Logic

Logics on words

- Regular expressions give operational descriptions of regular languages.
- Often the natural description of a language is declarative:
- even number of \boldsymbol{a} 's and even number of \boldsymbol{b} 's vs.
$\left(a a+b b+(a b+b a)(a a+b b)^{*}(b a+a b)\right)^{*}$
- words not containing 'hello'
- Goal: find a declarative language able to express all the regular languages, and only the regular languages.

Logics on words

- Idea: use a logic that has an interpretation on words
- A formula expresses a property that each word may satisfy or not, like
- the word contains only a's
- the word has even length
- between every occurrence of an a and a b there is an occurrence of a c
- Every formula (indirectly) defines a language: the language of all the words over the given fixed alphabet that satisfy it.

First-order logic on words

- Atomic formulas:
- for each letter a we introduce the formula $Q_{a}(x)$, with intuitive meaning: the letter at position x is an a.
- for every two variables $x, y \in V$ we introduce the formula $x<y$ with intuitive meaning: position \boldsymbol{x} is to the left of position y.

First-order logic on words: Syntax

- Formulas constructed out of atomic formulas by means of standard "logic machinery":
- Alphabet $\Sigma=\{a, b, \ldots\}$ and position variables
$V=\{x, y, \ldots\}$
$-Q_{a}(x)$ is a formula for every $a \in \Sigma$ and $x \in V$.
$-x<y$ is a formula for every $x, y \in V$
- If $\varphi, \varphi_{1}, \varphi_{2}$ are formulas then so are $\neg \varphi$ and $\varphi_{1} \vee \varphi_{2}$
- If φ is a formula then so is $\exists x \varphi$ for every $x \in V$

Abbreviations

$$
\begin{aligned}
\varphi_{1} \wedge \varphi_{2} & :=\neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\varphi_{1} \rightarrow \varphi_{2} & :=\neg \varphi_{1} \vee \varphi_{2} \\
\varphi_{1} \leftrightarrow \varphi_{2} & :=\left(\varphi_{1} \wedge \varphi_{2}\right) \vee\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\forall x \varphi & :=\neg \exists x \neg \varphi
\end{aligned}
$$

Abbreviations

first $(x):=\neg \exists y \quad y<x$
$\operatorname{last}(x):=\neg \exists y x<y$

$$
\begin{aligned}
& y=x+1:=x<y \wedge \neg \exists z(x<z \wedge z<y) \\
& y=x+2:=\exists z(z=x+1 \wedge y=z+1)
\end{aligned}
$$

$$
y=x+k:=\exists z(z=x+1 \wedge y=z+(k-1))
$$

$$
x<k:=\forall y \forall z(\operatorname{first}(y) \wedge z=y+k-1) \rightarrow x<z)
$$

last $<k:=\forall x(\operatorname{last}(x) \rightarrow x<k)$

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."
- "Every a is immediately followed by a b."
- "Every a is immediately followed by a b, unless it is the last letter."
- "Between every a and every later b there is a c. ."

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."

$$
\exists x Q_{b}(x) \wedge \forall x\left(\operatorname{last}(x) \rightarrow Q_{b}(x) \wedge \neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- "Every a is immediately followed by a b."
- "Every a is immediately followed by a b, unless it is the last letter."
- "Between every a and every later b there is a c. ."

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."

$$
\exists x Q_{b}(x) \wedge \forall x\left(\operatorname{last}(x) \rightarrow Q_{b}(x) \wedge \neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- "Every a is immediately followed by a b."

$$
\forall x\left(Q_{a}(x) \rightarrow \exists y\left(y=x+1 \wedge Q_{b}(y)\right)\right)
$$

- "Every a is immediately followed by a b, unless it is the last letter."
- "Between every a and every later b there is a c."

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."

$$
\exists x Q_{b}(x) \wedge \forall x\left(\operatorname{last}(x) \rightarrow Q_{b}(x) \wedge \neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- "Every a is immediately followed by a b."

$$
\forall x\left(Q_{a}(x) \rightarrow \exists y\left(y=x+1 \wedge Q_{b}(y)\right)\right)
$$

- "Every a is immediately followed by a b, unless it is the last letter."

$$
\forall x\left(Q_{a}(x) \rightarrow \forall y\left(y=x+1 \rightarrow Q_{b}(y)\right)\right)
$$

- "Between every a and every later b there is a c."

