t.ݓ ∈ iff ܮ ݓ ∈ ܮ ߮ for every
nonempty word ݓ.
(Avoid the corner-case of the empty word.)

• We use: if ܮ is regular, then there is a DFA ܣ recognizing ܮ.

• Idea: construct a formula expressing

the run of ࡭ on this word ends in an accepting state

• Fix a regular language ܮ.
• Fix a DFA ܣ with states ݍ଴, … , ௡ݍ recognizing ܮ.
• Fix a nonempty word ݓ = ܽଵܽଶ … ܽ௠.
• Let ܴ(ݍ) be the set of positions ݅ such that after

reading ܽଵܽଶ …ܽ௜ the automaton ܣ is in state ݍ.
• We have:
ܣ accepts ݓ iff ݉ ∈ (ݍ)ܴ for some final state ݍ.

• Assume we can construct a formula
Visits(ܺ଴, … ,ܺ௡)

which is true for ݓ, ओ iff
 ओ ܺ଴ = ,(଴ݍ)ܴ … , ओ ܺ௡ = ܴ ௡ݍ

• Then (ݓ, ओ) satisfies the formula

iff the state after the last position is accepting,
and we easily get a formula expressing ܮ .

• To construct Visits(ܺ଴, … ,ܺ௡) we observe that
the sets (ݍ)ܴ are the unique sets satisfying
a) 1 ∈ ߜ)ܴ ଴,ܽଵݍ)

After reading the first letter the DFA is in state
ߜ ଴,ܽଵݍ .

b) If ݅ ∈ (ݍ)ܴ then ݅ + 1 ∈ ܴ ᇱݍ iff ߜ ௜ାଵܽ,ݍ = ′ݍ
The sets „match“ ߜ.

• We give formulas for a) and b).

Formula for a):

Formula for b):

Every language expressible in MSOL is
regular

• An interpretation of a formula is a pair (ݓ, ଵࣰ, ଶࣰ)
consisting of a word ݓ and assignments ଵࣰ, ଶࣰ to the
free first and second-order variables (and perhaps to
others).

• We encode interpretations as words.

• Given a formula with ݊ free variables, we
encode an interpretation (ݓ, ଵࣰ, ଶࣰ) as a word
,ݓ)ܿ݊݁ ଵࣰ, ଶࣰ) over the alphabet Σ × 0,1 ௡.

• The language of the formula ߮ , denoted by
 is given by ,(߮)ܮ

ܮ ߮ :={݁݊ܿ ,ݓ ଵࣰ, ଶࣰ ,ݓ | ଵࣰ, ଶࣰ ⊨ ߮}

• We prove by induction on the structure of ߮
that ܮ ߮ is regular (and explicitely construct
an automaton for it).

Case ߮ = ܳ௔(ݔ)

• ߮ has one free variable, and so its interpretations are
encoded as words over Σ × {0,1}

Case ߮ = ݔ < ݕ

• ߮ has two free variables, and so its interpretations
are encoded as words over Σ × {0,1}ଶ

Case ߮ = ݔ ∈ ܺ

• ߮ has two free variables, and so its interpretations
are encoded as words over Σ × {0,1}ଶ

• Then free ߮ = free(߰) . By i.h. ܮ ߰ is regular.
• ܮ ߮ is equal to ܮ ߰ minus the words that do not encode any

implementation („the garbage“).
• Equivalently, ܮ ߮ is equal to the intersection of ܮ ߰ and the

encodings of all interpretations of ߰.
• We show that the set of these encodings is regular.

– Condition for encoding: Let ݔ be a free first-oder variable of
߰ . The projection of an encoding onto ݔ must belong to
0∗10∗ (because it represents one position).

– So we just need an automaton for the words satisfying this
condition for every free first-order variable.

Case ߮ = ¬߰

Example: free ߮ = {ݕ,ݔ}

• Then free ߮ = free ߮ଵ ∪ free ߮ଶ . By i.h. ܮ ߮ଵ
and ܮ ߮ଶ are regular.

• If free ߮ଵ = free ߮ଶ then ܮ ߮ = ܮ ߮ଵ ∪ (ଶ߮)ܮ
and so ܮ ߮ is regular.

