Logics on words

- Regular expressions give operational descriptions of regular languages.
- Often the natural description of a language is declarative:
 - even number of a's and even number of b's vs.
 \((aa + bb + (ab + ba)(aa + bb)^*(ba + ab))^*\)
 - words not containing ‘hello’
- **Goal**: find a declarative language able to express all the regular languages, and only the regular languages.
Logics on words

- Idea: use a logic that has an interpretation on words
- A formula expresses a property that each word may satisfy or not, like
 - the word contains only a's
 - the word has even length
 - between every occurrence of an a and a b there is an occurrence of a c
- Every formula (indirectly) defines a language: the language of all the words over the given fixed alphabet that satisfy it.
First-order logic on words

• Atomic formulas:
 – for each letter a we introduce the formula $Q_a(x)$, with intuitive meaning: **the letter at position x is an a.**
 – for every two variables $x, y \in V$ we introduce the formula $x < y$ with intuitive meaning: **position x is to the left of position y.**
First-order logic on words: Syntax

- Formulas constructed out of atomic formulas by means of standard “logic machinery”:
 - Alphabet $\Sigma = \{a, b, \ldots \}$ and position variables $V = \{x, y, \ldots \}$
 - $Q_a(x)$ is a formula for every $a \in \Sigma$ and $x \in V$.
 - $x < y$ is a formula for every $x, y \in V$
 - If $\varphi, \varphi_1, \varphi_2$ are formulas then so are $\neg \varphi$ and $\varphi_1 \lor \varphi_2$
 - If φ is a formula then so is $\exists x \varphi$ for every $x \in V$
Abbreviations

\[\varphi_1 \land \varphi_2 : = \neg (\neg \varphi_1 \lor \neg \varphi_2) \]
\[\varphi_1 \to \varphi_2 : = \neg \varphi_1 \lor \varphi_2 \]
\[\varphi_1 \leftrightarrow \varphi_2 : = (\varphi_1 \land \varphi_2) \lor (\neg \varphi_1 \land \neg \varphi_2) \]
\[\forall x \varphi : = \neg \exists x \neg \varphi \]
Abbreviations

\[\text{first}(x) := \neg \exists y \ y < x\]

\[\text{last}(x) := \neg \exists y \ x < y\]

\[y = x + 1 := x < y \land \neg \exists z \ (x < z \land z < y)\]

\[y = x + 2 := \exists z \ (z = x + 1 \land y = z + 1)\]

\[\ldots\]

\[y = x + k := \exists z \ (z = x + 1 \land y = z + (k - 1))\]

\[x < k := \forall y \forall z \ (\text{first}(y) \land z = y + k - 1) \rightarrow x < z\]

\[\text{last} < k := \forall x \ (\text{last}(x) \rightarrow x < k)\]
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

- “Every a is immediately followed by a b.”

- “Every a is immediately followed by a b, unless it is the last letter.”

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”
 \[
 \exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \to Q_b(x) \land \neg \text{last}(x) \to Q_a(x))
 \]

- “Every a is immediately followed by a b.”

- “Every a is immediately followed by a b, unless it is the last letter.”

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

\[\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x)) \land \neg \text{last}(x) \rightarrow Q_a(x) \]

- “Every a is immediately followed by a b.”

\[\forall x \ (Q_a(x) \rightarrow \exists y \ (y = x + 1 \land Q_b(y))) \]

- “Every a is immediately followed by a b, unless it is the last letter.”

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

 $$\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x) \land \neg\text{last}(x) \rightarrow Q_a(x))$$

- “Every a is immediately followed by a b.”

 $$\forall x \ (Q_a(x) \rightarrow \exists y \ (y = x + 1 \land Q_b(y)))$$

- “Every a is immediately followed by a b, unless it is the last letter.”

 $$\forall x \ (Q_a(x) \rightarrow \forall y \ (y = x + 1 \rightarrow Q_b(y)))$$

- “Between every a and every later b there is a c.”
• “The last letter is a b and before it there are only a’s.”

$$\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x) \land \neg \text{last}(x) \rightarrow Q_a(x))$$

• “Every a is immediately followed by a b.”

$$\forall x \ (Q_a(x) \rightarrow \exists y \ (y = x + 1 \land Q_b(y)))$$

• “Every a is immediately followed by a b, unless it is the last letter.”

$$\forall x \ (Q_a(x) \rightarrow \forall y \ (y = x + 1 \rightarrow Q_b(y)))$$

• “Between every a and every later b there is a c.”

$$\forall x \forall y \ (Q_a(x) \land Q_b(y) \land x < y \rightarrow \exists z \ (x < z \land z < y \land Q_c(z)))$$
Formulas are interpreted on pairs \((w, \mathcal{V})\) called interpretations, where

- \(w\) is a word, and

- \(\mathcal{V}\) assigns positions to the free variables of the formula (and maybe to others too).