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."

$$
\exists x Q_{b}(x) \wedge \forall x\left(\operatorname{last}(x) \rightarrow Q_{b}(x) \wedge \neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- "Every a is immediately followed by a b."

$$
\forall x\left(Q_{a}(x) \rightarrow \exists y\left(y=x+1 \wedge Q_{b}(y)\right)\right)
$$

- "Every a is immediately followed by a b, unless it is the last letter."

$$
\forall x\left(Q_{a}(x) \rightarrow \forall y\left(y=x+1 \rightarrow Q_{b}(y)\right)\right)
$$

- "Between every a and every later b there is a c."

$$
\forall x \forall y\left(Q_{a}(x) \wedge Q_{b}(y) \wedge x<y \rightarrow \exists z\left(x<z \wedge z<y \wedge Q_{c}(z)\right)\right)
$$

First-order logic on words: Semantics

- Formulas are interpreted on pairs (w, \mathcal{V}) called interpretations, where
$-w$ is a word, and
$-\mathcal{V}$ assigns positions to the free variables of the formula (and maybe to others too).
- It does not make sense to say a formula is true or false: it can only be true or false for a given interpretation.
- If the formula has no free variables (if it is a sentence), then for each word it is either true or false.
- Satisfaction relation:

$$
\begin{array}{lll}
(w, \mathcal{V}) \vDash Q_{a}(x) & \text { iff } & w[\mathcal{V}(x)]=a \\
(w, \mathcal{V}) \vDash x<y & \text { iff } & \mathcal{V}(x)<\mathcal{V}(y) \\
(w, \mathcal{V}) \vDash \neg \varphi & \text { iff } & w \nLeftarrow \varphi \\
(w, \mathcal{V}) \vDash \varphi_{1} \vee \varphi_{2} & \text { iff } & w \vDash \varphi_{1} \text { or } w \vDash \varphi_{2} \\
(w, \mathcal{V}) \vDash \exists x \varphi & \text { iff } & w \neq \epsilon \text { and }(w, \mathcal{V}[i / x]) \vDash \varphi_{2} \\
& & \text { for some } 1 \leq i \leq|w|
\end{array}
$$

- Observe that the empty word does not satisfy any formula of the form $\exists x \varphi$
- M ore logic jargon:
- A formula is valid if it is true for all its interpretations
-A formula is satisfiable if is is true for at least one of its interpretations
- Two formulas are equivalent if they have the same interpretations and the same models

Can FOL express non-regular languages? Can FOL express all regular languages?

- The language $L(\varphi)$ of a sentence φ is the set of words that satisfy φ.
- A language L is expressible in first-order logic or FOdefinable if some sentence φ satisfies $L(\varphi)=L$.
- Proposition: a language over a one-letter alphabet is expressible in first-order logic iff it is finite or cofinite (its complement is finite).
- Consequence: we can only express regular languages, but not all, not even the language of words of even length.

Proof sketch

1. If L is finite, then it is FO-definable

2. If L is co-finite, then it is FO-definable.

Proof sketch

3. If L is FO-definable (over a one-letter alphabet), then it is finite or co-finite.
1) We define a new logic QF (quantifier-free fragment)
2) We show that a language is QF-definable iff it is finite or co-finite
3) We show that a language is $Q F$-definable iff it is FO-definable.

1) The logic QF

- $x<k \quad x>k$
$x<y+k \quad x>y+k$
$k<$ last $\quad k>$ last
are formulas for every variable x, y and every $k \geq 0$.
- If f_{1}, f_{2} are formulas, then so are $f_{1} \vee f_{2}$ and $f_{1} \wedge f_{2}$

2) L is QF-definable iff it is finite or co-finite
(\rightarrow) Let f be a sentence of QF .
Then f is a positive boolean combination of formulas $k<$ last and $k>$ last.
$L(k<$ last $)=\{k+1, k+2, \ldots\}$ is co-finite (we identify words and numbers)
$L(k>$ last $)=\{0,1, \ldots, k\}$ is finite
$L\left(f_{1} \vee f_{2}\right)=L\left(f_{1}\right) \cup L\left(f_{2}\right)$ and so if $L\left(f_{1}\right)$ and $L\left(f_{2}\right)$ finite or co-finite then L is finite or co-finite.
$L\left(f_{1} \wedge f_{2}\right)=L\left(f_{1}\right) \cap L\left(f_{2}\right)$ and so if $L\left(f_{1}\right)$ and $L\left(f_{2}\right)$ finite or co-finite then L is finite or co-finite.

