
Minimization and Reduction

Residuals
• The residual of a language 퐿 ⊆ Σ∗ with respect

to a word 푤 ∈ Σ∗ is the language
퐿 = {푢 ∈ Σ∗ ∣ 푤푢 ∈ 퐿}

• A language 퐿 ⊆ Σ∗ is a residual of 퐿 if 퐿 = 퐿
for at least one word 푤 ∈ Σ∗

• Observe:
– 푤 ∈ 퐿 ↔ 푢푤 ∈ 퐿
– 퐿 = 퐿
– 퐿 = 퐿

Relation between residuals and states

• Let 퐴 be a (finite or infinite) deterministic
automaton over an alphabet Σ.

• The language of a state 푞 of 퐴, denoted by 퐿 (푞)
or just 퐿 푞 , is the language recognized by 퐴 with
푞 as initial state.

• Observation 1: State-languages are residuals.
– For every state 푞 of 퐴: 퐿 푞 = 퐿 for at least one

word 푤 ∈ Σ∗.
• Observation 2: Residuals are state-languages.

– For every word 푤 ∈ Σ∗: 퐿 = 퐿 푞 for at least one
state 푞 of 퐴.

Relation between residuals and states

Relation between residuals and states

• Important consequence:

Regular languages have finitely many residuals.

Languages with infinitely many residuals are not
regular.

Canonical DA for a language

• Let 퐿 ⊆ Σ∗ be a language (not necessarily regular).
The canonical DA for 퐿 is the tuple

퐶 = (푄 ,Σ, 훿 , 푞 ,퐹)
where
–푄 is the set of residuals of 퐿, i.e., 푄 = { 퐿 ∣ 푤 ∈ Σ∗}
– 훿 퐾, 푎 = 퐾 for every residual 퐾 ∈ 푄 and 푎 ∈ Σ
– 푞 = 퐿
–퐹 = {퐾 ∈ 푄 ∣ 휖 ∈ 퐾}

Canonical DA for a language
• For the language 퐸퐸 ⊆ 푎, 푏 ∗:

푄 =

푞 =

퐹 =

훿 =

Canonical DA for a language
• For the language 푎∗푏∗ ⊆ 푎, 푏 ∗:

푄 ∗ ∗ =

푞 (∗ ∗) =

퐹 ∗ ∗ =

훿 ∗ ∗ =

Canonical DA for a language
• Proposition. 퐶 recognizes 퐿.
• Proof. We prove by induction on 푤 : 푤 ∈ 퐿 iff 푤 ∈ 퐿(퐶)

Theorem. If 퐿 is regular, then 퐶 is the unique minimal DFA up to
isomorphism recognizing 퐿.

Proof.
1. 퐶 is a DFA for 퐿 with a minimal number of states.

• 퐶 has exactly as many states as 퐿 has residuals.
• Every DFA for 퐿 has at least as many states as 퐿 has residuals

2. Every minimal DFA for 퐿 is isomorphic to 퐶 .
Let 퐴 be an arbitrary minimal DFA for 퐿. Then:

• The states of 퐴 are in bijection with the residuals of 퐿.
• The transitions of 퐴 are completely determined by this

bijection: if 푞 ↔ 퐿 , then 훿 푞,푎 ↔ 퐿
• The initial state is the state in bijection with 퐿.
• The final states are those in bijection with residuals

containing 휖.

Canonical DA for a language

Corollary. A DFA is minimal iff 퐿 푞 ≠ 퐿 푞 for every two distinct
states 푞 and 푞′.

Proof.
(⇒): Let 퐴 be a minimal DFA.

Every residual of 퐿(퐴) is recognized by at least one state
of 퐴 (holds for every DFA).

Since 퐴 is minimal, it has as many states as 퐶 , and so its
number of states is equal to the number of residuals of 퐿(퐴).

Therefore: distinct states of 퐴 recognize distinct residuals of
퐿(퐴).

Canonical DA for a language

Corollary. A DFA is minimal iff 퐿 푞 ≠ 퐿 푞 for every two distinct
states 푞 and 푞′.