It does not make sense to say a formula is true or false: it can only be true or false for a given interpretation.

If the formula has no free variables (if it is a sentence), then for each word it is either true or false.
• Satisfaction relation:

\[(w, \mathcal{V}) \models Q_a(x) \quad \text{iff} \quad w[\mathcal{V}(x)] = a\]

\[(w, \mathcal{V}) \models x < y \quad \text{iff} \quad \mathcal{V}(x) < \mathcal{V}(y)\]

\[(w, \mathcal{V}) \models \neg \varphi \quad \text{iff} \quad w \not\models \varphi\]

\[(w, \mathcal{V}) \models \varphi_1 \lor \varphi_2 \quad \text{iff} \quad w \models \varphi_1 \text{ or } w \models \varphi_2\]

\[(w, \mathcal{V}) \models \exists x \varphi \quad \text{iff} \quad w \neq \epsilon \text{ and } (w, \mathcal{V}[i/x]) \models \varphi_2\]

\[\text{for some } 1 \leq i \leq |w|\]

• Observe that the empty word does not satisfy any formula of the form \(\exists x \varphi\)
• More logic jargon:
 – A formula is **valid** if it is true for all its interpretations
 – A formula is **satisfiable** if it is true for at least one of its interpretations
 – Two formulas are **equivalent** if they have the same interpretations and the same models
Can FOL express non-regular languages? Can FOL express all regular languages?

- The language $L(\varphi)$ of a sentence φ is the set of words that satisfy φ.
- A language L is expressible in first-order logic or FO-definable if some sentence φ satisfies $L(\varphi) = L$.
- Proposition: a language over a one-letter alphabet is expressible in first-order logic iff it is finite or co-finite (its complement is finite).
- Consequence: we can only express regular languages, but not all, not even the language of words of even length.
Proof sketch

1. If L is finite, then it is FO-definable

2. If L is co-finite, then it is FO-definable.
3. If L is FO-definable (over a one-letter alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free fragment)

2) We show that a language is QF-definable iff it is finite or co-finite

3) We show that a language is QF-definable iff it is FO-definable.
1) The logic QF

- $x < k \quad x > k$
- $x < y + k \quad x > y + k$
- $k < \text{last} \quad k > \text{last}$

are formulas for every variable x, y and every $k \geq 0$.

- If f_1, f_2 are formulas, then so are $f_1 \lor f_2$ and $f_1 \land f_2$
2) \(L \) is QF-definable iff it is finite or co-finite

\(\rightarrow \) Let \(f \) be a sentence of QF.

Then \(f \) is a positive boolean combination of formulas

\(k < \text{last} \quad \text{and} \quad k > \text{last} \).

\[L(k < \text{last}) = \{k + 1, k + 2, \ldots \} \] is co-finite (we identify words and numbers)

\[L(k > \text{last}) = \{0, 1, \ldots, k\} \] is finite

\[L(f_1 \lor f_2) = L(f_1) \cup L(f_2) \] and so if \(L(f_1) \) and \(L(f_2) \)
finite or co-finite then \(L \) is finite or co-finite.

\[L(f_1 \land f_2) = L(f_1) \cap L(f_2) \] and so if \(L(f_1) \) and \(L(f_2) \)
finite or co-finite then \(L \) is finite or co-finite.
2) \(L \) is QF-definable iff it is finite or co-finite

\((\iff)\) If \(L = \{k_1, \ldots, k_n\} \) is finite, then

\[
(k_1 - 1 < \text{last} \land \text{last} < k_1 + 1) \lor \cdots \lor
(k_n - 1 < \text{last} \land \text{last} < k_n + 1)
\]

expresses \(L \).

