Verification

Verification

- We use languages to describe the implementation and the specification of a system.
- We reduce the verification problem to language inclusion between implementation and specification

- 1 while x = 1 do 2 if y = 1 then 3 $x \leftarrow 0$ 4 $y \leftarrow 1 - x$ 5 end
- Configuration: triple $[l, n_x, n_y]$ where
 - *l* is the current value of the program counter, and
 - n_x , n_y are the current values of x, y

Examples: [1,1,1], [5,0,1]

- Initial configuration: configuration with l = 1
- Potential execution: finite or infinite sequence of configurations

Examples: [1,1,1][4,1,0] [2,1,0][5,1,0] [1,1,0][2,1,0][4,1,0][1,1,0]

1 while
$$x = 1$$
 do
2 if $y = 1$ then
3 $x \leftarrow 0$
4 $y \leftarrow 1 - x$
5 end

• Execution: potential execution starting at an initial configuration, and where configurations are followed by their "legal successors" according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1] [1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite or ending at a configuration without successors)

Verification as a language problem

- Implementation: set *E* of executions
- Specification:
 - subset *P* of the potential executions that satisfy a property , or
 - subset V of the potential executions that violate a property
- Implementation satisfies specification if :
 - $E \subseteq P$, or
 - $E \cap V = \emptyset.$
- If *E* and *P* regular: inclusion checkable with automata
- If *E* and *V* regular: disjointness checkable with automata

Verification as a language problem

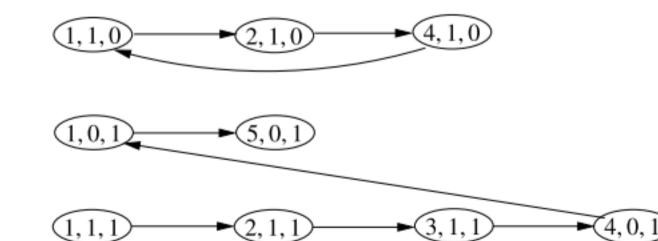
- Implementation: set *E* of executions
- Specification:
 - subset *P* of the potential executions that satisfy a property , or
 - subset V of the potential executions that violate a property
- Implementation satisfies specification if :
 - $E \subseteq P$, or
 - $E \cap V = \emptyset.$
- If E and P regular: inclusion checkable with automata
- If *E* and *V* regular: disjointness checkable with automata
- How often is the case that *E*, *P*, *V* are regular?

System NFA

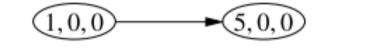
- 1 while x = 1 do
- 2 **if** y = 1 then
- 3 $x \leftarrow 0$

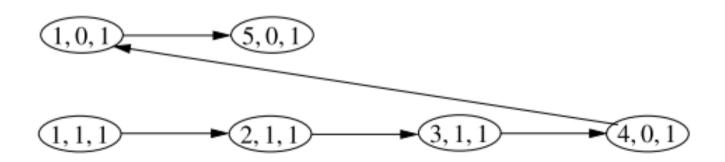
$$4 \quad y \leftarrow 1 - x$$

5 end

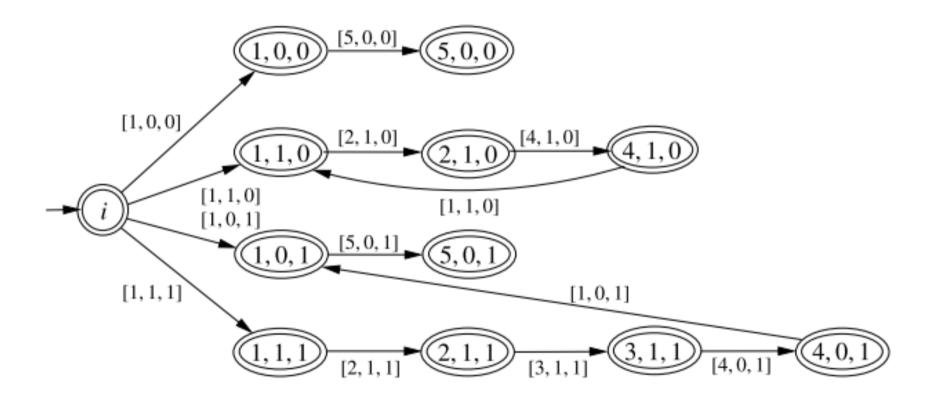


System NFA



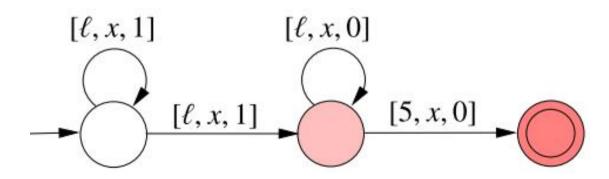


System NFA

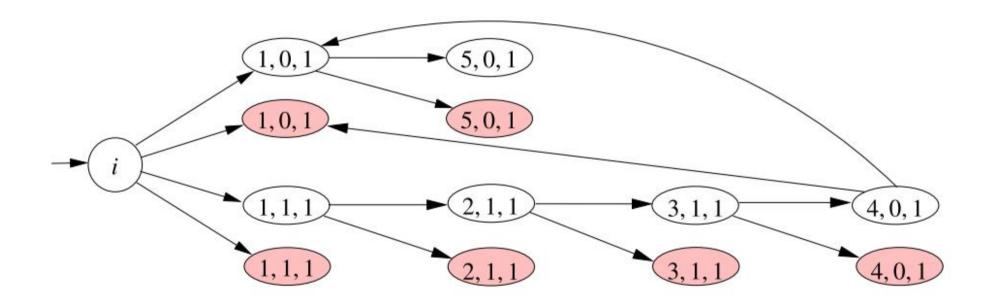


Property NFA

- Is there a full execution such that
 - initially y = 1,
 - finally y = 0, and
 - y never increases?
- Set of potential executions for this property:
 [l, x, 1][l, x, 1]* [l, x, 0]* [5, x, 0]
- Automaton for this set:



