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Verification

• We use languages to describe the 
implementation and the specification of a 
system. 

• We reduce the verification problem to 
language inclusion between implementation 
and specification



• Configuration: triple  [݈,݊௫ ,݊௬] where 
• ݈ is the current value of the program counter, and
• ݊௫,݊௬ are the current values of ݕ,ݔ

Examples: [1,1,1], [5,0,1]

• Initial configuration:  configuration with  ݈ = 1

• Potential execution: finite or infinite sequence of configurations

Examples: [1,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]



• Execution: potential execution starting at an initial configuration, 
and where configurations are followed by their „legal 
successors“ according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite 
or ending at a configuration without successors)



Verification as a language problem 
• Implementation:  set  ܧ of executions
• Specification: 

– subset  ܲ of the potential executions that  satisfy a 
property , or

– subset  ܸ of the potential executions that violate a 
property

• Implementation satisfies specification if :  
 ܧ ⊆ ܲ , or 
 ∩ ܧ ܸ =  ∅.   

• If  ܧ and  ܲ regular: inclusion checkable with automata
• If  ܧ and  ܸ regular: disjointness checkable with automata

• How often is the case that ܧ,ܲ,ܸ are regular?
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Property NFA
• Is there a full execution such that

– initially ݕ = 1,
– finally ݕ = 0,  and
– ݕ never increases?

• Set of potential executions for this property:
݈, ,ݔ 1 ݈, ,ݔ 1 ∗ ݈, ,ݔ 0 ∗ [5, ,ݔ 0]

• Automaton for this set:



Intersection of the system and 
property NFAs

• Automaton is empty, and so no execution satisfies the 
property



Another property
• Is the assignment  ݕ ← ݔ − 1 redundant?
• Potential executions where the assignment is

executed at least once and it changes the
value of :ݕ
݈, ݕ,ݔ ∗ ,ݔ,4 0 ,ݔ,1 1 + 4, ,ݔ 1 ,ݔ,1 0  ݈, ,ݔ ݕ ∗

• Therefore: assignment redundant iff none of 
these potential executions is a real execution 
of the program. 



Networks of automata



Networks of automata



• Tuple ࣛ = ,ଵܣ … ௡ܣ, of NFAs .
• Each NFA has its own alphabet  Σ௜ of actions
• Alphabets usually not disjoint! 
• ௜ܣ participates in action ܽ if ܽ ∈ Σ௜ .
• A configuration is a tuple ݍଵ, … , ௡ݍ of states, one for 

each automaton of the network.
• ,ଵݍ … , ௡ݍ enables ܽ if every participant in ܽ is in a 

state from which an ܽ-transition is possible.
• Enabled actions can occur, and their occurrence 

simultaneously changes the states of their 
participants. Non-participants stay idle and don‘t 
change their states.



Configuration 
graph of the 
network



Asynchronous product



Concurrent programs as networks of automata: 
Lamport‘s 1-bit algorithm (JACM86)

Shared variables:  b[0], ..., b[n-1] ∈ {0,1}, initially 0
Process i ∈ {0, ...,n-1} 

repeat forever
noncritical section

T:  b[i]:=1
for j ∈ {0, ...,i-1} 

if b[j]=1 then b[i]:=0
await ¬b[j]
goto T

for j ∈ {i+1, ...,n-1}  await ¬b[j]
critical section
b[i]:=0



Network for the two-process case



Asynchronous product 



Checking properties of the algorithm

• Deadlock freedom: every configuration has at least one 
successor.

• Mutual exclusion: no configuration of the form 
[ܾ଴, ܾଵ, ܿ଴, ܿଵ] is reachable

• Bounded overtaking (for process 0): after process 0 signals 
interest in accessing the critical section, process 1 can enter 
the critical section at most once before process 0 enters. 
– Let ܰܥ௜ , ௜ܶ ௜ܥ, be the configurations in which process i is 

non-critical, trying, or critical
– Set of potential executions violating the property:



The state-explosion problem

• In sequential programs, the number of 
reachable configurations grows exponentially 
in the number of variables.

• Proposition: The following problem is PSPACE-
complete. 
– Given: a boolean program  ߨ (program with only 

boolean variables), and a NFA  ܣ௏ recognizing a 
set of potential executions

– Decide:  Is ܧగ ∩ (௏ܣ)ܮ empty?



The state-explosion problem

• In concurrent programs, the number of 
reachable configurations also grows 
exponentially in the number of components.

• Proposition: The following problem is PSPACE-
complete. 
– Given: a network of automata ࣛ = ,ଵܣ … ௡ܣ,  

and a NFA ܣ௏ recognizing a set of potential 
executions of ࣛ

– Decide:  Is ܮ ௡ܣ⊗⋯⊗ଵܣ ௏ܣ⊗ = ∅ ?



