Minimization and Reduction
Residuals

• The residual of a language $L \subseteq \Sigma^*$ with respect to a word $w \in \Sigma^*$ is the language

$$L^w = \{u \in \Sigma^* \mid wu \in L\}$$

• A language $L' \subseteq \Sigma^*$ is a residual of L if $L' = L^w$ for at least one word $w \in \Sigma^*$

• Observe:

 − $w \in L^u \iff uw \in L$
 − $L^e = L$
 − $(L^w)^v = L^{wv}$
Relation between residuals and states

- Let A be a (finite or infinite) deterministic automaton over an alphabet Σ.
- The language of a state q of A, denoted by $L_A(q)$ or just $L(q)$, is the language recognized by A with q as initial state.
- **Observation 1**: State-languages are residuals.
 - For every state q of A: $L(q) = L^w$ for at least one word $w \in \Sigma^*$.
- **Observation 2**: Residuals are state-languages.
 - For every word $w \in \Sigma^*$: $L^w = L(q)$ for at least one state q of A.
Relation between residuals and states
Relation between residuals and states

• Important consequence:

Regular languages have finitely many residuals.

Languages with infinitely many residuals are not regular.
Canonical DA for a language

- Let $L \subseteq \Sigma^*$ be a language (not necessarily regular).

 The canonical DA for L is the tuple

 $$C_L = (Q_L, \Sigma, \delta_L, q_{0L}, F_L)$$

 where

 - Q_L is the set of residuals of L, i.e., $Q_L = \{ L^w \mid w \in \Sigma^* \}$
 - $\delta(K, a) = K^a$ for every residual $K \in Q_L$ and $a \in \Sigma$
 - $q_{0L} = L$
 - $F_L = \{ K \in Q_L \mid \epsilon \in K \}$
Canonical DA for a language

• For the language $EE \subseteq \{a, b\}^*$:

$$Q_{EE} =$$

$$q_{0EE} =$$

$$F_{EE} =$$

$$\delta_{EE} =$$
Canonical DA for a language

• For the language $a^*b^* \subseteq \{a, b\}^*$:

$$Q_{a^*b^*} =$$

$$q_0(a^*b^*) =$$

$$F_{a^*b^*} =$$

$$\delta_{a^*b^*} =$$
Canonical DA for a language

• Proposition. C_L recognizes L.

• Proof. We prove by induction on $|w| : w \in L$ iff $w \in L(C_L)$

If $|w| = 0$ then $w = \varepsilon$, and we have

$$
\begin{align*}
\varepsilon & \in L & (w = \varepsilon) \\
\iff & L \in F_L & \text{(definition of } F_L) \\
\iff & q_{0L} \in F_L & (q_{0L} = L) \\
\iff & \varepsilon \in L(C_L) & (q_{0L} \text{ is the initial state of } C_L)
\end{align*}
$$

If $|w| > 0$, then $w = aw'$ for some $a \in \Sigma$ and $w' \in \Sigma^*$, and we have

$$
\begin{align*}
aw' & \in L \\
\iff & w' \in L^a & \text{(definition of } L^a) \\
\iff & w' \in L(C_{L^a}) & \text{(induction hypothesis)} \\
\iff & aw' \in L(C_L) & (\delta_L(L, a) = L^a)
\end{align*}
$$
Canonical DA for a language

Theorem. If L is regular, then C_L is the unique minimal DFA up to isomorphism recognizing L.

Proof.
1. C_L is a DFA for L with a minimal number of states.
 • C_L has exactly as many states as L has residuals.
 • Every DFA for L has at least as many states as L has residuals.
2. Every minimal DFA for L is isomorphic to C_L.

Let A be an arbitrary minimal DFA for L. Then:
 • The states of A are in bijection with the residuals of L.
 • The transitions of A are completely determined by this bijection: if $q \leftrightarrow L^w$, then $\delta(q, a) \leftrightarrow L^{wa}$
 • The initial state is the state in bijection with L.
 • The final states are those in bijection with residuals containing ϵ.
Corollary. A DFA is minimal iff $L(q) \neq L(q')$ for every two distinct states q and q'.

Proof.

(\Rightarrow): Let A be a minimal DFA.