• If free ߮ଵ ≠ free ߮ଶ then we extend ܮ ߮ଵ to ଵܮ
encoding all interpretations of free ߮ଵ ∪ free ߮ଶ
whose projection onto free ߮ଵ belongs to ܮ ߮ଵ .
Similarly we extend ܮ ߮ଶ to ܮଶ. We have

 ଵܮ and ܮଶ are regular.

 ܮ ߮ = ଵܮ ∪ ଶܮ ∩ ܿ݊ܧ where ,(߮)ܿ݊ܧ ߮ is the
set of encodings of all interpretations of ߮.

Case ߮ = ߮ଵ ∨ ߮ଶ

Example: ߮ = ܳ௔ ݔ ∨ ܳ௕(ݕ)

• ଵܮ contains the encodings of all
interpretations (ݓ, ⟼ ݔ ݊ଵ, ݕ ⟼ ݊ଶ) such
that the encoding of (ݓ, ⟼ ݔ ݊ଵ) belongs
to ܮ ܳ௔ ݔ .

• Automata for ܮ ܳ௔ ݔ and ܮଵ:

• Then free(߮)= free ߰ {ݔ} ⃥ or
free(߮)= free ߰ ⃥ {ܺ}

• By i.h. ܮ(߰) is regular.
• ܮ ߮ is the result of projecting ܮ(߰) onto the

components for free ߰ {ݔ} ⃥ or for
free ߰ ⃥ ܺ .

Cases ߮ = ߰ ݔ∃ and ߮ = ∃ܺ ߰

• Automata for ܳ௔ ݔ and ∃ݔ ܳ௔ ݔ

Example: ߮ = ܳ௔ ݔ

The mega-example

• We compute an automaton for
last ݔ∃ ݔ ∧ ܳ௕ ݔ ∧ last¬ ݔ∀ ݔ → ܳ௔ ݔ

• First we rewrite it into
last ݔ∃ ݔ ∧ ܳ௕ ݔ ∧ last¬ ݔ∃¬ ݔ ∧ ¬ܳ௔ ݔ

• In the next slides we
1. compute a DFA for last ݔ
2. compute DFAs for ∃ݔ last ݔ ∧ ܳ௕ ݔ and

last¬ ݔ∃¬ ݔ ∧ ¬ܳ௔ ݔ
3. compute a DFA for the complete formula.

• We denote the DFA for a formula ߰ by [߰].

[last ݔ]
࢞] < [࢟

[last ݔ]
࢞] < [࢟ ࢞ ࢟∃] < [࢟

[last ݔ]
࢞] < [࢟ ࢞ ࢟∃] < [࢟

࢞ ࢟∃)ࢉ࢔ࡱ] < [(࢟ ࢞ ࢟∃] < [࢟

[last ݔ]
࢞] < [࢟ ࢞ ࢟∃] < [࢟

࢞ ࢟∃)ࢉ࢔ࡱ] < [(࢟ ࢞ ࢟∃] < [࢟

[(࢞)ܜܛ܉ܔ]

last ݔ∃ ݔ ∧ ܳ௕ ݔ

࢈ࡽ ࢞ ܜܛ܉ܔ ࢞∃ ࢞ ∧ ࢈ࡽ ࢞

¬ܳ௔ ݔ

ࢇࡽ] ࢞]

ࢇࡽ] ࢞]

ࢇࡽ)ࢉ࢔ࡱ] ࢞)] ࢇࡽ¬] ࢞]

last¬ ݔ∃¬ ݔ ∧ ¬ܳ௔ ݔ

ࢇࡽ¬] ࢞] [(࢞)ܜܛ܉ܔ¬]

ܜܛ܉ܔ¬ ࢞∃ ࢞ ∧ ࢇࡽ¬ ࢞

ܜܛ܉ܔ¬ ࢞∃¬ ࢞ ∧ ࢇࡽ¬ ࢞

last ݔ∃ ݔ ∧ ܳ௕ ݔ ∧ last¬ ݔ∃¬ ݔ ∧ ¬ܳ௔ ݔ

ܜܛ܉ܔ ࢞∃] ࢞ ∧ ࢈ࡽ ࢞ ܜܛ܉ܔ¬ ࢞∃¬ ࢞ ∧ ࢇࡽ¬ ࢞

ܜܛ܉ܔ ࢞∃ ࢞ ∧ ࢈ࡽ ࢞ ∧ ܜܛ܉ܔ¬ ࢞∃¬ ࢞ ∧ ࢇࡽ¬ ࢞