Intersection of the system and property NFAs



• Automaton is empty, and so no execution satisfies the property

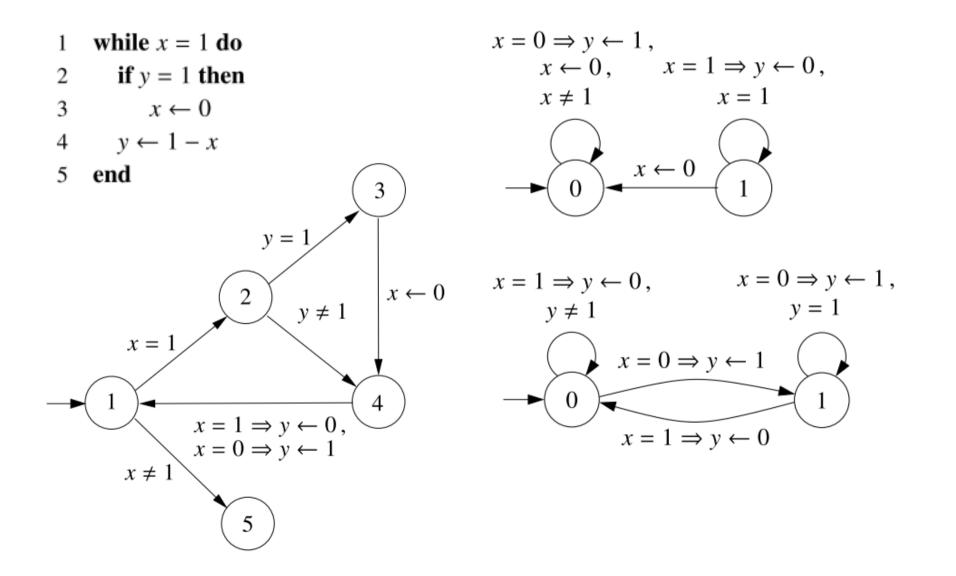
Another property

- Is the assignment $y \leftarrow x 1$ redundant?
- Potential executions where the assignment is executed at least once and it changes the value of y:

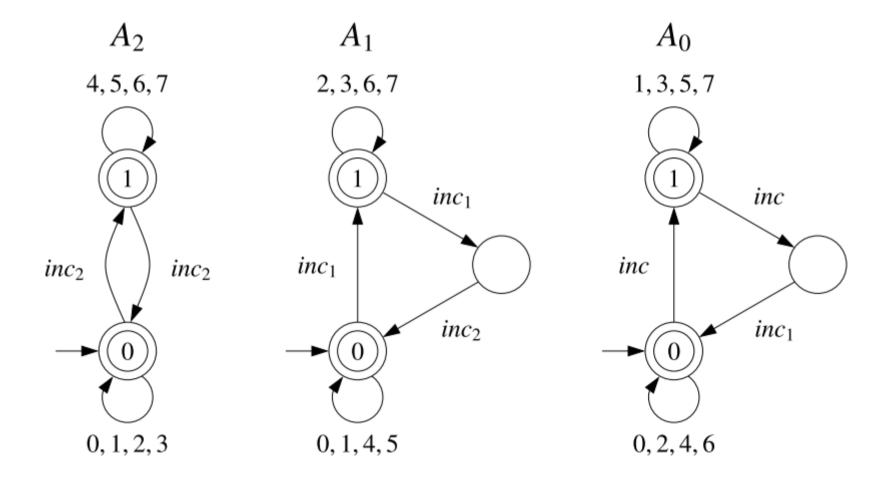
 $[l, x, y]^*([4, x, 0][1, x, 1] + [4, x, 1][1, x, 0]) [l, x, y]^*$

• Therefore: assignment redundant iff none of these potential executions is a real execution of the program.

Networks of automata

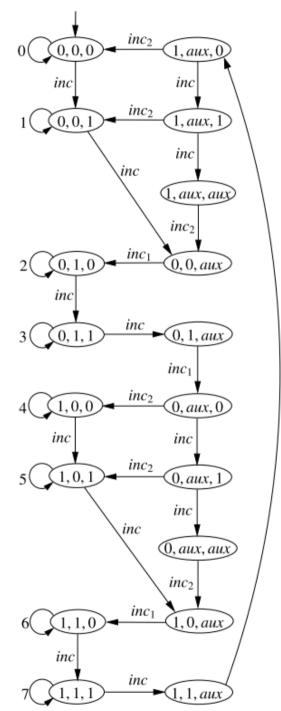


Networks of automata



- Tuple $\mathcal{A} = \langle A_1, \dots, A_n \rangle$ of NFAs.
- Each NFA has its own alphabet Σ_i of actions
- Alphabets usually not disjoint!
- A_i participates in action a if $a \in \Sigma_i$.
- A configuration is a tuple $\langle q_1, ..., q_n \rangle$ of states, one for each automaton of the network.
- $\langle q_1, ..., q_n \rangle$ enables *a* if every participant in *a* is in a state from which an *a*-transition is possible.
- Enabled actions can occur, and their occurrence simultaneously changes the states of their participants. Non-participants stay idle and don't change their states.