If \(L \) is co-finite, then its complement is finite, and so expressed by some formula. We show that for every \(f \) some formula \(\neg f \) expresses \(\overline{L(f)} \)

- \(\neg (k < \text{last}) = (k - 1 < \text{last} \land \text{last} < k + 1) \lor \text{last} < k \)
- \(\neg (f_1 \lor f_2) = \neg f_1 \land \neg f_2 \)
- \(\neg (f_1 \land f_2) = \neg f_1 \lor \neg f_2 \)
3) Every first-order formula ϕ has an equivalent QF-formula $QF(\phi)$

- $QF(x < y) = x < y + 0$
- $QF(\neg \phi) = \text{neg}(QF(\phi))$
- $QF(\phi_1 \lor \phi_2) = QF(\phi_1) \lor QF(\phi_2)$
- $QF(\phi_1 \land \phi_2) = QF(\phi_1) \land QF(\phi_2)$
- $QF(\exists x \; \phi) =$
 - Put $QF(\phi)$ in disjunctive normal form. Assume $QF(\phi) = (\phi_1 \lor \ldots \lor \phi_n)$, where each ϕ_i is a conjunction of atomic formulas.
 - Since $\exists x (\phi_1 \lor \ldots \lor \phi_n) \equiv \exists x \; \phi_1 \lor \ldots \lor \exists x \; \phi_n$, it suffices to define $QF(\exists x \; \phi)$ for the case in which ϕ is a conjunction of atomic formulas of QF.
 - For this case, see example in the next slide.
• Consider the formula

\[\exists x \quad x < y + 3 \quad \land \quad z < x + 4 \quad \land \quad z < y + 2 \quad \land \quad y < x + 1 \]

• The equivalent QF-formula is

\[z < y + 8 \quad \land \quad y < y + 5 \quad \land \quad z < y + 2 \]
Monadic second-order logic (MSOL)

- First-order variables: interpreted on positions
- **Monadic second-order variables**: interpreted on sets of positions.
 - Diadic second-order variables: interpreted on relations over positions
 - Monadic third-order variables: interpreted on sets of sets of positions
- New atomic formula: \(x \in X \)
- New quantification: \(\exists X \varphi \)
Expressing „even length“

• Express

 There is a set X of positions such that
 – X contains exactly the even positions, and
 – the last position belongs to X.

• Express

 X contains exactly the even positions

 as

 A position is in X iff it is the second position or the second successor of another position of X
Syntax and semantics of MSOL

• New set \(\{X, Y, Z, \ldots \} \) of second-order variables
• New syntax: \(x \in X \) and \(\exists X \, \varphi \)
• New semantics:
 – Interpretations now also assign sets of positions to the free second-order variables.
 – Satisfaction defined as expected.
Expressing „even length“

- \(\text{second}(x) = \exists y \ (\text{first}(y) \land x = y + 1) \)

- \(\text{Even}(X) = \forall y \left(x \in X \iff \left(\text{second}(x) \lor \exists y \ (x = y + 2 \land y \in X) \right) \right) \)

- \(\text{EvenLength} = \exists X \left(\text{Even}(X) \land \forall x \ (\text{last}(x) \rightarrow x \in X) \right) \)
Expressing $c^*(ab)^*d^*$

• Express:

 There is a block X of consecutive positions such that
 – before X there are only c's;
 – after X there are only d's;
 – a's and b's alternate in X;
 – the first letter in X is an a, and the last is a b.

• Then we can take the formula

$$\exists X \left(\text{Block}(X) \land \text{Boc}(X) \land \text{Aod}(X) \land \text{Alt}(X) \land \text{Fa}(X) \land \text{Lb}(X) \right)$$
• X is a block of consecutive positions

• Before X there are only c's

• In X a's and b's alternate
• **X is a block of consecutive positions**

\[
\text{Block}(X) := \forall x \in X \; \forall y \in X \; \forall z \; ((x < z \land z < y) \rightarrow z \in X)
\]

• **Before X there are only c‘s**

• **In X a‘s and b‘s alternate**
• **X is a block of consecutive positions**

\[
\text{Block}(X) := \forall x \in X \ \forall y \in X \ \forall z \ ((x < z \land z < y) \rightarrow z \in X)
\]

• **Before X there are only c‘s**

\[
\text{Before}(x, X) := \forall y \in X \ x < y
\]
\[
\text{Boc}(X) := \forall x \ (\text{Before}(x, X) \rightarrow Q_c(x))
\]

• **In X a‘s and b‘s alternate**
• **X is a block of consecutive positions**

\[
\text{Block}(X) := \forall x \in X \ \forall y \in X \ \forall z \ ((x < z \land z < y) \rightarrow z \in X)
\]

• **Before X there are only c's**

\[
\text{Before}(x, X) := \forall y \in X \ x < y \\
\text{Boc}(X) := \forall x \ (\text{Before}(x, X) \rightarrow Q_c(x))
\]

• **In X a's and b's alternate**

\[
\text{Alt}(X) := \forall x \in X \ \forall y \in X \left(y = x + 1 \rightarrow \left((Q_a(x) \land Q_b(y)) \lor (Q_b(x) \land Q_a(y)) \right) \right)
\]
Every regular language is expressible in MSOL

- **Goal:** given an arbitrary regular language L, construct an MSO sentence φ s.t. $L = L(\varphi)$.

