Minimization and Reduction

Residuals

- The residual of a language $L \subseteq \Sigma^{*}$ with respect to a word $w \in \Sigma^{*}$ is the language

$$
L^{w}=\left\{u \in \Sigma^{*} \mid w u \in L\right\}
$$

- A language $L^{\prime} \subseteq \Sigma^{*}$ is a residual of L if $L^{\prime}=L^{w}$ for at least one word $w \in \Sigma^{*}$
- Observe:

$$
\begin{aligned}
& -w \in L^{u} \leftrightarrow u w \in L \\
& -L^{\epsilon}=L \\
& -\left(L^{w}\right)^{v}=L^{w v}
\end{aligned}
$$

Relation between residuals and states

- Let A be a (finite or infinite) deterministic automaton over an alphabet Σ.
- The language of a state q of A, denoted by $L_{A}(q)$ or just $L(q)$, is the language recognized by A with q as initial state.
- Observation 1: State-languages are residuals.
- For every state q of $A: L(q)=L^{w}$ for at least one word $w \in \Sigma^{*}$.
- Observation 2: Residuals are state-languages.
- For every word $w \in \Sigma^{*}: L^{w}=L(q)$ for at least one state q of A.

Relation between residuals and states

Relation between residuals and states

- Important consequence:

Regular languages have finitely many residuals.

Languages with infinitely many residuals are not regular.

Canonical DA for a language

- Let $L \subseteq \Sigma^{*}$ be a language (not necessarily regular). The canonical DA for L is the tuple

$$
C_{L}=\left(Q_{L}, \Sigma, \delta_{L}, q_{0 L}, F_{L}\right)
$$

where
$-Q_{L}$ is the set of residuals of L, i.e., $Q_{L}=\left\{L^{w} \mid w \in \Sigma^{*}\right\}$
$-\delta(K, a)=K^{a}$ for every residual $K \in Q_{L}$ and $a \in \Sigma$
$-q_{0 L}=L$
$-F_{L}=\left\{K \in Q_{L} \mid \epsilon \in K\right\}$

Canonical DA for a language

- For the language $E E \subseteq\{a, b\}^{*}$:

$$
\begin{aligned}
& Q_{E E}= \\
& q_{0 E E}= \\
& F_{E E}= \\
& \delta_{E E}=
\end{aligned}
$$

Canonical DA for a language

- For the language $a^{*} b^{*} \subseteq\{a, b\}^{*}$:

$$
\begin{aligned}
& Q_{a^{*} b^{*}}= \\
& q_{0\left(a^{*} b^{*}\right)}= \\
& F_{a^{*} b^{*}}= \\
& \delta_{a^{*} b^{*}}=
\end{aligned}
$$

Canonical DA for a language

- Proposition. C_{L} recognizes L.
- Proof. We prove by induction on $|w|: w \in L$ iff $w \in L\left(C_{L}\right)$

If $|w|=0$ then $w=\varepsilon$, and we have

$$
\begin{array}{lll}
& \varepsilon \in L & (w=\epsilon) \\
\Leftrightarrow & L \in F_{L} & \text { (definition of } \left.F_{L}\right) \\
\Leftrightarrow & q_{0 L} \in F_{L} & \left(q_{0 L}=L\right) \\
\Leftrightarrow & \varepsilon \in L\left(C_{L}\right) & \left(q_{0 L} \text { is the initial state of } C_{L}\right)
\end{array}
$$

If $|w|>0$, then $w=a w^{\prime}$ for some $a \in \Sigma$ and $w^{\prime} \in \Sigma^{*}$, and we have

$$
\begin{array}{lll}
& a w^{\prime} \in L & \\
\Leftrightarrow & w^{\prime} \in L^{a} & \text { (definition of } \left.L^{a}\right) \\
\Leftrightarrow & w^{\prime} \in L\left(C_{L^{a}}\right) & \text { (induction hypothesis) } \\
\Leftrightarrow & a w^{\prime} \in L\left(C_{L}\right) & \left(\delta_{L}(L, a)=L^{a}\right)
\end{array}
$$

Canonical DA for a language

Theorem. If L is regular, then C_{L} is the unique minimal DFA up to isomorphism recognizing L.
Proof.

1. C_{L} is a DFA for L with a minimal number of states.

- C_{L} has exactly as many states as L has residuals.
- Every DFA for L has at least as many states as L has residuals

2. Every minimal DFA for L is isomorphic to C_{L}.

Let A be an arbitrary minimal DFA for L. Then:

- The states of A are in bijection with the residuals of L.
- The transitions of A are completely determined by this bijection: if $q \leftrightarrow L^{w}$, then $\delta(q, a) \leftrightarrow L^{w a}$
- The initial state is the state in bijection with L.
- The final states are those in bijection with residuals containing ϵ.

