Logic



Logics on words

* Regular expressions give operational descriptions
of regular languages.

« Often the natural description of a language Is
declarative:

—even number of a's and even number of b's vs.
(aa + bb + (ab + ba)(aa + bb)*(ba + ab))*
—words not containing ‘hello’

* Goal: find a declarative language able to express
all the regular languages, and only the regular
languages.



Logics on words

 |dea: use a logic that has an interpretation on words

» A formula expresses a property that each word may
satisfy or not, like

— the word contains only a's
— the word has even length

— between every occurrence of an a and a b there
IS an occurrenceofa c¢

« Every formula (indirectly) defines a language: the
language of all the words over the given fixed
alphabet that satisfy it.



First-order logic on words

o Atomic formulas:

— for each letter a we introduce the formula Q,(x),
with intuitive meaning: the letter at position x Is
an a.

— for every two variables x, y € VV we introduce the
formula x < y with intuitive meaning: position x
IS to the left of position y.



First-order logic on words: Syntax

« Formulas constructed out of atomic formulas
by means of standard “logic machinery”:
— Alphabet £ = {a, b, ... } and position variables
V={xy .}
—Q,(x)isaformulaforeverya e Xandx € V.
—x < yisaformulaforeveryx,y eV
—If @, @, @, are formulas then so are —¢ and

PV @,
— If @ iIsaformulathensois3dx ¢ foreveryx € V



Abbreviations

P1A@y = (= @1V ey)
P12 Q2 = TPV @y
P1 < @y = (L APV (mp1 A—@y)
Vx @ = =—dx @



Abbreviations

first(x) =3y y<x

last(x) =—-3y x <y

y=x+1
y=x+2

y=x+k
x <k

last < k

xX<yA-Tz(x<zAz<Yy)

Jz(z=x+1Ay=2z+1)

z(z=x+1Ay=z+(k—1))

Vyvz (firsty) Az=y+k—-1) - x <2z)
Vx (last(x) - x < k)



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

“Every a 1s immediately followed by a 5.”

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

e “The last letter is a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

e “Every a is immediately followed by a b.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

e “Every a i1s immediately followed by a b, unless it is the last letter.”

Vx(Qu(x) » Vy(y=x+1- 0Op(y))

e “Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

Vx(Qa(x) = Vy(y=x+1 - 0p(y)

“Between every a and every later b there is a ¢.”

VxVy (Qu(x) A Qp(M Ax<y—o dz(x <zAz<yA Q.(2))



First-order logic on words: Semantics

e Formulas are interpreted on pairs (w, V) called
Interpretations, where

— w Is aword, and

— V assigns positions to the free variables of the
formula (and maybe to others too).

* It does not make sense to say a formula is true or false:
It can only be true or false for a given interpretation.

o If the formula has no free variables (if it is a sentence),
then for each word it is either true or false.



o Satisfaction relation:

(w,V) =EQ,(x) Iff
wV)ex<y Iff
(w, V) E o Iff
(W, V) =@,V @, Iff
(w, V) Edx @ Iff

wlV(x)] =a
V(x) <V(y)
w FoQ

W E @1 O w = @-
w # € and (w,V[i/x]) E ¢,

forsomel <i < |w|

* Observe that the empty word does not
satisfy any formula of the form 3x ¢



More logic jargon:

— A formula is valid if it is true for all its
Interpretations

— A formula is satisfiable if is is true for at least
one of its interpretations

— Two formulas are equivalent if they have the
same Interpretations and the same models



Can FOL express non-regular languages?
Can FOL express all regular languages?

* The language L(¢) of a sentence ¢ is the set of
words that satisfy ¢.

e Alanguage L is expressible in first-order logic or FO-
definable if some sentence ¢ satisfies L(¢p) = L.

e Proposition: a language over a one-letter alphabet is
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

« Consequence: we can only express regular

languages, but not all, not even the language of
words of even length.



Proof sketch

1. If L 1s finite, then it i1s FO-definable

2. If L Is co-finite, then it i1s FO-definable.



Proof sketch

3. If L Is FO-definable (over a one-letter
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free
fragment)

2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.