Configuration graph of the network



 inc_1

Asynchronous product

AsyncProduct(A_1, \ldots, A_n) **Input:** a network of automata $\mathcal{A} = \langle A_1, \ldots, A_n \rangle$, where $A_i = (Q_i, \Sigma_i, \delta_i, Q_{0i}, F_i)$ for every $i = 1, \ldots n$. **Output:** NFA $A_1 \otimes \cdots \otimes A_n = (Q, \Sigma, \delta, Q_0, F)$ recognizing $L(\mathcal{A})$.

1 $O, \delta, F \leftarrow \emptyset$ 2 $Q_0 \leftarrow Q_{01} \times \cdots \times Q_{0n}$ 3 $W \leftarrow O_0$ 4 while $W \neq \emptyset$ do 5 **pick** $[q_1, \ldots, q_n]$ from W add $[q_1,\ldots,q_n]$ to Q 6 if $\bigwedge_{i=1}^{n} q_i \in F_i$ then add $[q_1, \ldots, q_n]$ to F 7 for all $a \in \Sigma_1 \cup \ldots \cup \Sigma_n$ do 8 9 for all $i \in [1..n]$ do if $a \in \Sigma_i$ then $Q'_i \leftarrow \delta_i(q_i, a)$ else $Q'_i = \{q_i\}$ 10 for all $[q'_1, \ldots, q'_n] \in Q'_1 \times \ldots \times Q'_n$ do 11 if $[q'_1, \ldots, q'_n] \notin Q$ then add $[q'_1, \ldots, q'_n]$ to W 12 add $([q_1, ..., q_n], a, [q'_1, ..., q'_n])$ to δ 13 return $(Q, \Sigma, \delta, Q_0, F)$ 14

Concurrent programs as networks of automata: Lamport's 1-bit algorithm (JACM86)

```
Shared variables: b[0], ..., b[n-1] \in \{0,1\}, initially 0
Process i \in \{0, ..., n-1\}
```

repeat forever

```
noncritical section

T: b[i]:=1

for j \in \{0, ..., i-1\}

if b[j]=1 then b[i]:=0

await \neg b[j]

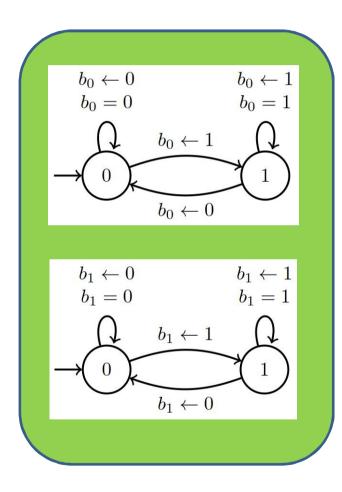
goto T

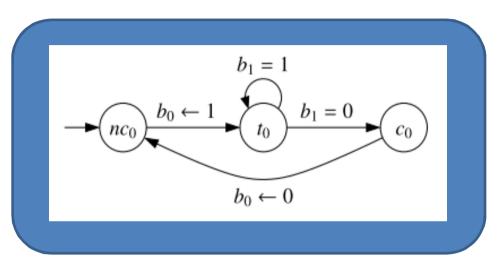
for j \in \{i+1, ..., n-1\} await \neg b[j]

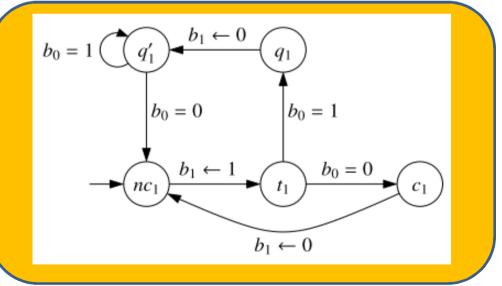
critical section

b[i]:=0
```

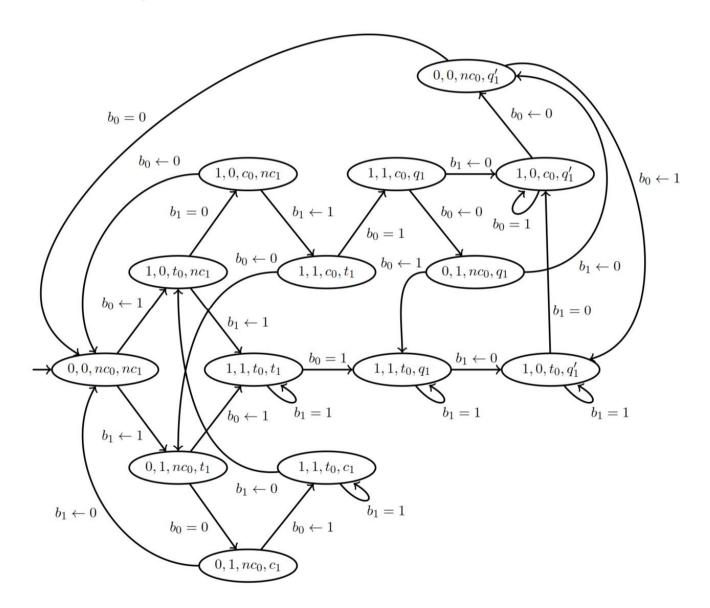
Network for the two-process case







Asynchronous product



Checking properties of the algorithm

- Deadlock freedom: every configuration has at least one successor.
- Mutual exclusion: no configuration of the form
 [b₀, b₁, c₀, c₁] is reachable
- Bounded overtaking (for process 0): after process 0 signals interest in accessing the critical section, process 1 can enter the critical section at most once before process 0 enters.
 - Let NC_i, T_i, C_i be the configurations in which process i is non-critical, trying, or critical
 - Set of potential executions violating the property:

 $\Sigma^* T_0 (\Sigma \setminus C_0)^* C_1 (\Sigma \setminus C_0)^* NC_1 (\Sigma \setminus C_0)^* C_1 \Sigma^*$

The state-explosion problem

- In sequential programs, the number of reachable configurations grows exponentially in the number of variables.
- Proposition: The following problem is PSPACEcomplete.
 - Given: a boolean program π (program with only boolean variables), and a NFA A_V recognizing a set of potential executions
 - Decide: Is $E_{\pi} \cap L(A_V)$ empty?