- It suffices to construct φ s.t. $w \in L$ iff $w \in L(\varphi)$ for every nonempty word w. (Avoid the corner-case of the empty word.)

- We use: if L is regular, then there is a DFA A recognizing L.

- Idea: construct a formula expressing the run of A on this word ends in an accepting state
• Fix a regular language L.
• Fix a DFA A with states q_0, \ldots, q_n recognizing L.
• Fix a nonempty word $w = a_1 a_2 \ldots a_m$.
• Let $R(q)$ be the set of positions i such that after reading $a_1 a_2 \ldots a_i$ the automaton A is in state q.
• We have:

A accepts w iff $m \in R(q)$ for some final state q.
Run: \(q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2 \)

Position: \[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
\begin{align*}
R_w(q_0) &= \{4\} \\
R_w(q_1) &= \{1, 2\} \\
R_w(q_2) &= \{3, 5\}
\end{align*}
\]
• Assume we can construct a formula

\[\text{Visits}(X_0, \ldots, X_n) \]

which is true for \((w, \mathcal{I})\) iff

\[\mathcal{I}(X_0) = R(q_0), \ldots, \mathcal{I}(X_n) = R(q_n) \]

• Then \((w, \mathcal{I})\) satisfies the formula

\[
\forall X_0 \cdots \forall X_n \forall x \left((\text{Visits}(X_0, \ldots, X_n) \land \text{last}(x)) \rightarrow \bigvee_{q_i \in F} x \in X_i \right)
\]

iff the state after the last position is accepting, and we easily get a formula expressing \(L\).
• To construct \(\text{Visits}(X_0, \ldots, X_n) \) we observe that the sets \(R(q) \) are the unique sets satisfying

a) \(1 \in R(\delta(q_0, a_1)) \)

After reading the first letter the DFA is in state \(\delta(q_0, a_1) \).

b) If \(i \in R(q) \) then \(i + 1 \in R(q') \) iff \(\delta(q, a_{i+1}) = q' \)

The sets „match“ \(\delta \).

• We give formulas for a) and b).
Formula for a):

\[
\text{In}X_i(x) := \left(x \in X_i \land \bigwedge_{j \neq i} x \notin X_j \right)
\]

\[
\text{Init}(X_0, \ldots, X_n) := \forall x \bigwedge_{a \in \Sigma} \left((\text{first}(x) \land Q_a(x)) \rightarrow \text{In}X_{\delta(0,a)}(x) \right)
\]

Formula for b):

\[
\text{Respect}(X_0, \ldots, X_n) :=
\]

\[
\forall x \forall y \left(y = x + 1 \rightarrow \bigwedge_{a \in \Sigma} \left(Q_a(x) \land x \in X_i \right) \rightarrow \text{In}X_{\delta(i,a)}(y) \right)
\]
Every language expressible in MSOL is regular

- An interpretation of a formula is a pair \((w, \mathcal{V}_1, \mathcal{V}_2)\) consisting of a word \(w\) and assignments \(\mathcal{V}_1, \mathcal{V}_2\) to the free first and second-order variables (and perhaps to others).

\[
\begin{align*}
(aab, \begin{cases} x \mapsto 1 \\ y \mapsto 3 \end{cases}, \begin{cases} X \mapsto \{2, 3\} \\ Y \mapsto \{1, 2\} \end{cases}) \\
(ba, \begin{cases} x \mapsto 2 \\ y \mapsto 1 \end{cases}, \begin{cases} X \mapsto \emptyset \\ Y \mapsto \{1\} \end{cases})
\end{align*}
\]
• We encode interpretations as words.

\[
\left(aab, \left\{ \begin{array}{l}
x \mapsto 1 \\
y \mapsto 3
\end{array} \right\}, \left\{ \begin{array}{l}
X \mapsto \{2, 3\} \\
Y \mapsto \{1, 2\}
\end{array} \right\} \right)
\]