1) The logic QF

e x <k x>k
x<y+k x>y+k
k < last k > last

are formulas for every variable x, y and every
k=>0.

e If f1, f, are formulas, thenso are f; Vv f, and

finf



2) L 1s QF-definable iff it is finite or co-finite

(=) Let f be a sentence of QF.

Then f Is a positive boolean combination of formulas
k < last and k > last.

L(k <last) ={k+ 1,k + 2, ..}Iisco-finite (we identify
words and numbers)

L(k > last) ={0,1, ..., k}is finite
L(f1V f2) = L(f1) U L(f;) and so if L(f;) and L(f3)

finite or co-finite then L is finite or co-finite.

L(fi A f2) = L(f1) N L(fz) and so if L(f;) and L(f>)

finite or co-finite then L is finite or co-finite.



2) L 1s QF-definable iff it is finite or co-finite

(<) If L = {kq,.. k,}is finite, then
(ki —1<last A last< k;+1)V:-V
(k, —1<last A last <k, + 1)
expresses L.

If L Is co-finite, then its complement is finite, and so expressed by
some formula. We show that for every f some formula neg(f)
expresses L(f)

* neg(k <last) = (k—1<last A last<k +1)V last <k
* neg(fy Vv f2) = neg(f1) A neg(f3)
* neg(fi A f2) = neg(f1) v neg(fz)



3) Every first-order formula ¢ has an equivalent
QF-formula QF (¢)

* QF(x<y)=x<y+0

« QF (=) =neg(QF (¢))
* QF(p1V @) = QF(91) V QF (¢3)
* QF (@1 A @3) = QF(91) A QF (¢3)

* QF(3x ¢) =

— Put QF (@) in disjunctive normal form. Assume QF (¢)= (¢, V ...V
@.,), Where each ¢; is a conjunction of atomic formulas.

— dince IX (@, V...V @) =3IX @1 V ... VIX@,, Itsufficesto define
QF (3x @) for the case in which 1, is a conjunction of atomic
formulas of QF

— For this case, see example in the next slide.



e Consider the formula
dx x<y+3 A

z<x+4 A
z<y+2 A
y<x+1

* The equivalent QF-formula is

z<y+8 AN y<y+5HbH A z<y+?2



Monadic second-order logic (MSOL)

 First-order variables: interpreted on positions
* Monadic second-order variables: interpreted
on sets of positions.

— Diadic second-order variables: interpreted on
relations over positions

— Monadic third-order variables: interpreted on sets
of sets of positions

« New atomic formula: x € X
* New quantification: 3X ¢



Expressing ,,even length®

e EXpress
There Is a set Xof positions such that
— X contains exactly the even positions, and
— the last position belongs to X.

e EXpress
X contains exactly the even positions
as

A position is In X Iff it Is the second position or
the second successor of another position of X



Syntax and semantics of MSOL

e Newset{X,Y, Z, ..} of second-order variables
« Newsyntax: x € X and 3X ¢

 New semantics:

— Interpretations now also assign sets of positions to
the free second-order variables.

— Satisfaction defined as expected.



Expressing ,,even length®

e second(x) =3Iy (first(y) Ax =y +1)

second(x)
e Even(X)=Vy | x€EX & Y,
dy(x=y+2Ay€X)

Even(X)
 EvenlLength = 3X A

Vx (last(x) —» x € X)



Expressing c*(ab)*d*

e EXpress:
There is a block X of consecutive positions such that
— before X there are only c's;
— after X there are only d's;
— a'‘sand b‘s alternate in X;
— the first letter in X is an a, and the last is a b.

e Then we can take the formula
Block(X) A Boc(X) A Aod(X)

X N
Alt(X) A Fa(X) A Lb(X)



e X Is a block of consecutive positions

o Before X there are only c's

e |In X a's and b‘s alternate



e X Is a block of consecutive positions
Block(X) = VxeX VyeX Vz(x<zAz<y)->zE€EX)

o Before X there are only c's

e |In X a's and b‘s alternate



e X Is a block of consecutive positions

Block(X) = VxeX VyeX Vz(x<zAz<y)->zE€EX)

o Before X there are only c's

Before(x, X)
Boc (X)