The state-explosion problem

- In concurrent programs, the number of reachable configurations also grows exponentially in the number of components.
- Proposition: The following problem is PSPACEcomplete.
 - Given: a network of automata $\mathcal{A} = \langle A_1, ..., A_n \rangle$ and a NFA A_V recognizing a set of potential executions of \mathcal{A}
 - Decide: Is $L(A_1 \otimes \cdots \otimes A_n \otimes A_V) = \emptyset$?

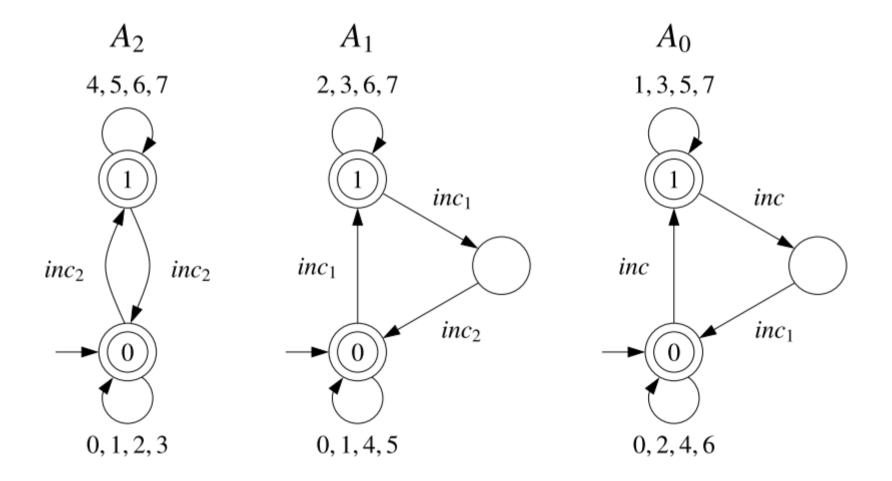
On-the-fly Verification

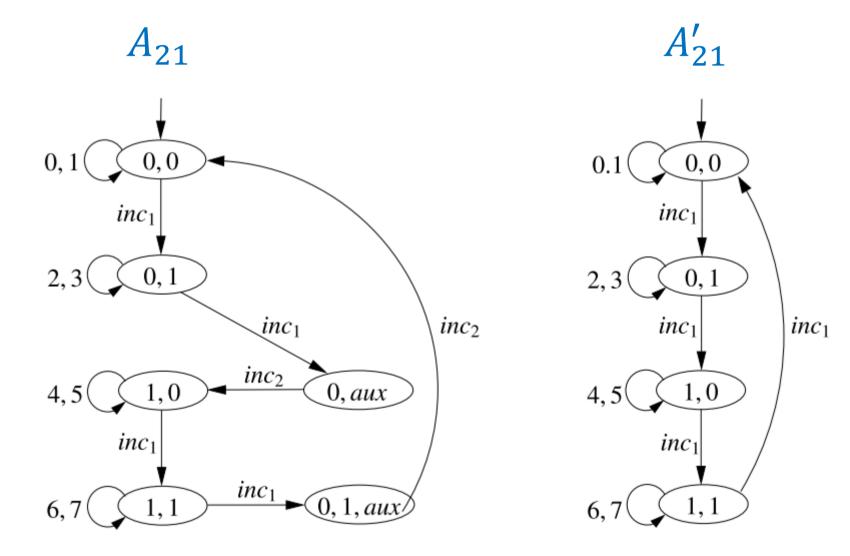
```
CheckViol(A_1,\ldots,A_n,V)
Input: a network \mathcal{A} = \langle A_1, \dots, A_n \rangle, where A_i = (Q_i, \Sigma_i, \delta_i, Q_{0i}, F_i) for 1 \le i \le n;
             an NFA V = (O_V, \Sigma_V, \delta_V, O_{0\nu}, F_{\nu}).
Output: true if L(A_1 \otimes \cdots \otimes A_n \otimes V) is nonempty, false otherwise.
  1 Q \leftarrow \emptyset; Q_0 \leftarrow Q_{01} \times \cdots \times Q_{0n} \times Q_{0v}
 2 W \leftarrow O_0
  3 while W \neq \emptyset do
  4
           pick [q_1, \ldots, q_n, q] from W
  5
          add [q_1,\ldots,q_n,q] to Q
  6
          for all a \in \Sigma_1 \cup \ldots \cup \Sigma_n do
  7
                for all i \in [1..n] do
                   if a \in \Sigma_i then Q'_i \leftarrow \delta_i(q_i, a) else Q'_i = \{q_i\}
  8
                O' \leftarrow \delta_V(a, a)
 9
                for all [q'_1, \ldots, q'_n, q'] \in Q'_1 \times \ldots \times Q'_n \times Q' do
10
                   if \bigwedge_{i=1}^{n} q'_i \in F_i and q' \in F_v then return true
11
                   if [q'_1, \ldots, q'_n, q'] \notin Q then add [q'_1, \ldots, q'_n, q'] to W
12
13
       return false
```

To check emptiness of an asynchronous product $A_1 \otimes \cdots \otimes A_n$ we can