Canonical DA for a language

Corollary. A DFA is minimal iff $L(q) \neq L\left(q^{\prime}\right)$ for every two distinct states q and q^{\prime}.
Proof.
(\Rightarrow) : Let A be a minimal DFA.
Every residual of $L(A)$ is recognized by at least one state of A (holds for every DFA).
Since A is minimal, it has as many states as C_{L}, and so its number of states is equal to the number of residuals of $L(A)$.
Therefore: distinct states of A recognize distinct residuals of $L(A)$.

Canonical DA for a language

Corollary. A DFA is minimal iff $L(q) \neq L\left(q^{\prime}\right)$ for every two distinct states q and q^{\prime}.
Proof.
(\Leftrightarrow) : Let A be a DFA such that distinct states recognize distinct languages.
Since every state of A recognizes a residual of $L(A)$, and every residual of $L(A)$ is recognized by some state of A (holds for every DFA), the number of states of A is equal to the number of residuals of $L(A)$.
So A has as many states as C_{L}, and so it is minimal.

Is it minimal ?

The M aster Automaton

- The master automaton over Σ is the tuple $M=\left(Q_{M}, \Sigma, \delta_{M}, F_{M}\right)$, where
$-Q_{M}$ is the set of all regular languages over Σ.
$-\delta_{M}: Q_{M} \times \Sigma \rightarrow Q_{M}$ is given by $\delta_{M}(L, a)=L^{a}$.
$-L \in F_{M}$ iff $\epsilon \in L$.
- The fragment of the M aster Automaton containing the states reachable from a state (language) is the canonical DFA for the language.

M inimizing DFAs

$\sqrt{\square}$

Plan for the next slides:

1. Computing the language partition
2. Quotienting
3. Thm: The result is the minimal DFA

Computing the language partition

State partitions

- Block: set of states.
- Partition: set of blocks such that each state belongs to exactly one block.
- Partition P refines partition P^{\prime} if every block of P is contained in some block of P^{\prime}.
- If P refines P^{\prime}, then we say that P is finer than P^{\prime}, and P^{\prime} is coarser than P.
- Language partition: the partition in which two states belong to the same block iff they recognize the same language.

Computing the language partition

- Start with the partition containing (one or) two blocks:

\author{

- Block 1: Final states
 (accept ε)
 - Block 2: Non-final states (do not accept ε)
}
- Iteratively split blocks, ensuring that states recognizing the same language always stay in the same block.
- Blocks that contain at least two states recognizing different languages are called un stable.

Computing the language partition

Finding an unst able block

If two states q_{1}, q_{2} belong to the same block B but $\delta\left(q_{1}, a\right)$ and $\delta\left(q_{2}, a\right)$ belong to different blocks for some $a \in \Sigma$, then B is unstable.

Computing the language partition

Splitting an unstable block

We say that (a, B_{1}) and (a, B_{2}) are splitters of B.
A splitter (a, B^{\prime}) splits B into two blocks: states q such that $\delta(q, a) \in B^{\prime}$, and the rest.

Computing the language partition

Splitting an unstable block

We say that (a, B_{1}) and (a, B_{2}) are splitters of B.
A splitter (a, B^{\prime}) splits B into two blocks: states q such that $\delta(q, a) \in B^{\prime}$, and the rest.

Correctness

- Algorithm: repeatedly pick an unstable block and a splitter, and split the block, until all blocks stable.
- The algorithm terminates.

Every split increases the number of blocks by 1, and the number of blocks is bounded by the number of states.

- After termination, two states belong to the same block iff they recognize the same language.
We show that after termination:
(1) If two states belong to different blocks, they recognize different languages.
(2) If two states recognize different languages, they belong to different blocks.

Correctness

(1) If two states q_{1} and q_{2} belong to different blocks, they recognize different languages.
By induction on the number k of splittings until q_{1} and q_{2} are split (put into different blocks).

- $k=0$. Then q_{1} is final and q_{2} non-final, or vice versa, and we are done.
- $k \rightarrow k+1$. Then there are $q_{1}^{\prime}, q_{2}^{\prime}$ such that $q_{1} \xrightarrow{\mathrm{a}} q_{1}^{\prime}, q_{2} \xrightarrow{\mathrm{a}} q_{2}^{\prime}$, and $q_{1}^{\prime}, q_{2}^{\prime}$ have been split before q_{1}, q_{2} are split. By induction hypothesis q_{1}^{\prime} and q_{2}^{\prime} recognize different languages. Since the automaton is a DFA, q_{1} and q_{2} also recognize different languages.

Correctness

(2) If two states q_{1} and q_{2} recognize different languages, they belong to different blocks.