2) L is QF-definable iff it is finite or co-finite

(\leftarrow) If $L=\left\{k_{1}, \ldots, k_{n}\right\}$ is finite, then

$$
\begin{aligned}
& \left(k_{1}-1<\text { last } \wedge \text { last }<k_{1}+1\right) \vee \cdots \vee \\
& \left(k_{n}-1<\text { last } \wedge \text { last }<k_{n}+1\right)
\end{aligned}
$$

expresses L.
If L is co-finite, then its complement is finite, and so expressed by some formula. We show that for every f some formula neg (f) expresses $\overline{L(f)}$

- $\operatorname{neg}(k<$ last $)=(k-1<$ last \wedge last $<k+1) \vee$ last $<k$
- $\operatorname{neg}\left(f_{1} \vee f_{2}\right)=\operatorname{neg}\left(f_{1}\right) \wedge \operatorname{neg}\left(f_{2}\right)$
- $\operatorname{neg}\left(f_{1} \wedge f_{2}\right)=\operatorname{neg}\left(f_{1}\right) \vee \operatorname{neg}\left(f_{2}\right)$

3) Every first-order formula φ has an equivalent QF-formula $Q F(\varphi)$

- $Q F(x<y)=x<y+0$
- $Q F(\neg \varphi)=\operatorname{neg}(Q F(\varphi))$
- $Q F\left(\varphi_{1} \vee \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \vee Q F\left(\varphi_{2}\right)$
- $Q F\left(\varphi_{1} \wedge \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \wedge Q F\left(\varphi_{2}\right)$
- $Q F(\exists x \varphi)=$
- Put $Q F(\varphi)$ in disjunctive normal form. Assume $Q F(\varphi)=\left(\varphi_{1} \vee \ldots \vee\right.$ φ_{n}), where each φ_{i} is a conjunction of atomic formulas.
- Since $\exists \mathrm{x}\left(\varphi_{1} \vee \ldots \vee \varphi_{n}\right) \equiv \exists \mathrm{x} \varphi_{1} \vee \ldots \vee \exists \mathrm{x} \varphi_{n}$, it suffices to define $Q F(\exists x \varphi)$ for the case in which φ is a conjunction of atomic formulas of QF
- For this case, see example in the next slide.
- Consider the formula

$$
\exists x \quad \begin{array}{cc}
x<y+3 & \wedge \\
z<x+4 & \wedge \\
z<y+2 & \wedge \\
y<x+1 &
\end{array}
$$

- The equivalent QF-formula is

$$
z<y+8 \wedge y<y+5 \wedge z<y+2
$$

M onadic second-order logic (M SOL)

- First-order variables: interpreted on positions
- M onadic second-order variables: interpreted on sets of positions.
- Diadic second-order variables: interpreted on relations over positions
- M onadic third-order variables: interpreted on sets of sets of positions
- New atomic formula: $x \in X$
- New quantification: $\exists X \varphi$

Expressing „even length"

- Express

There is a set X of positions such that

- X contains exactly the even positions, and
- the last position belongs to X.
- Express
X contains exactly the even positions
as
A position is in X iff it is the second position or the second successor of another position of X

Syntax and semantics of M SOL

- New set $\{X, Y, Z, \ldots\}$ of second-order variables
- New syntax: $x \in X$ and $\exists X \varphi$
- New semantics:
- Interpretations now also assign sets of positions to the free second-order variables.
- Satisfaction defined as expected.