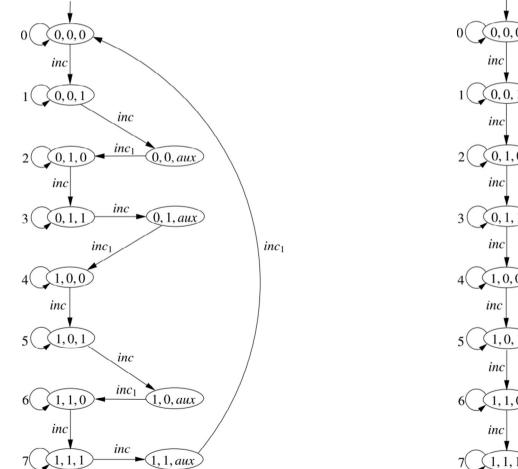
- Replace A_1 by an automaton A'_1 recognizing $proj_{\Sigma \setminus \Sigma_1}(L(A_1))$ and compute $A_{12} = A'_1 \otimes A_2$;
- Replace A_{12} by an automaton A'_{12} recognizing $proj_{\Sigma \setminus (\Sigma_1 \cup \Sigma_2)}(L(A_{12}))$ and compute $A_{13} = A'_{12} \otimes A_3$;
- Replace $A_{1(n-1)}$ by an automaton $A'_{1(n-1)}$ recognizing $proj_{\Sigma \setminus (\Sigma_1 \cup \cdots \cup \Sigma_{n-1})} (L(A_{1(n-1)}))$ and compute $A_{1n} = A'_{1(n-1)} \otimes A_n$

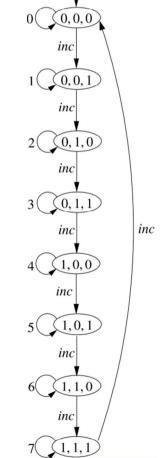
This can save space w.r.t. the direct computation .





 A'_{20} (proj. on visible actions) A_{20}



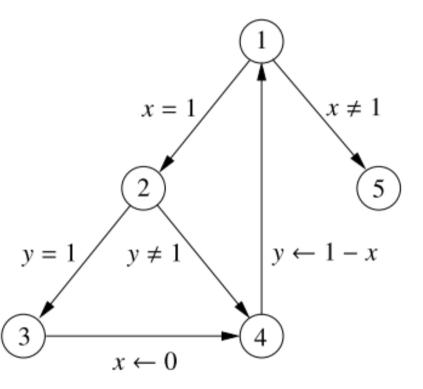


Symbolic exploration

- A technique to palliate the state-explosion problem
- Configurations can be encoded as words.
- The set of reachable configurations of a program can be encoded as a language.
- We use automata to compactly store the set of reachable configurations.

Flowgraphs

1 while x = 1 do 2 if y = 1 then 3 $x \leftarrow 0$ 4 $y \leftarrow 1 - x$ 5 end



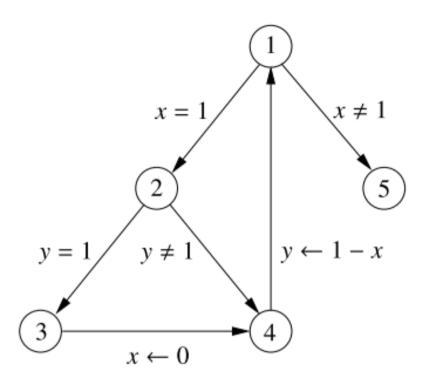
Step relations

- Let l, l' be two control points of a flowgraph.
- The step relation $S_{l,l'}$ contains all pairs

 $([l, x_0, y_0], [l', x'_0, y'_0])$

of configurations such that :

if at point *l* the current values of x, y are x_0, y_0 , then the program can take a step, after which the new control point is *l'*, and the new values of x, y are x'_0, y'_0 .

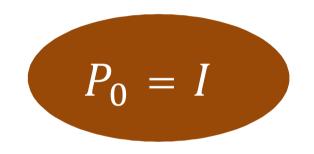


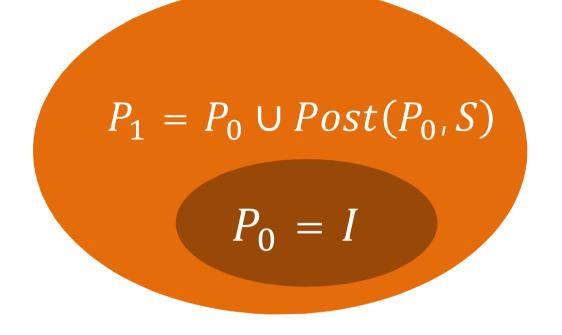
 $S_{4,1} = \{ ([4, x_0, y_0], [1, x_0, 1 - x_0]) | x_0, y_0 \in \{0, 1\} \}$

• The global step relation S is the union of the step relations $S_{l,l'}$ for all pairs l, l' of control points.

Computing reachable configurations

- Start with the set of initial configurations.
- Iteratively: add the set of successors of the current set of configurations until a fixed point is reached.