VyeXx <y
Vx (Before(x,X) — Q.(x))

e |In X a's and b‘s alternate



e X Is a block of consecutive positions

Block(X) = VxeX VyeX Vz(x<zAz<y)->zE€EX)

o Before X there are only c's

Before(x, X)
Boc (X)

VyeXx <y
Vx (Before(x,X) — Q.(x))

e |In X a's and b‘s alternate

y=x+1
Alt (X) =VvxeXVyeX —
(Qe() A Q) V (Qp(x) A Qe ()



Every regular language Is expressible In
MSOL

Goal: given an arbitrary regular language L, construct an
MSO sentence ¢ s.t. L = L(gp).

It suffices to construct ¢ s.t. w € L iff w € L(¢) for every
nonempty word w.
(Avoid the corner-case of the empty word.)

We use: if L is regular, then there is a DFA A recognizing L.
Idea: construct a formula expressing

the run of 4 on this word ends in an accepting state



-1X a regular language L.

-Ix a DFA A with states q,, ..., g,, recognizing L.
-IX a nonempty word w = aqa, ... a,,.

et R(q) be the set of positions i such that after
reading a,a, ... a; the automaton 4 is in state q.

We have:
A accepts w iff m € R(q) for some final state q.




a a b b b
Run: Qo —>q1 —> 1 —> 42 —> o — (2

Position: 1 P 3 < )

R, (qo) = {4}
Ru(q) = {1,2}
R.(q2) = 13,5}

E



e Assume we can construct a formula
Visits(X,, ..., X))
which is true for (w, 7) iff

I(Xo) = R(qo), ..., I(Xn) = R(qn)
Then (w, 7) satisfies the formula

q; € F

VXo+-¥X, Vi ((Visits(Xo,...,Xn) A last(x)) — \/ T € Xi)

Iff the state after the last position Is accepting,
and we easlly get a formula expressing L .



e To construct Visits(X,, ..., X,,) we observe that
the sets R(q) are the unique sets satisfying

a) 1€ R(5(qp,aq))
After reading the first letter the DFA is in state

6(q0, a1).
b) Ifi e R(g)then i+1€ R(q")iffd(q,a;41) =¢q'
The sets ,,match” §.

* We give formulas for a) and b).



Formula for a):

InX;(x) = (:‘6 SR e /\ T ¢ XJ)

JFi
Init(Xo, ..., X,) =Va A\ ((first(z) A Qa(2)) — InX5(0,0)())

ac;

Formula for b):
Respect( Xy, ..., X,,) :=

/ \

‘v’x‘v’y y—ﬂJ—l—l_}/\Qa AmEX)%InXtS(za)()
acll,
\ 1€40,...,n} /




Every language expressible in MSOL Is
regular
* An interpretation of a formulais a pair (w,Vy,V,)

consisting of a word w and assignments V;,V, to the

free first and second-order variables (and perhaps to
others).

(e {55 AV 2 )



* \We encode interpretations as words.

(o)) y
Y

o

R R
Y :

—_— O O = Q

—_0 = O o

—_— O O

OO O - Q

O == o



e Glven a formula with n free variables, we
encode an interpretation (w, V;,V,) as a word
enc(w,V;,V,) over the alphabet X < {0,1}".

* The language of the formula ¢ , denoted by
L(¢), Is given by

L(@):={enc(w,V;, V)| W, V;,V,) E ¢}

« We prove by induction on the structure of ¢

that L(¢) Is regular (and explicitely construct
an automaton for Iit).