Proof.
(⇐): Let 퐴 be a DFA such that distinct states recognize distinct

languages.

Since every state of 퐴 recognizes a residual of 퐿(퐴), and
every residual of 퐿(퐴) is recognized by some state of 퐴
(holds for every DFA), the number of states of 퐴 is equal to
the number of residuals of 퐿(퐴).

So 퐴 has as many states as 퐶 , and so it is minimal.

Canonical DA for a language

Is it minimal ?

The Master Automaton

• The master automaton over Σ is the tuple
푀 = 푄 , Σ, 훿 ,퐹 , where
–푄 is the set of all regular languages over Σ.
–훿 : 푄 × Σ → 푄 is given by 훿 퐿, 푎 = 퐿 .
–퐿 ∈ 퐹 iff 휖 ∈ 퐿.

• The fragment of the Master Automaton
containing the states reachable from a state
(language) is the canonical DFA for the language.

Minimizing DFAs

Plan for the next slides:

1. Computing the language partition
2. Quotienting
3. Thm: The result is the minimal DFA

Computing the language
partition

• Block: set of states.

• Partition: set of blocks such that each state belongs
to exactly one block.

• Partition 푃 refines partition 푃 if every block of P is
contained in some block of 푃 .

• If 푃 refines 푃′, then we say that 푃 is finer than 푃′, and
푃′ is coarser than 푃.

• Language partition: the partition in which two states
belong to the same block iff they recognize the same
language.

State partitions

• Start with the partition containing (one or) two
blocks:

 Block 1: Final states (accept ε)

 Block 2: Non-final states (do not accept ε)

• Iteratively split blocks, ensuring that states
recognizing the same language always stay in the
same block.

• Blocks that contain at least two states recognizing
different languages are called unstable.

Computing the language partition

Finding an unstable block
If two states 푞 , 푞 belong to the same block 퐵
but 훿 푞 ,푎 and 훿 푞 ,푎 belong to different blocks for some 푎 ∈ Σ,
then 퐵 is unstable.

Computing the language partition

푞 푞

푎

푎

B

퐵 퐵

Splitting an unstable block
We say that (푎,퐵) and 푎,퐵 are splitters of 퐵.
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∈ 퐵′, and the rest.

Computing the language partition

푞 푞

푎

푎

B

퐵 퐵

푎

푎
푎

푎

Splitting an unstable block
We say that (푎,퐵) and 푎,퐵 are splitters of 퐵.
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∈ 퐵′, and the rest.

Computing the language partition

푞 푞

푎

푎

퐵

퐵 퐵

푎

푎
푎

푎

퐵

• Algorithm: repeatedly pick an unstable block and a splitter,
and split the block, until all blocks stable.

• The algorithm terminates.

Every split increases the number of blocks by 1, and the
number of blocks is bounded by the number of states.

• After termination, two states belong to the same block iff
they recognize the same language.

We show that after termination:
(1) If two states belong to different blocks, they recognize

different languages.
(2) If two states recognize different languages, they belong

to different blocks.

Correctness

(1) If two states 푞 and 푞 belong to different blocks, they
recognize different languages.

By induction on the number 푘 of splittings until 푞 and 푞 are split
(put into different blocks).
• 푘 = 0 . Then 푞 is final and 푞 non-final, or vice versa, and we

are done.
• 푘 → 푘 + 1 . Then there are 푞 , 푞 such that 푞 →푞 , 푞 →푞 ,

and 푞 , 푞 have been split before 푞 ,푞 are split.
By induction hypothesis 푞 and 푞 recognize different languages.
Since the automaton is a DFA, 푞 and 푞 also recognize different
languages.

Correctness

(2) If two states 푞 and 푞 recognize different languages,
they belong to different blocks.

Let 푤 be a shortest word that belongs to, say, 퐿 푞 but not to
퐿 푞 . By induction on the length of 푤.
• |푤| = 0 . Then 푤 = 휀 , 푞 is final, and 푞 is non-final. So 푞 and
푞 belong to different blocks from the start.