Every residual of $L(A)$ is recognized by at least one state of A (holds for every DFA).

Since A is minimal, it has as many states as C_L, and so its number of states is equal to the number of residuals of $L(A)$.

Therefore: distinct states of A recognize distinct residuals of $L(A)$.
Corollary. A DFA is minimal iff $L(q) \neq L(q')$ for every two distinct states q and q'.

Proof.

(\Leftarrow): Let A be a DFA such that distinct states recognize distinct languages.

Since every state of A recognizes a residual of $L(A)$, and every residual of $L(A)$ is recognized by some state of A (holds for every DFA), the number of states of A is equal to the number of residuals of $L(A)$.

So A has as many states as C_L, and so it is minimal.
Is it minimal?
The Master Automaton

• The master automaton over Σ is the tuple $M = (Q_M, \Sigma, \delta_M, F_M)$, where

 Q_M is the set of all regular languages over Σ.
 $\delta_M: Q_M \times \Sigma \rightarrow Q_M$ is given by $\delta_M(L, a) = L^a$.
 $L \in F_M$ iff $\epsilon \in L$.

• The fragment of the Master Automaton containing the states reachable from a state (language) is the canonical DFA for the language.
Plan for the next slides:

1. Computing the language partition
2. Quotienting
3. Thm: The result is the minimal DFA
Computing the language partition
State partitions

- **Block:** set of states.
- **Partition:** set of blocks such that each state belongs to exactly one block.
- Partition P refines partition P' if every block of P is contained in some block of P'.
- If P refines P', then we say that P is finer than P', and P' is coarser than P.
- **Language partition:** the partition in which two states belong to the same block iff they recognize the same language.
Computing the language partition

• Start with the partition containing (one or) two blocks:
 – Block 1: Final states (accept ε)
 – Block 2: Non-final states (do not accept ε)

• Iteratively split blocks, ensuring that states recognizing the same language always stay in the same block.

• Blocks that contain at least two states recognizing different languages are called unstable.
Finding an **unstable** block

If two states q_1, q_2 belong to the same block B but $\delta(q_1, a)$ and $\delta(q_2, a)$ belong to different blocks for some $a \in \Sigma$, then B is **unstable**.
Computing the language partition

Splitting an unstable block

We say that \((a, B_1)\) and \((a, B_2)\) are **splitters** of \(B\).

A splitter \((a, B')\) splits \(B\) into two blocks: states \(q\) such that \(\delta(q, a) \in B'\), and the rest.
Splitting an unstable block

We say that \((a, B_1)\) and \((a, B_2)\) are splitters of \(B\). A splitter \((a, B')\) splits \(B\) into two blocks: states \(q\) such that \(\delta(q, a) \in B'\), and the rest.
Correctness

• **Algorithm**: repeatedly pick an unstable block and a splitter, and split the block, until all blocks stable.

• **The algorithm terminates.**

 Every split increases the number of blocks by 1, and the number of blocks is bounded by the number of states.

• **After termination, two states belong to the same block iff they recognize the same language.**

 We show that after termination:

 (1) If two states belong to different blocks, they recognize different languages.

 (2) If two states recognize different languages, they belong to different blocks.
Correctness

(1) If two states q_1 and q_2 belong to different blocks, they recognize different languages.

By induction on the number k of splittings until q_1 and q_2 are split (put into different blocks).

• $k = 0$. Then q_1 is final and q_2 non-final, or vice versa, and we are done.

• $k \to k + 1$. Then there are q'_1, q'_2 such that $q_1 \xrightarrow{a} q'_1$, $q_2 \xrightarrow{a} q'_2$, and q'_1, q'_2 have been split before q_1, q_2 are split.

By induction hypothesis q'_1 and q'_2 recognize different languages. Since the automaton is a DFA, q_1 and q_2 also recognize different languages.
Correctness

(2) If two states q_1 and q_2 recognize different languages, they belong to different blocks.

Let w be a shortest word that belongs to, say, $L(q_1)$ but not to $L(q_2)$. By induction on the length of w.

- $|w| = 0$. Then $w = \varepsilon$, q_1 is final, and q_2 is non-final. So q_1 and q_2 belong to different blocks from the start.