Expressing „even length"

- $\operatorname{second}(x)=\exists y(\operatorname{first}(y) \wedge x=y+1)$
- $\operatorname{Even}(X)=\forall y\left(x \in X \leftrightarrow\left(\begin{array}{c}\operatorname{second}(x) \\ \vee \\ \exists y(x=y+2 \wedge y \in X)\end{array}\right)\right)$
- EvenLength $=\exists X\left(\begin{array}{c}\operatorname{Even}(X) \\ \wedge \\ \forall x(\operatorname{last}(x) \rightarrow x \in X)\end{array}\right)$

Expressing $c^{*}(a b)^{*} d^{*}$

- Express:

There is a block X of consecutive positions such that

- before X there are only c 's;
- after X there are only $d^{\prime} \mathbf{s}$;
- a^{\prime} s and b^{\prime} 's alternate in X;
- the first letter in X is an a, and the last is a b.
- Then we can take the formula

$$
\exists X\left(\begin{array}{c}
\operatorname{Block}(X) \wedge \operatorname{Boc}(X) \wedge \operatorname{Aod}(X) \\
\wedge \\
\operatorname{Alt}(X) \wedge \operatorname{Fa}(X) \wedge \operatorname{Lb}(X)
\end{array}\right)
$$

- X is a block of consecutive positions
- Before X there are only \boldsymbol{c} 's
- In $X a^{\prime} s$ and $b^{\prime} s$ alternate
- X is a block of consecutive positions
$\operatorname{Block}(X):=\forall x \in X \quad \forall y \in X \forall z((x<z \wedge z<y) \rightarrow z \in X)$
- Before X there are only c 's
- In $X a^{\prime} s$ and $b^{\prime} s$ alternate
- X is a block of consecutive positions
$\operatorname{Block}(X):=\forall x \in X \quad \forall y \in X \forall z((x<z \wedge z<y) \rightarrow z \in X)$
- Before X there are only \boldsymbol{c} 's

Before $(x, X):=\forall y \in X x<y$
$\operatorname{Boc}(X):=\forall x\left(\operatorname{Before}(x, X) \rightarrow Q_{c}(x)\right)$

- In X a's and $b^{\prime} s$ alternate
- X is a block of consecutive positions
$\operatorname{Block}(X):=\forall x \in X \quad \forall y \in X \forall z((x<z \wedge z<y) \rightarrow z \in X)$
- Before X there are only \boldsymbol{c} 's

Before $(x, X):=\forall y \in X x<y$
$\operatorname{Boc}(X):=\forall x\left(\operatorname{Before}(x, X) \rightarrow Q_{c}(x)\right)$

- In $X a^{\prime} s$ and $b^{\prime} s$ alternate
$\operatorname{Alt}(X):=\forall x \in X \forall y \in X\left(\begin{array}{c}y=x+1 \\ \rightarrow \\ \left(Q_{a}(x) \wedge Q_{b}(y)\right) \vee\left(Q_{b}(x) \wedge Q_{a}(y)\right)\end{array}\right)$

Every regular language is expressible in MSOL

- Goal: given an arbitrary regular language L, construct an M SO sentence φ s.t. $L=L(\varphi)$.
- It suffices to construct φ s.t. $w \in L$ iff $w \in L(\varphi)$ for every nonempty word w. (Avoid the corner-case of the empty word.)
- We use: if L is regular, then there is a DFA A recognizing L.
- Idea: construct a formula expressing
the run of A on this word ends in an accepting state
- Fix a regular language L.
- Fix a DFA A with states q_{0}, \ldots, q_{n} recognizing L.
- Fix a nonempty word $w=a_{1} a_{2} \ldots a_{m}$.
- Let $R(q)$ be the set of positions i such that after reading $a_{1} a_{2} \ldots a_{i}$ the automaton A is in state q.
- We have:
A accepts w iff $m \in R(q)$ for some final state q.