• 푤 > 0 . Then 푤 = 푎푤 for some 푎, 푤 . Let 푞 = δ 푞 ,푎 and
푞 = δ(푞 ,푎) . Then 퐿(푞) ≠ 퐿(푞) by the DFA property.
By induction hypothesis 푞 , 푞 are put at some some point into
different blocks.
If at this point 푞 and 푞 still belong to the same block, then the
block becomes unstable and is eventually split.

Correctness

Quotienting

• Definition: The quotient of a NFA 퐴 = (푄, Σ, 훿, 푞 ,퐹) with
respect to a partition 푃 is the NFA

퐴/푃= 푄 ,Σ, 훿 , 푞 ,퐹
where
• 푄 = 푃
• (퐵,푎,퐵) ∈ 훿 iff (푞,푎, 푞) ∈ 훿 for some 푞 ∈ 퐵 and

some 푞′ ∈ 퐵′
• 푞 is the block containing 푞
• 퐹 is the set of blocks that contain some state of 퐹

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Proposition: The quotient of a DFA with respect to
its language partition is (isomorphic to) the
canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language

partition recognize the same language.
(2) The quotient is minimal (and therefore the

canonical DFA).

Quotient w.r.t. a partition

(1) A DFA and its quotient w.r.t. the language
partition recognize the same language.

We prove a more general result (for later use):

Lemma: Let 퐴 be a NFA, and let 푃 be any
partition that refines the language partition 푃 .
a) For every state 푞: 퐿 푞 = 퐿 / (퐵), where

퐵 is the block containing 푞.
b) If 퐴 is a DFA and 푃 = 푃 , then 퐴/푃 is also a

DFA.

Quotient w.r.t. a partition

a) For every state 푞 of 퐴: 퐿 푞 = 퐿 / (퐵),
where 퐵 is the block containing 푞.

We prove that for every word 푤 ∈ Σ:
푤 ∈ 퐿 푞 ⟺ 푤 ∈ 퐿 / (퐵).

By induction on 푤 .
• 푤 = 0. Then 푤 = 휀 and

휖 ∈ 퐿 푞 iff 푞 ∈ 퐹
iff 퐵 ⊆ 퐹 (because 푃 refines 푃ℓ)
iff 퐵 ∈ 퐹
iff 휖 ∈ 퐿 / (퐵)

Quotient w.r.t. a partition

a) For every state 푞 of 퐴: 퐿 푞 = 퐿 / (퐵),
where 퐵 is the block containing 푞.

• |푤| > 0. Then 푤 = 푎푤′.
There is 푞→푞 in 퐴 such that 푤 ∈ 퐿 푞 .
There is 퐵→퐵′ in 퐴 푃⁄ such that 푞 ∈ 퐵 .

We have:

푎푤′ ∈ 퐿 푞 iff 푤′ ∈ 퐿 푞 (Def. of 푞)
iff 푤 ∈ 퐿 ⁄ (퐵) (induction hyp.)
iff 푎푤′ ∈ 퐿 / (퐵) (퐵→퐵)

Quotient w.r.t. a partition

b) If 퐴 is a DFA and 푃 = 푃 , then 퐴/푃 is also a DFA.

Quotient w.r.t. a partition

We show: If 퐵→퐵 and 퐵→퐵 , then 퐵 = 퐵 .

• There are 푞, 푞′ ∈ 퐵, 푞 ∈ 퐵 , 푞 ∈ 퐵
such that 푞→푞 and 푞′→푞 .

• Since 푃 = 푃 , 푞 and 푞 recognize the
same language.

• Since 퐴 is a DFA, 푞 and 푞 recognize
the same language.

• Since 푃 = 푃 , 퐵 = 퐵 .

2) The quotient of a DFA 퐴 w.r.t. the language
partition is the canonical DFA.

• By 1.b, the quotient is a DFA.
• By 1.a, applied to the initial state, 퐴/푃ℓ

recognizes the same language as 퐴.
• Since the quotient is w.r.t. the language

partition, different blocks of the quotient
recognize different languages. So 퐴/푃 is
minimal.