Let w be a shortest word that belongs to, say, $L\left(q_{1}\right)$ but not to $L\left(q_{2}\right)$. By induction on the length of w.

- $|w|=0$. Then $w=\varepsilon, q_{1}$ is final, and q_{2} is non-final. So q_{1} and q_{2} belong to different blocks from the start.
- $|w|>0$. Then $w=a w^{\prime}$ for some a, w^{\prime}. Let $q_{1}^{\prime}=\delta\left(q_{1}, a\right)$ and $q_{2}^{\prime}=\delta\left(q_{2}, a\right)$. Then $L\left(q_{1}^{\prime}\right) \neq L\left(q_{2}^{\prime}\right)$ by the DFA property.
By induction hypothesis $q_{1}^{\prime}, q_{2}^{\prime}$ are put at some some point into different blocks.
If at this point q_{1} and q_{2} still belong to the same block, then the block becomes unstable and is eventually split.

Quotienting

Quotient w.r.t. a partition

- Definition: The quotient of a NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with respect to a partition P is the NFA

$$
A / P=\left(Q_{P}, \Sigma, \delta_{P}, q_{0 P}, F_{P}\right)
$$

where

- $Q_{P}=P$
- $\left(B, a, B^{\prime}\right) \in \delta_{P}$ iff $\left(q, a, q^{\prime}\right) \in \delta$ for some $q \in B$ and some $q^{\prime} \in B^{\prime}$
- $q_{0 P}$ is the block containing q_{0}
- F_{P} is the set of blocks that contain some state of F

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Proposition: The quotient of a DFA with respect to its language partition is (isomorphic to) the canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language partition recognize the same language.
(2) The quotient is minimal (and therefore the canonical DFA).

Quotient w.r.t. a partition

(1) A DFA and its quotient w.r.t. the language partition recognize the same language.
We prove a more general result (for later use):
Lemma: Let A be a NFA, and let P be any partition that refines the language partition P_{l}.
a) For every state q : $L_{A}(q)=L_{\mathrm{A} / \mathrm{P}}(B)$, where B is the block containing q.
b) If A is a DFA and $P=P_{l}$, then A / P is also a DFA.

Quotient w.r.t. a partition

a) For every state q of $A: L_{A}(q)=L_{A / P}(B)$, where B is the block containing q.

We prove that for every word $w \in \Sigma$:

$$
w \in L_{A}(q) \Leftrightarrow w \in L_{A / P}(B) .
$$

By induction on $|w|$.

- $|w|=0$. Then $w=\varepsilon$ and
$\epsilon \in L_{A}(q)$ ff $q \in F$
iff $B \subseteq F$
(because P refines P_{ℓ})
iff $B \in F_{P}$
iff $\epsilon \in L_{A / P}(B)$

Quotient w.r.t. a partition

a) For every state q of $A: L_{A}(q)=L_{A / P}(B)$, where B is the block containing q.

- $|w|>0$. Then $w=a w^{\prime}$.

There is $q \xrightarrow{a} q^{\prime}$ in A such that $w^{\prime} \in L_{A}\left(q^{\prime}\right)$. There is $B \xrightarrow{a} B^{\prime}$ in A / P such that $q^{\prime} \in B^{\prime}$. We have:

$$
\begin{array}{ll}
a w^{\prime} \in L_{A}(q) \text { iff } & w^{\prime} \in L_{A}\left(q^{\prime}\right)
\end{array} \quad \text { (Def. of } q \text {) }
$$

Quotient w.r.t. a partition

b) If A is a DFA and $P=P_{l}$, then A / P is also a DFA.

We show: If $B \xrightarrow{a} B_{1}$ and $B \xrightarrow{a} B_{2}$, then $B_{1}=B_{2}$.

- There are $q, q^{\prime} \in B, q_{1} \in B_{1}, q_{2} \in B_{2}$ such that $q \xrightarrow{a} q_{1}$ and $q^{\prime} \xrightarrow{a} q_{2}$.
- Since $P=P_{l}, q$ and q^{\prime} recognize the same language.
- Since A is a DFA, q_{1} and q_{2} recognize the same language.
- Since $P=P_{l}, B_{1}=B_{2}$.

Quotient w.r.t. a partition

2) The quotient of a DFA A w.r.t. the language partition is the canonical DFA.

- By 1.b, the quotient is a DFA.
- By 1.a, applied to the initial state, A / P_{ℓ} recognizes the same language as A.
- Since the quotient is w.r.t. the language partition, different blocks of the quotient recognize different languages. So A / P is minimal.

