
Verification

Verification

• We use languages to describe the
implementation and the specification of a
system.

• We reduce the verification problem to
language inclusion between implementation
and specification

• Configuration: triple [݈,݊௫ ,݊௬] where
• ݈ is the current value of the program counter, and
• ݊௫,݊௬ are the current values of ݕ,ݔ

Examples: [1,1,1], [5,0,1]

• Initial configuration: configuration with ݈ = 1

• Potential execution: finite or infinite sequence of configurations

Examples: [1,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Execution: potential execution starting at an initial configuration,
and where configurations are followed by their „legal
successors“ according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite
or ending at a configuration without successors)

Verification as a language problem
• Implementation: set ܧ of executions
• Specification:

– subset ܲ of the potential executions that satisfy a
property , or

– subset ܸ of the potential executions that violate a
property

• Implementation satisfies specification if :
 ܧ ⊆ ܲ , or
 ∩ ܧ ܸ = ∅.

• If ܧ and ܲ regular: inclusion checkable with automata
• If ܧ and ܸ regular: disjointness checkable with automata

• How often is the case that ܧ,ܲ,ܸ are regular?

Verification as a language problem
• Implementation: set ܧ of executions
• Specification:

– subset ܲ of the potential executions that satisfy a
property , or

– subset ܸ of the potential executions that violate a
property

• Implementation satisfies specification if :
 ܧ ⊆ ܲ , or
 ∩ ܧ ܸ = ∅.

• If ܧ and ܲ regular: inclusion checkable with automata
• If ܧ and ܸ regular: disjointness checkable with automata

• How often is the case that ܧ,ܲ,ܸ are regular?

System NFA

System NFA

System NFA

Property NFA
• Is there a full execution such that

– initially ݕ = 1,
– finally ݕ = 0, and
– ݕ never increases?

• Set of potential executions for this property:
݈, ,ݔ 1 ݈, ,ݔ 1 ∗ ݈, ,ݔ 0 ∗ [5, ,ݔ 0]

• Automaton for this set:

Intersection of the system and
property NFAs

• Automaton is empty, and so no execution satisfies the
property

Another property
• Is the assignment ݕ ← ݔ − 1 redundant?
• Potential executions where the assignment is

executed at least once and it changes the
value of :ݕ
݈, ݕ,ݔ ∗ ,ݔ,4 0 ,ݔ,1 1 + 4, ,ݔ 1 ,ݔ,1 0 ݈, ,ݔ ݕ ∗

• Therefore: assignment redundant iff none of
these potential executions is a real execution
of the program.

Networks of automata

Networks of automata

• Tuple ࣛ = ,ଵܣ … ܣ, of NFAs .
• Each NFA has its own alphabet Σ of actions
• Alphabets usually not disjoint!
• ܣ participates in action ܽ if ܽ ∈ Σ .
• A configuration is a tuple ݍଵ, … , ݍ of states, one for

each automaton of the network.
• ,ଵݍ … , ݍ enables ܽ if every participant in ܽ is in a

state from which an ܽ-transition is possible.
• Enabled actions can occur, and their occurrence

simultaneously changes the states of their
participants. Non-participants stay idle and don‘t
change their states.

Configuration
graph of the
network

Asynchronous product

Concurrent programs as networks of automata:
Lamport‘s 1-bit algorithm (JACM86)

Shared variables: b[0], ..., b[n-1] ∈ {0,1}, initially 0
Process i ∈ {0, ...,n-1}

repeat forever
noncritical section

T: b[i]:=1
for j ∈ {0, ...,i-1}

if b[j]=1 then b[i]:=0
await ¬b[j]
goto T

for j ∈ {i+1, ...,n-1} await ¬b[j]
critical section
b[i]:=0

Network for the two-process case

Asynchronous product

Checking properties of the algorithm

• Deadlock freedom: every configuration has at least one
successor.

• Mutual exclusion: no configuration of the form
[ܾ, ܾଵ, ܿ, ܿଵ] is reachable

• Bounded overtaking (for process 0): after process 0 signals
interest in accessing the critical section, process 1 can enter
the critical section at most once before process 0 enters.
– Let ܰܥ , ܶ ܥ, be the configurations in which process i is

non-critical, trying, or critical
– Set of potential executions violating the property:

The state-explosion problem

• In sequential programs, the number of
reachable configurations grows exponentially
in the number of variables.

• Proposition: The following problem is PSPACE-
complete.
– Given: a boolean program ߨ (program with only

boolean variables), and a NFA ܣ recognizing a
set of potential executions

– Decide: Is ܧగ ∩ (ܣ)ܮ empty?

The state-explosion problem

• In concurrent programs, the number of
reachable configurations also grows
exponentially in the number of components.