- $|w| > 0$. Then $w = aw'$ for some a, w'. Let $q_1' = \delta(q_1, a)$ and $q_2' = \delta(q_2, a)$. Then $L(q_1') \neq L(q_2')$ by the DFA property.

By induction hypothesis q_1', q_2' are put at some point into different blocks.

If at this point q_1 and q_2 still belong to the same block, then the block becomes unstable and is eventually split.
Quotienting
Definition: The quotient of a NFA $A = (Q, \Sigma, \delta, q_0, F)$ with respect to a partition P is the NFA

$$A/P = (Q_P, \Sigma, \delta_P, q_{0P}, F_P)$$

where

- $Q_P = P$
- $(B, a, B') \in \delta_P$ iff $(q, a, q') \in \delta$ for some $q \in B$ and some $q' \in B'$
- q_{0P} is the block containing q_0
- F_P is the set of blocks that contain some state of F
Quotient w.r.t. a partition
Quotient w.r.t. a partition
Proposition: The quotient of a DFA with respect to its language partition is (isomorphic to) the canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language partition recognize the same language.
(2) The quotient is minimal (and therefore the canonical DFA).
Quotient w.r.t. a partition

(1) A DFA and its quotient w.r.t. the language partition recognize the same language.

We prove a more general result (for later use):

Lemma: Let A be a NFA, and let P be any partition that refines the language partition P_l.

a) For every state q: $L_A(q) = L_{A/P}(B)$, where B is the block containing q.

b) If A is a DFA and $P = P_l$, then A/P is also a DFA.
Quotient w.r.t. a partition

a) For every state \(q \) of \(A \): \(L_A(q) = L_{A/P}(B) \), where \(B \) is the block containing \(q \).

We prove that for every word \(w \in \Sigma \):

\[
 w \in L_A(q) \iff w \in L_{A/P}(B).
\]

By induction on \(|w| \).

- \(|w| = 0 \). Then \(w = \epsilon \) and

 \[
 \epsilon \in L_A(q) \quad \text{iff} \quad q \in F \\
 \text{iff} \quad B \subseteq F \\
 \text{iff} \quad B \in F_P \\
 \text{iff} \quad \epsilon \in L_{A/P}(B)
 \]

 (because \(P \) refines \(P_\ell \))
Quotient w.r.t. a partition

a) For every state q of A: $L_A(q) = L_{A/P}(B)$, where B is the block containing q.

- $|w| > 0$. Then $w = aw'$. There is $q \xrightarrow{a} q'$ in A such that $w' \in L_A(q')$. There is $B \xrightarrow{a} B'$ in A/P such that $q' \in B'$.

We have:

$aw' \in L_A(q)$ iff $w' \in L_A(q')$ (Def. of q)
 iff $w' \in L_{A/P}(B')$ (induction hyp.)
 iff $aw' \in L_{A/P}(B)$ ($B \xrightarrow{a} B'$)
Quotient w.r.t. a partition

b) If A is a DFA and $P = P_l$, then A/P is also a DFA.

We show: If $B \xrightarrow{a} B_1$ and $B \xrightarrow{a} B_2$, then $B_1 = B_2$.

- There are $q, q' \in B$, $q_1 \in B_1$, $q_2 \in B_2$ such that $q \xrightarrow{a} q_1$ and $q' \xrightarrow{a} q_2$.
- Since $P = P_l$, q and q' recognize the same language.
- Since A is a DFA, q_1 and q_2 recognize the same language.
- Since $P = P_l$, $B_1 = B_2$.
The quotient of a DFA A w.r.t. the language partition is the canonical DFA.

- By 1.b, the quotient is a DFA.
- By 1.a, applied to the initial state, A/P_ℓ recognizes the same language as A.
- Since the quotient is w.r.t. the language partition, different blocks of the quotient recognize different languages. So A/P is minimal.
Hopcroft´s algorithm

• The algorithm for the computation of the language partition is nondeterministic: It does not specify which unstable block to split next.
• Hopcroft´s algorithm is a refinement that carefully chooses the split order, and achieves a complexity of $O(mn \log n)$ for a DFA with n states over an m-letter alphabet.
• The algorithm maintains a workset of possible splitters.
Hopcroft´s algorithm

• The algorithm maintains a workset of candidate splitters \((a, B)\).