Hopcroft's algorithm

- The algorithm for the computation of the language partition is nondeterministic: It does not specify which unstable block to split next.
- Hopcroft's algorithm is a refinement that carefully chooses the split order, and achieves a complexity of $O(m n \log n)$ for a DFA with n states over an m-letter alphabet.
- The algorithm maintains a workset of possible splitters.

Hopcroft's algorithm

- The algorithm maintains a workset of candidate splitters (a, B).
- When a candidate (a, B) is taken from the workset, it is applied to all current blocks.
- Observation 1: After applying (a, B) to all blocks it never brings anything to apply it again
\Rightarrow it is safe to ensure that candidates removed from the workset are never added to the workset again.
- Observation 2: If B is split into B_{0} and B_{1}, then splitting w.r.t. any two of $(a, B),\left(a, B_{0}\right),\left(a, B_{1}\right)$ produces the same result as splitting with respect to all three.

Hopcroft's algorithm

Hopcroft (A)
Input: DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: The language partition P_{ℓ}.
1 if $F=\emptyset$ or $Q \backslash F=\emptyset$ then return $\{Q\}$
2 else $P \leftarrow\{F, Q \backslash F\}$
$3 \mathcal{W} \leftarrow\{(a, \min \{F, Q \backslash F\}) \mid a \in \Sigma\}$
4 while $\mathcal{W} \neq \emptyset$ do
5 pick (a, B^{\prime}) from \mathcal{W}
6 for all $B \in P$ split by $\left(a, B^{\prime}\right)$ do
$7 \quad$ replace B by B_{0} and B_{1} in P
$8 \quad$ for all $b \in \Sigma$ do
if $(b, B) \in \mathcal{W}$ then replace (b, B) by $\left(b, B_{0}\right)$ and $\left(b, B_{1}\right)$ in \mathcal{W} else $\operatorname{add}\left(b, \min \left\{B_{0}, B_{1}\right\}\right)$ to \mathcal{W}
11 return P

Reducing NFAs

M inimal NFAs are not unique

Finding minimal NFAs is hard

Theorem: The following problem is PSPACEcomplete: Given an NFA A and a number k, decide if there is another NFA B equivalent to A and having at most k states.

Proof idea: We will show later that the following problem is PSPACE complete: given an NFA A over alphabet Σ, decide whether $L(A)=\Sigma^{*}$.
The problem above can be reduced to this one. This shows PSPACE-hardness.

Reducing NFAs

We wish to use the same idea as before:

- Compute a suitable partition P of the states of the NFA.
- Quotient the NFA with respect to this partition.

Requirements on P :

- $L(A)=L(A / P)$
- Efficiently computable

Partitions suitable for reduction

- Recall: For every NFA A and partition P that refines the language partition: $L(A)=L(A / P)$.
- So any such partition is good for reduction.
- A partition refines the language partition iff states in the same block recognize the same language (states in different blocks may not recognize different languages, though!).
- (Observe: Such partitions refine the partition $\{F, Q \backslash F\}$.)

Computing a suitable partition

- Idea: use the same algorithm as for DFA, but with new notions of unstable block and block splitting.
- We must guarantee:
after termination, states of a block recognize the same language or, equivalently
after termination, states recognizing different languages belong to different blocks

The key observation

If $L\left(q_{1}\right) \neq L\left(q_{2}\right)$ then either

- one of q_{1}, q_{2} is final and the other non-final, or
- one of q_{1}, q_{2}, say q_{1}, has a transition a $q_{1} \xrightarrow{a} q_{1}^{\prime}$ such that every a-transition $q_{2} \xrightarrow{a} q_{2}^{\prime}$ satisfies: $L\left(q_{1}^{\prime}\right) \neq L\left(q_{2}^{\prime}\right)$.

Unstable blocks

A block B is unstable if there are states $q_{1}, q_{2} \in B$, a block B^{\prime} and $a \in \Sigma$ such that

$$
\delta\left(q_{1}, a\right) \cap B^{\prime} \neq \varnothing \quad \text { and } \quad \delta\left(q_{2}, a\right) \cap B^{\prime}=\varnothing
$$

We say that $\left(a, B^{\prime}\right)$ splits B.

Splitting blocks

Splitting an unstable block

We say that (a, B^{\prime}) is a splitter of B.
A splitter (a, B^{\prime}) splits B into two blocks: states q such that $\delta(q, a) \cap B^{\prime} \neq \emptyset$, and the rest.

Splitting blocks

Splitting an unstable block

We say that (a, B^{\prime}) is a splitter of B.
A splitter (a, B^{\prime}) splits B into two blocks: states q such that $\delta(q, a) \cap B^{\prime} \neq \emptyset$, and the rest.

An example

An example

The algorithm not always computes the language partition

States 2 and 3 recognize the same language: $c(d+e)$ However, the algorithm puts them into different blocks.