Run: $\quad q_{0} \xrightarrow{a} q_{1} \xrightarrow{a} q_{1} \xrightarrow{b} q_{2} \xrightarrow{b} q_{0} \xrightarrow{b} q_{2}$
Position: $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$

$$
\begin{aligned}
& R_{w}\left(q_{0}\right)=\{4\} \\
& R_{w}\left(q_{1}\right)=\{1,2\} \\
& R_{w}\left(q_{2}\right)=\{3,5\}
\end{aligned}
$$

- Assume we can construct a formula

$$
\operatorname{Visits}\left(X_{0}, \ldots, X_{n}\right)
$$

which is true for (w, J) iff

$$
\mathcal{J}\left(X_{0}\right)=R\left(q_{0}\right), \ldots, \mathcal{J}\left(X_{n}\right)=R\left(q_{n}\right)
$$

- Then (w, \mathcal{J}) satisfies the formula
$\forall X_{0} \cdots \forall X_{n} \forall x\left(\left(\operatorname{Visits}\left(X_{0}, \ldots, X_{n}\right) \wedge \operatorname{last}(x)\right) \rightarrow \bigvee_{q_{i} \in F} \bigvee_{i} \in X_{i}\right)$
iff the state after the last position is accepting, and we easily get a formula expressing L.
- To construct Visits $\left(X_{0}, \ldots, X_{n}\right)$ we observe that the sets $R(q)$ are the unique sets satisfying
a) $1 \in R\left(\delta\left(q_{0}, a_{1}\right)\right)$ After reading the first letter the DFA is in state $\delta\left(q_{0}, a_{1}\right)$.
b) If $i \in R(q)$ then $i+1 \in R\left(q^{\prime}\right)$ iff $\delta\left(q, a_{i+1}\right)=q^{\prime}$ The sets „,match" δ.
- We give formulas for a) and b).

Formula for a):

$$
\operatorname{In} X_{i}(x):=\left(x \in X_{i} \wedge \bigwedge_{j \neq i} x \notin X_{j}\right)
$$

$\operatorname{Init}\left(X_{0}, \ldots, X_{n}\right):=\forall x \bigwedge_{a \in \Sigma}\left(\left(\operatorname{first}(x) \wedge Q_{a}(x)\right) \rightarrow \operatorname{In} X_{\delta(0, a)}(x)\right)$

Formula for b):

$\operatorname{Respect}\left(X_{0}, \ldots, X_{n}\right):=$
$\forall x \forall y\left(y=x+1 \rightarrow \bigwedge_{\substack{a \in \Sigma, i \in\{0, \ldots, n\}}}\left(Q_{a}(x) \wedge x \in X_{i}\right) \rightarrow \operatorname{In} \mathrm{X}_{\delta(i, a)}(y)\right)$

Every language expressible in M SOL is regular

- An interpretation of a formula is a pair $\left(w, \mathcal{V}_{1}, \mathcal{V}_{2}\right)$ consisting of a word w and assignments $\mathcal{V}_{1}, \mathcal{V}_{2}$ to the free first and second-order variables (and perhaps to others).

$$
\begin{aligned}
& \left(a a b,\left\{\begin{array}{l}
x \mapsto 1 \\
y \mapsto 3
\end{array}\right\},\left\{\begin{array}{c}
X \mapsto\{2,3\} \\
Y \mapsto\{1,2\}
\end{array}\right\}\right) \\
& \left(b a,\left\{\begin{array}{l}
x \mapsto 2 \\
y \mapsto 1
\end{array}\right\},\left\{\begin{array}{l}
X \mapsto \emptyset \\
Y \mapsto\{1\}
\end{array}\right\}\right)
\end{aligned}
$$

- We encode interpretations as words.

$$
\left.\begin{array}{l}
\left.a a b,\left\{\begin{array}{l}
x \mapsto 1 \\
y \mapsto 3
\end{array}\right\},\left\{\begin{array}{l}
x: \\
X \mapsto\{2,3\} \\
Y \mapsto\{1,2\}
\end{array}\right\}\right)
\end{array} \begin{array}{cccc}
& a & a & b \\
y: & 1 & 0 & 0 \\
X: & 0 & 0 & 1 \\
X: & 0 & 1 & 1 \\
Y: & 1 & 1 & 0
\end{array}\right]
$$

- Given a formula with n free variables, we encode an interpretation ($w, \mathcal{V}_{1}, \mathcal{V}_{2}$) as a word enc $\left(w, \mathcal{V}_{1}, \mathcal{V}_{2}\right)$ over the alphabet $\Sigma \times\{0,1\}^{n}$.
- The language of the formula φ, denoted by $L(\varphi)$, is given by

$$
L(\varphi):=\left\{\operatorname{enc}\left(w, \mathcal{V}_{1}, \mathcal{V}_{2}\right) \mid\left(w, \mathcal{V}_{1}, \mathcal{V}_{2}\right) \vDash \varphi\right\}
$$

- We prove by induction on the structure of φ that $L(\varphi)$ is regular (and explicitely construct an automaton for it).