<table>
<thead>
<tr>
<th></th>
<th>(w)</th>
<th>(a)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(X)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(Y)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\left(ba, \left\{ \begin{array}{l}
x \mapsto 2 \\
y \mapsto 1
\end{array} \right\}, \left\{ \begin{array}{l}
X \mapsto \emptyset \\
Y \mapsto \{1\}
\end{array} \right\} \right)
\]

<table>
<thead>
<tr>
<th></th>
<th>(w)</th>
<th>(b)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(y)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(X)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Y)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
• Given a formula with \(n \) free variables, we encode an interpretation \((w, \mathcal{V}_1, \mathcal{V}_2)\) as a word \(\text{enc}(w, \mathcal{V}_1, \mathcal{V}_2) \) over the alphabet \(\Sigma \times \{0,1\}^n \).

• The language of the formula \(\varphi \), denoted by \(L(\varphi) \), is given by

\[
L(\varphi):=\{\text{enc}(w, \mathcal{V}_1, \mathcal{V}_2)\mid (w, \mathcal{V}_1, \mathcal{V}_2) \models \varphi \}
\]

• We prove by induction on the structure of \(\varphi \) that \(L(\varphi) \) is regular (and explicitly construct an automaton for it).
Case $\varphi = Q_a(x)$

- φ has one free variable, and so its interpretations are encoded as words over $\Sigma \times \{0,1\}$

$$\mathcal{L}(\varphi) = \left\{ \begin{bmatrix} a_1 \\ \beta_1 \end{bmatrix}, \ldots, \begin{bmatrix} a_k \\ \beta_k \end{bmatrix} : \begin{array}{c} k \geq 1; \\
a_1 \ldots a_k \in \Sigma^k, \beta_1 \ldots \beta_k \in \{0,1\}^k; \text{ and} \\
\beta_i = 1 \text{ for a single index } i \in \{1, \ldots, k\} \end{array} \right. \text{ such that } a_i = a.$$

- Diagram showing transitions and states with labels a, b, and 0.
Case $\varphi = x < y$

- φ has two free variables, and so its interpretations are encoded as words over $\Sigma \times \{0,1\}^2$

$$\mathcal{L}(\varphi) = \left\{ \begin{bmatrix} a_1 \\ \beta_1 \\ \gamma_1 \end{bmatrix}, \ldots, \begin{bmatrix} a_k \\ \beta_k \\ \gamma_k \end{bmatrix} \right| \begin{array}{l}
k \geq 1; \\
a_1 \ldots a_k \in \Sigma^k, \beta_1 \ldots \beta_k, c_1 \ldots c_k \in \{0,1\}^k; \\
\beta_i = 1 \text{ for a single index } i \in \{1, \ldots, k\}; \\
\gamma_j = 1 \text{ for a single index } j \in \{1, \ldots, k\}; \text{ and } i < j. \end{array} \right\}$$
Case $\varphi = x \in X$

- φ has two free variables, and so its interpretations are encoded as words over $\Sigma \times \{0,1\}^2$

$$\mathcal{L}(\varphi) = \left\{ \begin{bmatrix} a_1 \\ \beta_1 \\ c_1 \end{bmatrix} \cdots \begin{bmatrix} a_k \\ \beta_k \\ c_k \end{bmatrix} : \begin{array}{l} k \geq 1, \\
a_1 \ldots a_k \in \Sigma^k, \beta_1 \ldots \beta_k, \gamma_1 \ldots \gamma_k \in \{0,1\}^k; \\
\beta_i = 1 \text{ for a single index } i \in \{1, \ldots, k\}; \text{ and} \\
\beta_i = 1 \text{ implies } \gamma_i = 1 \text{ for all } i \in \{1, \ldots, k\}. \end{array} \right\}$$

$$\begin{bmatrix} a & b & a & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} a & b \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} a & b & a & b \\ 1 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} a & b \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Case $\varphi = \neg \psi$

- Then $\text{free}(\varphi) = \text{free}(\psi)$. By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is equal to $\overline{L(\psi)}$ minus the words that do not encode any implementation („the garbage“).
- Equivalently, $L(\varphi)$ is equal to the intersection of $\overline{L(\psi)}$ and the encodings of all interpretations of ψ.
- We show that the set of these encodings is regular.
 - Condition for encoding: Let x be a free first-order variable of ψ. The projection of an encoding onto x must belong to 0^*10^* (because it represents one position).
 - So we just need an automaton for the words satisfying this condition for every free first-order variable.
Example: $\text{free}(\varphi) = \{x, y\}$
Case $\varphi = \varphi_1 \lor \varphi_2$