• Proposition: The following problem is PSPACE-
complete.
– Given: a network of automata ࣛ = ,ଵܣ … ܣ,

and a NFA ܣ recognizing a set of potential
executions of ࣛ

– Decide: Is ܮ ܣ⊗⋯⊗ଵܣ ܣ⊗ = ∅ ?

On-the-fly Verification

Compositional verification
To check emptiness of an asynchronous product
ଵܣ ܣ⊗⋯⊗ we can

– Replace ଵܣ by an automaton ଵᇱܣ recognizing ܮ)ஊ∖ஊభ݆ݎ ଵܣ)
and compute ଵଶܣ = ଵᇱܣ ;ଶܣ⊗

– Replace ଵଶܣ by an automaton ଵଶᇱܣ recognizing
ܮ)ஊ∖(ஊభ∪ஊమ)݆ݎ ଵଶܣ) and compute ଵଷܣ = ଵଶᇱܣ ;ଷܣ⊗

– ⋯
– Replace ܣଵ(ିଵ) by an automaton ଵ(ିଵ)ܣ

ᇱ recognizing
ஊ∖(ஊభ∪⋯∪ஊషభ)݆ݎ ܮ ଵܣ ିଵ and compute
ଵܣ = ଵ(ିଵ)ܣ

ᇱ ܣ⊗
This can save space w.r.t. the direct computation .

Compositional verification

Compositional verification

ଶଵܣ ଶଵᇱܣ

Compositional verification
ଶܣ ଶᇱܣ (proj. on visible actions)

Symbolic exploration

• A technique to palliate the state-explosion
problem

• Configurations can be encoded as words.
• The set of reachable configurations of a

program can be encoded as a language.
• We use automata to compactly store the set

of reachable configurations.

Flowgraphs

Step relations

• Let ݈, ݈′ be two control points of a flowgraph.
• The step relation ܵ,ᇲ contains all pairs

(݈, ݕ,ݔ , ݈ᇱ, ᇱݔ ᇱݕ,)
of configurations such that :

if at point ݈ the current values of ݕ,ݔ are ݔ,ݕ,
then the program can take a step,
after which the new control point is ݈′, and the new
values of ݕ,ݔ are ݔᇱ ᇱݕ, .

ܵସ,ଵ = 4, ݕ,ݔ , 1, ,ݔ 1 − ݔ ݕ,ݔ ∈ 0,1 }

• The global step relation ܵ is the union of the step
relations ܵ,ᇲ for all pairs ݈, ݈ᇱ of control points.

Computing reachable configurations

• Start with the set of initial configurations.
• Iteratively: add the set of successors of the

current set of configurations until a fixed point
is reached.

ܲ = ܫ

ଵܲ = ܲ ∪ ݐݏܲ ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏܲ ଵܲ, ܵ

ܲ = ܫ

ଵܲ = ܲ ∪ ݐݏܲ ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏܲ ଵܲ, ܵ

ܲ = ܫ

ଵܲ = ܲ ∪ ݐݏܲ ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏܲ ଵܲ, ܵ

ܲ = ܫ

ଵܲ = ܲ ∪ ݐݏܲ ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏܲ ଵܲ, ܵ

ܲ = ܫ

ଵܲ = ܲ ∪ ݐݏܲ ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏܲ ଵܲ, ܵ

Example: Transducer for the global step relation

• Initial configurations

• Configurations reachable in at most 1 step

Example: DFAs generated by Reach

• Configurations reachable in at most 2 steps

Example: DFAs generated by Reach

• Configurations reachable in at most 3 steps

Example: DFAs generated by Reach

Variable orders
• Consider the set ܻ of tuples [ݔଵ, … , [ଶݔ of booleans such

that ଵݔ = ,ାଵݔ ଶݔ = ,ାଶݔ … , ݔ = ଶݔ
• A tuple [ݔଵ, … , [ଶݔ can be encoded by the word
ଶݔଵݔ ଶݔଶିଵݔ… but also by the word ାଵݔଵݔ ଶݔݔ… .

• For ݇ = 3, the encodings of ܻ are then, respectively

• The minimal DFAs for these languages have very
different sizes!

Another example: Lamport‘s algorithm

,ݒ ,ଵݒ ,ݏ ଵݏ
encoded by
ଵݒݒଵݏݏ

,ݒ ,ଵݒ ,ݏ ଵݏ
encoded by
ݒݏଵݏଵݒ

Larger sets can yield smaller DFAs!

• DFAs after adding the configuration ܿ, ܿଵ, 1,1 to the set

• When encoding configurations, good variable
orders can lead to much smaller automata.

• Unfortunately, the problem of finding an
optimal encoding for a language represented
by a DFA is NP-complete.