Case $\varphi=Q_{a}(x)$

- φ has one free variable, and so its interpretations are encoded as words over $\Sigma \times\{0,1\}$

$$
\left.\mathcal{L}(\varphi)=\left\{\begin{array}{lll}
a_{1} \\
\beta_{1}
\end{array}\right] \cdots\left[\begin{array}{l}
a_{k} \\
\beta_{k}
\end{array}\right]: \begin{array}{l}
k \geq 1 ; \\
\begin{array}{l}
a_{1} \ldots a_{k} \in \Sigma^{k}, \beta_{1} \ldots \beta_{k} \in\{0,1\}^{k} ; \text { and } \\
\beta_{i}=1 \text { for a single index } i \in\{1, \ldots, k\} \\
\text { such that } a_{i}=a .
\end{array}
\end{array}\right\}
$$

$$
\left[\begin{array}{l}
a \\
0
\end{array}\right],\left[\begin{array}{l}
b \\
0
\end{array}\right] \quad\left[\begin{array}{l}
a \\
0
\end{array}\right],\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Case $\varphi=x<y$

- φ has two free variables, and so its interpretations are encoded as words over $\Sigma \times\{0,1\}^{2}$

$$
\left.\mathcal{L}(\varphi)=\left\{\begin{array}{llll}
& {\left[\begin{array}{c}
a_{1} \\
\beta_{1} \\
\gamma_{1}
\end{array}\right] \ldots} \\
\ldots & \ldots \\
a_{k} \\
\beta_{k} \\
\gamma_{k}
\end{array}\right] \begin{array}{l}
k \geq 1 ; \\
: \begin{array}{l}
a_{1} \ldots a_{k} \in \Sigma^{k}, \beta_{1} \ldots \beta_{k}, c_{1} \ldots c_{k} \in\{0,1\}^{k} ; \\
\beta_{i}=1 \text { for a single index } i \in\{1, \ldots, k\} ; \\
\gamma_{j}=1 \text { for a single index } j \in\{1, \ldots, k\} ; \text { and } \\
i<j .
\end{array}
\end{array}\right\}
$$

Case $\varphi=x \in X$

- φ has two free variables, and so its interpretations are encoded as words over $\Sigma \times\{0,1\}^{2}$

$$
\left.\left.\mathcal{L}(\varphi)=\left\{\begin{array}{c}
{\left[\begin{array}{l}
a_{1} \\
\beta_{1} \\
c_{1}
\end{array}\right] \cdots} \\
\ldots \\
\ldots
\end{array}\right] \begin{array}{c}
a_{k} \\
\beta_{k} \\
c_{k}
\end{array}\right]: \begin{array}{l}
k \geq 1, \\
\begin{array}{l}
a_{1} \ldots a_{k} \in \Sigma^{k}, \beta_{1} \ldots \beta_{k}, \gamma_{1} \ldots \gamma_{k} \in\{0,1\}^{k} ; \\
\beta_{i}=1 \text { for a single index } i \in\{1, \ldots, k\} ; \text { and } \\
\beta_{i}=1 \text { implies } \gamma_{i}=1 \text { for all } i \in\{1, \ldots, k\} .
\end{array}
\end{array}\right\}
$$

$$
\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
b \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
a \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
b \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
b \\
0 \\
1
\end{array}\right]
$$

Case $\varphi=\neg \psi$

- Then free $(\varphi)=$ free (ψ). By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is equal to $\overline{L(\psi)}$ minus the words that do not encode any implementation („the garbage").
- Equivalently, $L(\varphi)$ is equal to the intersection of $\overline{L(\psi)}$ and the encodings of all interpretations of ψ.
- We show that the set of these encodings is regular.
- Condition for encoding: Let x be a free first-oder variable of ψ. The projection of an encoding onto x must belong to $0^{*} 10^{*}$ (because it represents one position).
- So we just need an automaton for the words satisfying this condition for every free first-order variable.