Case ¢ = Qq(x)

* ¢ has one free variable, and so its interpretations are
encoded as words over £ % {0,1}

L (¢) = 1

(

\

ol

s
Bk

)b

|
ol

|

k> 1;

ap...ar € X%, B1... 0k € {0,1}*; and
B; = 1 for a single index i € {1,...,k}
such that a; = a.

b




Case p =x <y

* ¢ has two free variables, and so its interpretations
are encoded as words over X x {0,1}*

. B; = 1for asingle indexi € {1,...,k};

k>1;
ai...ak EEk,ﬁl...ﬁk,cl...ckE{O,l}k;

v; = 1 for a single index j € {1,...,k}; and

i < . )

B

H il



Case p = x € X

* ¢ has two free variables, and so its interpretations
are encoded as words over X x {0,1}*

k>,

. ar...ar € X% 61 ... Be, .. .Yk € {0,1}’%
" 8; = 1 for a single index i € {1,...,k}; and

B; = 1implies v; = 1 foralli € {1,...,k}.

-~

/



Case ¢ =

Then free(¢) = free(y)) . By i.h. L(y) is regular.

L(¢g) is equal to L(xp) minus the words that do not encode any
Implementation (,,the garbage®).

Equivalently, L(¢) is equal to the intersection of L(y) and the
encodings of all interpretations of .

We show that the set of these encodings is regular.

— Condition for encoding: Let x be a free first-oder variable of
Y . The projection of an encoding onto x must belong to
0"10" (because it represents one position).

— S0 we just need an automaton for the words satisfying this
condition for every free first-order variable.



Example: free(p) = {x, y}




Case ¢ = @1V @,

* Then free(p) = free(¢p,) U free(p,). By i.h. L(¢p,)
and L(¢p-) are regular.

o Iffree(p,) = free(¢,) then L(¢) = L(¢1) U L(¢3)
and so L(¢) is regular.

o If free(¢,) + free(¢,) then we extend L(¢,) to L,
encoding all interpretations of free(¢,) U free(¢,)
whose projection onto free(¢,) belongs to L(¢,).
Similarly we extend L(¢-) to L,. We have

— L, and L, are regular.

— L(p) = (L{UL,) NnEnc(ep), where Enc(¢p) is the
set of encodings of all interpretations of ¢.



Example: ¢ = Q,(x) V Q, (V)

e L, contains the encodings of all
interpretations (w, {x — nq,y +— n,}) such
that the encoding of (w, {x — n,}) belongs

to L(Qa (x)).
e Automata for L(Q,(x)) and L;:

a b a b
al |b al |b 0], .10 0 .10
01710 01710 0 0] |1 Of (1] 10

8 : 8 i 6

b

i




Cases @ = dx ¢ andp = 3IX ¢

e Then free(p)= free(y)\ {x} or
free(p)= free(y)\ {X}
By L.h. L(3) Is regular.

* L(¢) Isthe result of projecting L(y) onto the
components for free(y)\ {x} or for

free(y)\ {X}.



Example: ¢ = Q,(x)

o Automata for Q,(x) and 3Ix Q,(x)
H1 1 T

TR




The mega-example

* We compute an automaton for

Jx (Iast(x) A Qy (x)) A VX (—-Iast(x) — Qa(x))
e First we rewrite it into

Jx (Iast(x) A Qy (x)) A —3x (—-Iast(x) A —-Qa(x))

* |n the next slides we

1. compute a DFA for last(x)

2. compute DFAs for 3x (last(x) A Q,(x)) and

—3Jx (—-Iast(x) A —-Qa(x))

3. compute a DFA for the complete formula.

* \We denote the DFA for a formula y by [y].









[Enc(3y x < y)]







[Elx (Iast(x) A Qy, (x))]

il o

TSRS

[Qp(x)] [3x (last(x) A Qp ()]



[Enc(Qq(x))] Zx (0.1}

A W e
NSLiNG: sl

[~Qa(X)]

i)l

c



[—-Elx (—-Iast(x) A —-Qa(x))]
oo oo o O . 1

8 ! 8 RSULNSLINS
BB-8

[3x (—last(x) A =Qq(x))]




[Elx (Iast(x) A Qyp (x)) A —dx (—-Iast(x) A —-Qa(x))]

B0 B-o

[3x (last(x) A Qp(x)) |=3x (—last(x) A =Qq(x))]

o

[3x (last(x) A Qp(x)) A =3x (—last(x) A =Q4(x))]