• When a candidate \((a, B)\) is taken from the workset, it is applied to all current blocks.

• **Observation 1**: After applying \((a, B)\) to all blocks it never brings anything to apply it again

 ⇒ it is safe to ensure that candidates removed from the workset are never added to the workset again.

• **Observation 2**: If \(B\) is split into \(B_0\) and \(B_1\), then splitting w.r.t. any two of \((a, B), (a, B_0), (a, B_1)\) produces the same result as splitting with respect to all three.
Hopcroft's algorithm

Hopcroft(A)

Input: DFA $A = (Q, \Sigma, \delta, q_0, F)$

Output: The language partition P_ℓ.

1. if $F = \emptyset$ or $Q \setminus F = \emptyset$ then return $\{Q\}$
2. else $P \leftarrow \{F, Q \setminus F\}$
3. $\mathcal{W} \leftarrow \{(a, \min\{F, Q \setminus F\}) \mid a \in \Sigma\}$
4. while $\mathcal{W} \neq \emptyset$ do
5. pick (a, B') from \mathcal{W}
6. for all $B \in P$ split by (a, B') do
7. replace B by B_0 and B_1 in P
8. for all $b \in \Sigma$ do
9. if $(b, B) \in \mathcal{W}$ then replace (b, B) by (b, B_0) and (b, B_1) in \mathcal{W}
10. else add $(b, \min\{B_0, B_1\})$ to \mathcal{W}
11. return P
Reducing NFAs
Minimal NFAs are not unique
Finding minimal NFAs is hard

Theorem: The following problem is PSPACE-complete: Given an NFA A and a number k, decide if there is another NFA B equivalent to A and having at most k states.

Proof idea: We will show later that the following problem is PSPACE complete: given an NFA A over alphabet Σ, decide whether $L(A) = \Sigma^*$. The problem above can be reduced to this one. This shows PSPACE-hardness.
Reducing NFAs

We wish to use the same idea as before:

• Compute a suitable partition \(P \) of the states of the NFA.
• Quotient the NFA with respect to this partition.

Requirements on \(P \):

• \(L(A) = L(A/P) \)
• Efficiently computable
Partitions suitable for reduction

• Recall: For every NFA A and partition P that refines the language partition: $L(A) = L(A/P)$.

• So any such partition is good for reduction.

• A partition refines the language partition iff states in the same block recognize the same language (states in different blocks may not recognize different languages, though!).

• (Observe: Such partitions refine the partition $\{F, Q \setminus F\}$.)
Computing a suitable partition

- **Idea**: use the same algorithm as for DFA, but with new notions of **unstable** block and block splitting.
- **We must guarantee:**

 after termination, states of a block recognize the same language

 or, equivalently

 after termination, states recognizing different languages belong to different blocks
If $L(q_1) \neq L(q_2)$ then either
- one of q_1, q_2 is final and the other non-final, or
- one of q_1, q_2, say q_1, has a transition $a_{\rightarrow} q_1'$ such that every a-transition $a_{\rightarrow} q_2'$ satisfies: $L(q_1') \neq L(q_2')$.

The key observation
Unstable blocks

A block B is **unstable** if there are states $q_1, q_2 \in B$, a block B' and $a \in \Sigma$ such that

$$\delta(q_1, a) \cap B' \neq \emptyset \quad \text{and} \quad \delta(q_2, a) \cap B' = \emptyset$$

We say that (a, B') splits B.

[Diagram of a state transition graph showing two blocks B and B', with states q_1 and q_2, and transitions labeled a.]
Splitting blocks

Splitting an unstable block

We say that \((a, B')\) is a splitter of \(B\).

A splitter \((a, B')\) splits \(B\) into two blocks: states \(q\) such that \(\delta(q, a) \cap B' \neq \emptyset\), and the rest.
Splitting blocks

Splitting an unstable block

We say that \((a, B')\) is a splitter of \(B\).
A splitter \((a, B')\) splits \(B\) into two blocks: states \(q\) such that \(\delta(q, a) \cap B' \neq \emptyset\), and the rest.
An example
An example
The algorithm not always computes the language partition

States 2 and 3 recognize the same language: $c(d + e)$
However, the algorithm puts them into different blocks.