 $P_1 = P_0 \cup Post(P_0, S)$ $P_0 = I$

 $P_2 = P_1 \cup Post(P_1, S)$

 $P_1 = \overline{P_0 \cup Post(P_0, S)}$

 $P_0 = I$

 $P_2 = P_1 \cup Post(P_1, S)$

 $P_1 = P_0 \cup Post(P_0, S)$ $P_0 = I$

 $P_2 = P_1 \cup Post(P_1, S)$

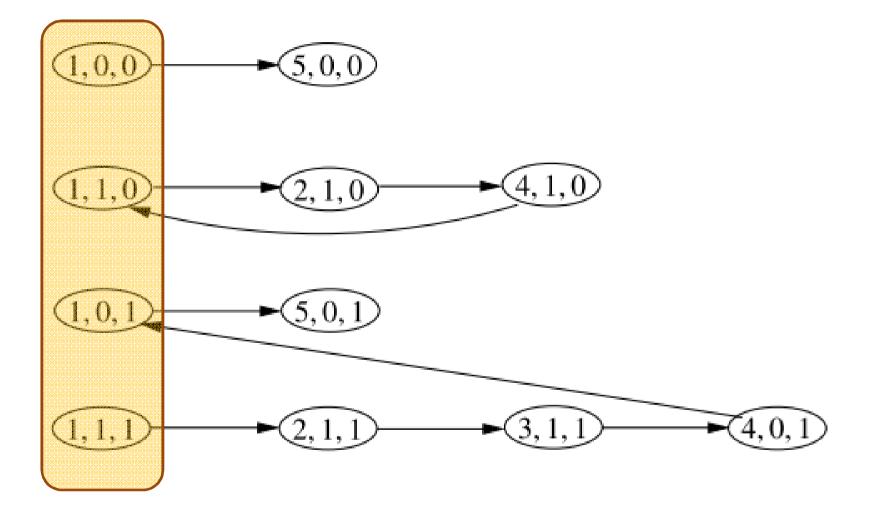
Reach(I, R) Input: set I of initial configurations; relation R Output: set of configurations reachable form I

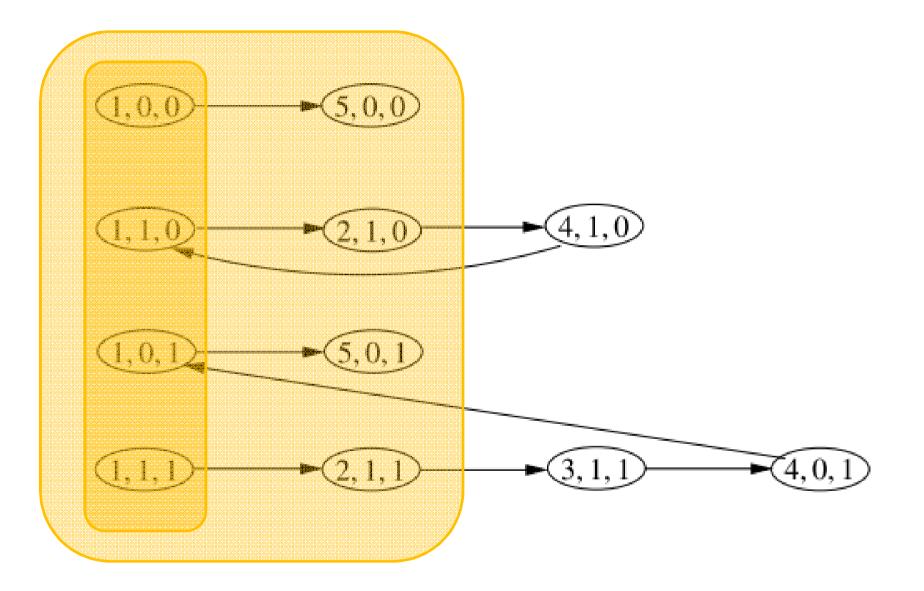
1
$$OldP \leftarrow \emptyset; P \leftarrow I$$