Example: $\operatorname{free}(\varphi)=\{x, y\}$

Case $\varphi=\varphi_{1} \vee \varphi_{2}$

- Then free $(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$. By i.h. $L\left(\varphi_{1}\right)$ and $L\left(\varphi_{2}\right)$ are regular.
- If free $\left(\varphi_{1}\right)=$ free $\left(\varphi_{2}\right)$ then $L(\varphi)=L\left(\varphi_{1}\right) \cup L\left(\varphi_{2}\right)$ and so $L(\varphi)$ is regular.
- If free $\left(\varphi_{1}\right) \neq$ free $\left(\varphi_{2}\right)$ then we extend $L\left(\varphi_{1}\right)$ to L_{1} encoding all interpretations of free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$ whose projection onto free $\left(\varphi_{1}\right)$ belongs to $L\left(\varphi_{1}\right)$. Similarly we extend $L\left(\varphi_{2}\right)$ to L_{2}. We have
- L_{1} and L_{2} are regular.
- $L(\varphi)=\left(L_{1} \cup L_{2}\right) \cap \operatorname{Enc}(\varphi)$, where $\operatorname{Enc}(\varphi)$ is the set of encodings of all interpretations of φ.

Example: $\varphi=Q_{a}(x) \vee Q_{b}(y)$

- L_{1} contains the encodings of all interpretations ($w,\left\{x \mapsto n_{1}, y \mapsto n_{2}\right\}$) such that the encoding of ($w,\left\{x \mapsto n_{1}\right\}$) belongs to $L\left(Q_{a}(x)\right)$.
- Automata for $L\left(Q_{a}(x)\right)$ and L_{1} :

Cases $\varphi=\exists X \psi$ and $\varphi=\exists X \psi$

- Then free $(\varphi)=$ free $(\psi) \backslash\{x\}$ or free $(\varphi)=$ free $(\psi) \backslash\{X\}$
- By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is the result of projecting $L(\psi)$ onto the components for free $(\psi) \backslash\{x\}$ or for free $(\psi) \backslash\{X\}$.

Example: $\varphi=Q_{a}(x)$

- Automata for $Q_{a}(x)$ and $\exists x Q_{a}(x)$

The mega-example

- We compute an automaton for

$$
\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \forall x\left(\neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- First we rewrite it into

$$
\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)
$$

- In the next slides we

1. compute a DFA for last (x)
2. compute DFAs for $\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)$ and

$$
\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)
$$

3. compute a DFA for the complete formula.

- We denote the DFA for a formula ψ by $[\psi]$.

$[\operatorname{last}(x)]$

$[x<y]$

$[\operatorname{last}(x)]$

$[\operatorname{last}(x)]$

$[\operatorname{last}(x)]$

$[\exists y x<y]$

$[\operatorname{Enc}(\exists y x<y)]$
$\left[\begin{array}{l}a \\ 0\end{array}\right],\left[\begin{array}{l}b \\ 0\end{array}\right]$
$\left[\begin{array}{l}a \\ 0\end{array}\right],\left[\begin{array}{l}b \\ 0\end{array}\right]$
$\left[\begin{array}{l}a \\ 1\end{array}\right],\left[\begin{array}{l}b \\ 1\end{array}\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right]$

$\left[Q_{b}(x)\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right]$

$\left[\neg Q_{a}(x)\right]$

$\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

$\left[\begin{array}{l}a \\ 0\end{array}\right],\left[\begin{array}{l}b \\ 0\end{array}\right]$
$\left[\begin{array}{l}a \\ 0\end{array}\right],\left[\begin{array}{l}b \\ 0\end{array}\right]$
$\left[\begin{array}{l}a \\ 0\end{array}\right],\left[\begin{array}{l}b \\ 0\end{array}\right]$

$[\neg \operatorname{last}(x)]$

$\left[\exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

$$
\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]
$$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right.$

$\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