On-the-fly Verification



Compositional verification
To check emptiness of an asynchronous product
ଵܣ ௡ܣ⊗⋯⊗ we can

– Replace ଵܣ by an automaton ଵᇱܣ recognizing ܮ)ஊ∖ஊభ݆݋ݎ݌ ଵܣ )
and compute ଵଶܣ = ଵᇱܣ ;ଶܣ⊗

– Replace ଵଶܣ by an automaton ଵଶᇱܣ recognizing
ܮ)ஊ∖(ஊభ∪ஊమ)݆݋ݎ݌ ଵଶܣ ) and compute ଵଷܣ = ଵଶᇱܣ ;ଷܣ⊗

– ⋯
– Replace ܣଵ(௡ିଵ) by an automaton ଵ(௡ିଵ)ܣ

ᇱ recognizing
ஊ∖(ஊభ∪⋯∪ஊ೙షభ)݆݋ݎ݌ ܮ ଵܣ ௡ିଵ  and compute
ଵ௡ܣ = ଵ(௡ିଵ)ܣ

ᇱ ௡ܣ⊗
This can save space w.r.t. the direct computation .



Compositional verification



Compositional verification

ଶଵܣ ଶଵᇱܣ



Compositional verification
ଶ଴ܣ ଶ଴ᇱܣ (proj. on visible actions) 



Symbolic exploration

• A technique to palliate the state-explosion 
problem

• Configurations can be encoded as words.
• The set of reachable configurations of a 

program can be encoded as a language.
• We use automata to compactly store the set 

of reachable configurations.



Flowgraphs



Step relations

• Let ݈, ݈′ be two control points of a flowgraph.
• The step relation ܵ௟,௟ᇲ contains all pairs 

( ݈, ଴ݕ,଴ݔ , ݈ᇱ, ଴ᇱݔ ଴ᇱݕ,  )
of configurations such that :

if at point ݈ the current values of ݕ,ݔ are ݔ଴,ݕ଴, 
then the program can take a step,
after which the new control point is ݈′, and the new 
values of ݕ,ݔ are  ݔ଴ᇱ ଴ᇱݕ, .



ܵସ,ଵ =   4, ଴ݕ,଴ݔ , 1, ,଴ݔ 1 − ଴ݔ ଴ݕ,଴ݔ      ∈ 0,1   }

• The global step relation ܵ is the union of the step 
relations ܵ௟,௟ᇲ  for all pairs  ݈, ݈ᇱ of control points.



Computing reachable configurations

• Start with the set of initial configurations.
• Iteratively:  add the set of successors of the 

current set of configurations until a fixed point 
is reached.



଴ܲ =  ܫ

ଵܲ = ଴ܲ ∪ ݐݏ݋ܲ ଴ܲ, ܵ

ଶܲ = ଵܲ ∪ ݐݏ݋ܲ ଵܲ, ܵ
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Example: Transducer for the global step relation



• Initial configurations

• Configurations reachable in at most 1 step

Example: DFAs generated by Reach 



• Configurations reachable in at most 2 steps

Example: DFAs generated by Reach 



• Configurations reachable in at most 3 steps

Example: DFAs generated by Reach 



Variable orders
• Consider the set ܻ of tuples [ݔଵ, … , [ଶ௞ݔ of booleans such 

that ଵݔ = ,௞ାଵݔ ଶݔ = ,௞ାଶݔ … , ௞ݔ = ଶ௞ݔ
• A tuple [ݔଵ, … , [ଶ௞ݔ can be encoded by the word 
ଶݔଵݔ ଶ௞ݔଶ௞ିଵݔ… but also by the word ௞ାଵݔଵݔ ଶ௞ݔ௞ݔ… .

• For ݇ = 3, the encodings of ܻ are then, respectively

• The minimal DFAs for these languages have very
different sizes!





Another example: Lamport‘s algorithm

,଴ݒ ,ଵݒ ,଴ݏ ଵݏ  
encoded by 
ଵݒ଴ݒଵݏ଴ݏ

,଴ݒ ,ଵݒ ,଴ݏ ଵݏ  
encoded by 
଴ݒ଴ݏଵݏଵݒ



Larger sets can yield smaller DFAs!

• DFAs after adding the configuration ܿ଴, ܿଵ, 1,1 to the set



• When encoding configurations, good variable 
orders can lead to much smaller automata.

• Unfortunately, the problem of finding an 
optimal encoding for a language represented 
by a DFA is NP-complete.