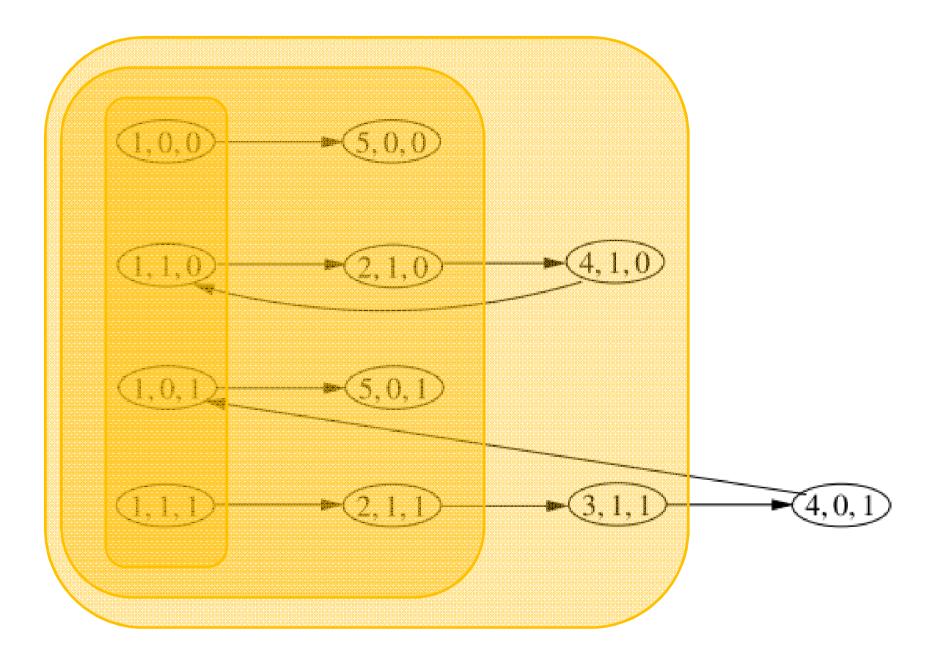
2 while
$$P \neq OldP$$
 do

3
$$OldP \leftarrow P$$

- 4 $P \leftarrow \text{Union}(P, \text{Post}(P, S))$
- 5 return P

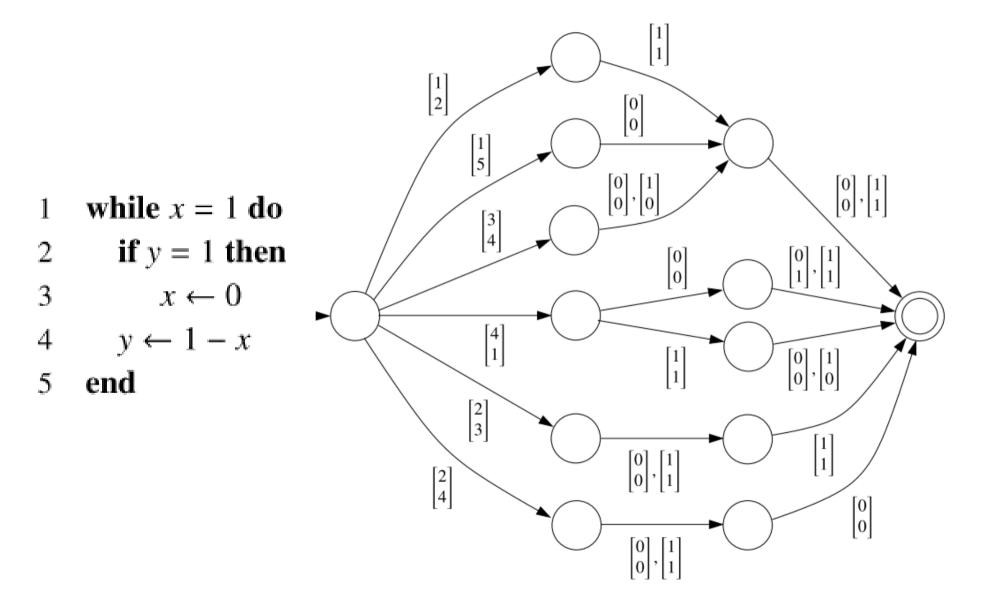






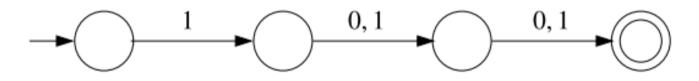
►(5,0,0) (1,0,0)(4, 1, 0) •(2,1,0) (1, 1, 0)∞(5,0,Ì) (1,0,1)(1,1,1) $(\mathfrak{Z},\mathfrak{l},\mathfrak{I})$ ►(2, 1, Ì) (4, 0, 1)