Quotient w.r.t. a partition

Hopcroft´s algorithm

• The algorithm for the computation of the
language partition is nondeterministic: It does
not specify which unstable block to split next.

• Hopcroft´s algorithm is a refinement that
carefully chooses the split order, and achieves
a complexity of 푂(푚푛 log 푛) for a DFA with 푛
states over an 푚-letter alphabet.

• The algorithm maintains a workset of possible
splitters.

Hopcroft´s algorithm
• The algorithm maintains a workset of candidate splitters

(푎,퐵).

• When a candidate (푎,퐵) is taken from the workset, it is
applied to all current blocks.

• Observation 1: After applying (푎,퐵) to all blocks it never
brings anything to apply it again

⇒ it is safe to ensure that candidates removed from the
workset are never added to the workset again.

• Observation 2: If 퐵 is split into 퐵 and 퐵 , then splitting w.r.t.
any two of 푎,퐵 , 푎,퐵 , 푎,퐵 produces the same result
as splitting with respect to all three.

Hopcroft´s algorithm

Reducing NFAs

Minimal NFAs are not unique

Finding minimal NFAs is hard

Theorem: The following problem is PSPACE-
complete: Given an NFA 퐴 and a number 푘, decide
if there is another NFA 퐵 equivalent to 퐴 and
having at most 푘 states.

Proof idea: We will show later that the following
problem is PSPACE complete: given an NFA 퐴 over
alphabet Σ, decide whether 퐿 퐴 = Σ∗.

The problem above can be reduced to this one.
This shows PSPACE-hardness.

Reducing NFAs

We wish to use the same idea as before:
• Compute a suitable partition 푃 of the states of

the NFA.
• Quotient the NFA with respect to this partition.

Requirements on 푃 :

• 퐿 퐴 = 퐿(퐴 푃⁄)

• Efficiently computable

• Recall: For every NFA 퐴 and partition 푃 that
refines the language partition: 퐿 퐴 = 퐿(퐴 푃⁄).

• So any such partition is good for reduction.
• A partition refines the language partition iff

states in the same block recognize the same
language (states in different blocks may not
recognize different languages, though!).

• (Observe: Such partitions refine the partition
퐹,푄 ⃥ 퐹 .)

Partitions suitable for reduction

• Idea: use the same algorithm as for DFA, but
with new notions of unstable block and block
splitting.

• We must guarantee:
after termination, states of a block
recognize the same language

or, equivalently
after termination, states recognizing
different languages belong to different
blocks

Computing a suitable partition

If 퐿 푞 ≠ 퐿 푞 then either
 one of 푞 ,푞 is final and the other

non-final, or
 one of 푞 ,푞 , say 푞 , has a transition
푞 →푞 such that every 푎-transition
푞 →푞 satisfies: 퐿 푞 ≠ 퐿 푞 .

The key observation

A block 퐵 is unstable if there are states 푞 , 푞 ∈ 퐵, a block
퐵′ and 푎 ∈ Σ such that

훿 푞 ,푎 ∩ 퐵 ≠ ∅ and 훿 푞 ,푎 ∩ 퐵 = ∅
We say that 푎,퐵 splits 퐵.

Unstable blocks

푎 푎

푎
푞 푞

푎
푎

B

퐵′

푎

Splitting an unstable block
We say that (푎,퐵′) is a splitter of 퐵.
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∩ 퐵 ≠ ∅, and the rest.

Splitting blocks

푎

푎
푞 푞

푎
푎

B

퐵′

푎

Splitting an unstable block
We say that (푎,퐵′) is a splitter of 퐵.
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∩ 퐵 ≠ ∅, and the rest.

Splitting blocks

푎

푎
푞 푞

푎
푎

퐵′

푎

An example

An example

The algorithm not always computes
the language partition

States 2 and 3 recognize the same language: 푐(푑 + 푒)
However, the algorithm puts them into different blocks.