- Then $\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2)$. By i.h. $L(\varphi_1)$ and $L(\varphi_2)$ are regular.
- If $\text{free}(\varphi_1) = \text{free}(\varphi_2)$ then $L(\varphi) = L(\varphi_1) \cup L(\varphi_2)$ and so $L(\varphi)$ is regular.
- If $\text{free}(\varphi_1) \neq \text{free}(\varphi_2)$ then we extend $L(\varphi_1)$ to L_1 encoding all interpretations of $\text{free}(\varphi_1) \cup \text{free}(\varphi_2)$ whose projection onto $\text{free}(\varphi_1)$ belongs to $L(\varphi_1)$. Similarly we extend $L(\varphi_2)$ to L_2. We have
 - L_1 and L_2 are regular.
 - $L(\varphi) = (L_1 \cup L_2) \cap \text{Enc}(\varphi)$, where $\text{Enc}(\varphi)$ is the set of encodings of all interpretations of φ.
Example: $\varphi = Q_a(x) \lor Q_b(y)$

- L_1 contains the encodings of all interpretations $(w, \{x \mapsto n_1, y \mapsto n_2\})$ such that the encoding of $(w, \{x \mapsto n_1\})$ belongs to $L(Q_a(x))$.

- Automata for $L(Q_a(x))$ and L_1:

![Automata Diagram]
Cases $\varphi = \exists x \psi$ and $\varphi = \exists X \psi$

- Then $\text{free}(\varphi) = \text{free}(\psi) \setminus \{x\}$ or $\text{free}(\varphi) = \text{free}(\psi) \setminus \{X\}$
- By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is the result of projecting $L(\psi)$ onto the components for $\text{free}(\psi) \setminus \{x\}$ or for $\text{free}(\psi) \setminus \{X\}$.
Example: $\varphi = Q_a(x)$

- Automata for $Q_a(x)$ and $\exists x Q_a(x)$
The mega-example

• We compute an automaton for
 \[\exists x \left(\text{last}(x) \land Q_b(x) \right) \land \forall x \left(\neg \text{last}(x) \rightarrow Q_a(x) \right) \]

• First we rewrite it into
 \[\exists x \left(\text{last}(x) \land Q_b(x) \right) \land \neg \exists x \left(\neg \text{last}(x) \land \neg Q_a(x) \right) \]

• In the next slides we
 1. compute a DFA for \text{last}(x)
 2. compute DFAs for \(\exists x \left(\text{last}(x) \land Q_b(x) \right)\) and \(\neg \exists x \left(\neg \text{last}(x) \land \neg Q_a(x) \right)\)
 3. compute a DFA for the complete formula.

• We denote the DFA for a formula \(\psi\) by \([\psi]\).
$[\text{last}(x)]$

$x < y$

\[
\begin{bmatrix}
 a & b \\
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
 a & b \\
 1 & 1 \\
 0 & 0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
 a & b \\
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
 a & b \\
 0 & 0 \\
 0 & 0 \\
\end{bmatrix}
\]
$\text{[last}(x)\text{]}$

$[x < y]$

$\exists y \ x < y$
\[\text{last}(x) \]

\[x < y \]

\[\exists y \ x < y \]

\[Enc(\exists y \ x < y) \]

\[\Sigma \times \{0, 1\} \]

\[\exists y \ x < y \]
\[\text{[last}(x)\text{]} \]

\[[x < y] \]

\[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

\[[\exists y \ x < y] \]

\[\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \]

\[[\text{Enc}(\exists y \ x < y)] \]

\[\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \]

\[\Sigma \times \{0, 1\} \]

\[[\exists y \ x < y] \]

\[\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \quad \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \]
\[\exists x \ (\text{last}(x) \land Q_b(x)) \]
\[\neg Q_\alpha(x) \]
\[
\neg \exists x \left(\neg \text{last}(x) \land \neg Q_a(x) \right)
\]
\[
\exists x \left(\text{last}(x) \land Q_b(x) \right) \land \neg \exists x \left(\neg \text{last}(x) \land \neg Q_a(x) \right)
\]