Example: Transducer for the global step relation

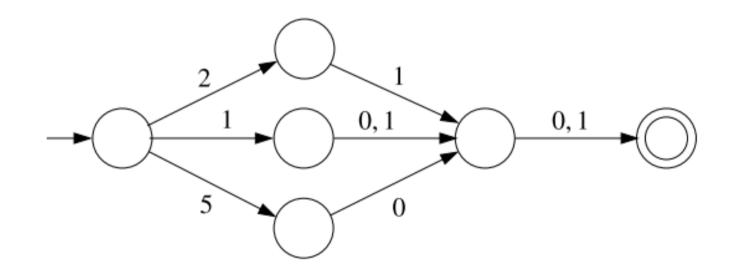


Example: DFAs generated by Reach

• Initial configurations

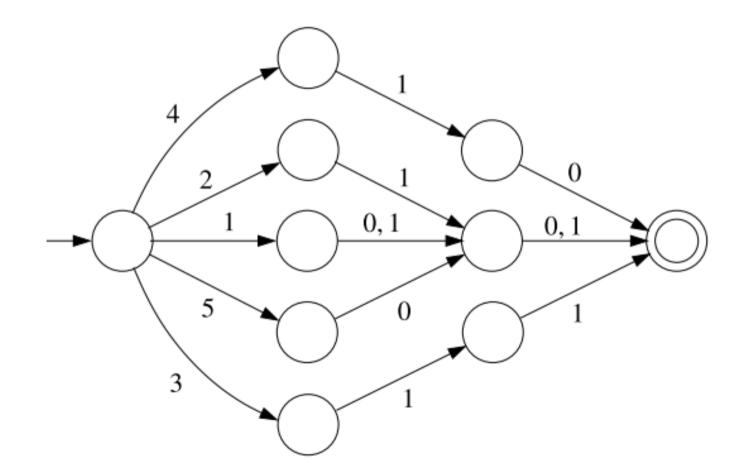


• Configurations reachable in at most 1 step



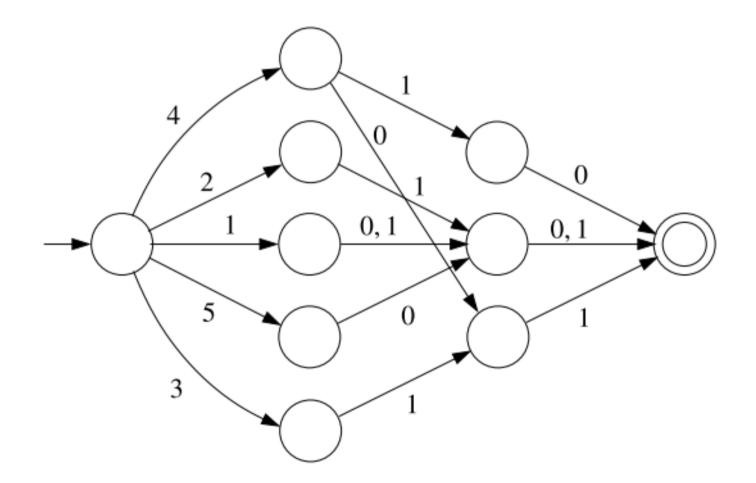
Example: DFAs generated by Reach

• Configurations reachable in at most 2 steps



Example: DFAs generated by Reach

• Configurations reachable in at most 3 steps

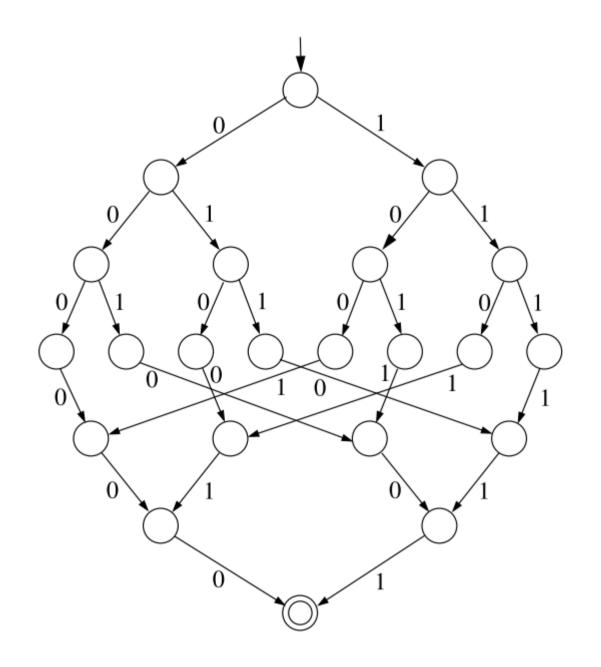


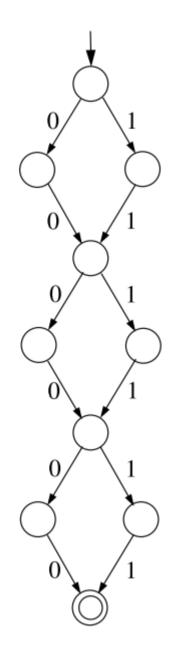
Variable orders

- Consider the set Y of tuples $[x_1, ..., x_{2k}]$ of booleans such that $x_1 = x_{k+1}, x_2 = x_{k+2}, ..., x_k = x_{2k}$
- A tuple $[x_1, ..., x_{2k}]$ can be encoded by the word $x_1x_2 ... x_{2k-1}x_{2k}$ but also by the word $x_1x_{k+1} ... x_kx_{2k}$.
- For k = 3, the encodings of Y are then, respectively

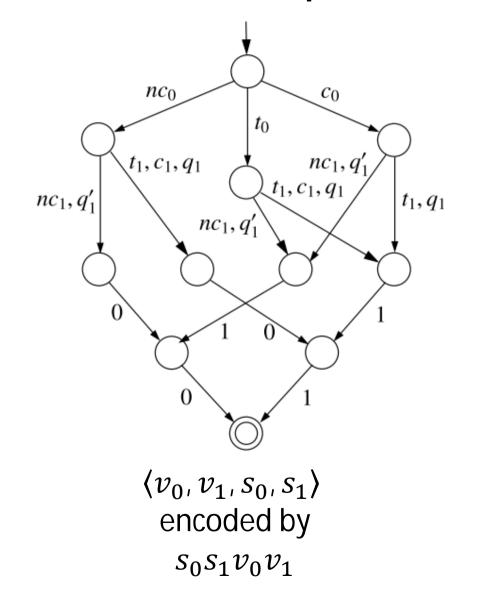
 $\{000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111\} \\ \{000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111\}$

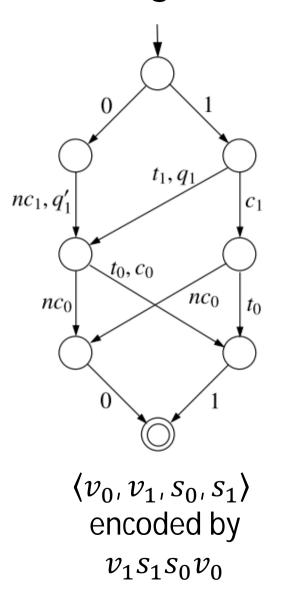
• The minimal DFAs for these languages have very different sizes!

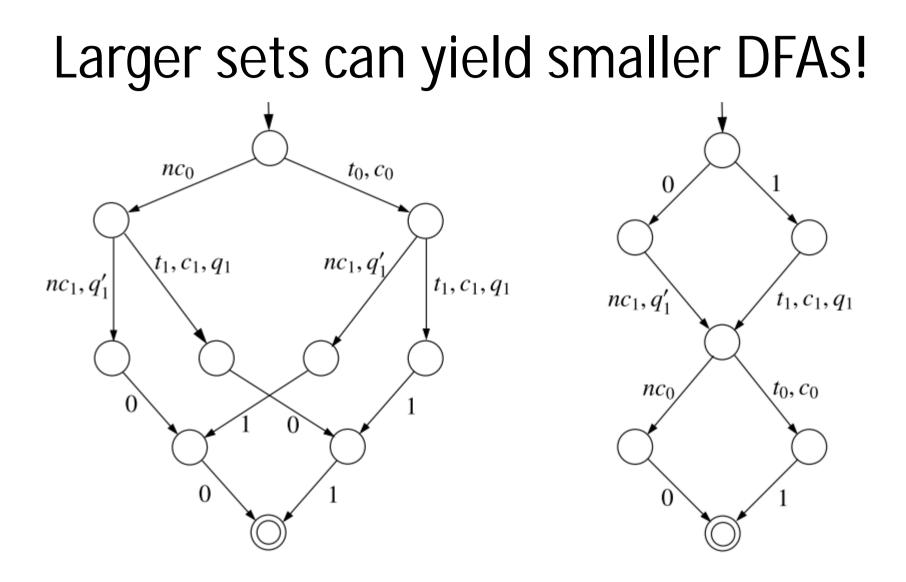




Another example: Lamport's algorithm







• DFAs after adding the configuration $\langle c_0, c_1, 1, 1 \rangle$ to the set

- When encoding configurations, good variable orders can lead to much smaller automata.
- Unfortunately, the problem of finding an optimal encoding for a language represented by a DFA is NP-complete.