
Minimization and Reduction

Residuals
• The residual of a language ܮ ⊆ Σ∗ with respect

to a word ݓ ∈ Σ∗ is the language
௪ܮ = ݑ} ∈ Σ∗ ∣ ݑݓ ∈ {ܮ

• A language ᇱܮ ⊆ Σ∗ is a residual of ܮ if ܮᇱ = ௪ܮ
for at least one word ݓ ∈ Σ∗

• Observe:
– ݓ ∈ ௨ܮ ↔ ݓݑ ∈ ܮ
– ఢܮ = ܮ
– ௪ܮ ௩ = ௪௩ܮ

Relation between residuals and states

• Let ܣ be a (finite or infinite) deterministic
automaton over an alphabet Σ.

• The language of a state ݍ of ܣ, denoted by ܮ஺(ݍ)
or just ܮ ݍ , is the language recognized by ܣ with
ݍ as initial state.

• Observation 1: State-languages are residuals.
– For every state ݍ of ܮ :ܣ ݍ = ௪ܮ for at least one

word ݓ ∈ Σ∗.
• Observation 2: Residuals are state-languages.

– For every word ݓ ∈ Σ∗: ܮ௪ = ܮ ݍ for at least one
state ݍ of ܣ.

Relation between residuals and states

Relation between residuals and states

• Important consequence:

Regular languages have finitely many residuals.

Languages with infinitely many residuals are not
regular.

Canonical DA for a language

• Let ܮ ⊆ Σ∗ be a language (not necessarily regular).
The canonical DA for ܮ is the tuple

௅ܥ = (ܳ௅,Σ, ,௅ߜ ଴௅ݍ (௅ܨ,
where
–ܳ௅ is the set of residuals of i.e., ܳ௅ ,ܮ = ௪ܮ } ∣ ݓ ∈ Σ∗}
– ߜ ,ܭ ܽ = ௔ܭ for every residual ܭ ∈ ܳ௅ and ܽ ∈ Σ
– ଴௅ݍ = ܮ
௅ܨ– = ܭ} ∈ ܳ௅ ∣ ߳ ∈ {ܭ

Canonical DA for a language
• For the language ܧܧ ⊆ ܽ, ܾ ∗:

ܳாா =

଴ாாݍ =

ாாܨ =

ாாߜ =

Canonical DA for a language
• For the language ܽ∗ܾ∗ ⊆ ܽ, ܾ ∗:

ܳ௔∗௕∗ =

଴(௔∗௕∗)ݍ =

∗௔∗௕ܨ =

∗௔∗௕ߜ =

Canonical DA for a language
• Proposition. ௅ܥ recognizes .ܮ
• Proof. We prove by induction on ݓ ݓ : ∈ ܮ iff ݓ ∈ (௅ܥ)ܮ

Theorem. If ܮ is regular, then ௅ܥ is the unique minimal DFA up to
isomorphism recognizing .ܮ

Proof.
1. ௅ܥ is a DFA for ܮ with a minimal number of states.

• ௅ܥ has exactly as many states as ܮ has residuals.
• Every DFA for ܮ has at least as many states as ܮ has residuals

2. Every minimal DFA for ܮ is isomorphic to ܥ௅.
Let ܣ be an arbitrary minimal DFA for ܮ. Then:

• The states of ܣ are in bijection with the residuals of ܮ.
• The transitions of ܣ are completely determined by this

bijection: if ݍ ↔ ߜ ௪, thenܮ ܽ,ݍ ↔ ௪௔ܮ
• The initial state is the state in bijection with ܮ.
• The final states are those in bijection with residuals

containing ߳.

Canonical DA for a language

Corollary. A DFA is minimal iff ܮ ݍ ≠ ܮ ᇱݍ for every two distinct
states ݍ and .′ݍ

Proof.
(⇒): Let ܣ be a minimal DFA.

Every residual of (ܣ)ܮ is recognized by at least one state
of ܣ (holds for every DFA).

Since ܣ is minimal, it has as many states as ܥ௅, and so its
number of states is equal to the number of residuals of (ܣ)ܮ.

Therefore: distinct states of ܣ recognize distinct residuals of
.(ܣ)ܮ

Canonical DA for a language

Corollary. A DFA is minimal iff ܮ ݍ ≠ ܮ ᇱݍ for every two distinct
states ݍ and .′ݍ

Proof.
(⇐): Let ܣ be a DFA such that distinct states recognize distinct

languages.

Since every state of ܣ recognizes a residual of (ܣ)ܮ, and
every residual of (ܣ)ܮ is recognized by some state of ܣ
(holds for every DFA), the number of states of ܣ is equal to
the number of residuals of (ܣ)ܮ.

So ܣ has as many states as ܥ௅, and so it is minimal.

Canonical DA for a language

Is it minimal ?

The Master Automaton

• The master automaton over Σ is the tuple
ܯ = ܳெ, Σ, ெܨ,ெߜ , where
–ܳெ is the set of all regular languages over Σ.
:ெߜ– ܳெ × Σ → ܳெ is given by ߜெ ,ܮ ܽ = ௔ܮ .
ܮ– ∈ ெܨ iff ߳ ∈ .ܮ

• The fragment of the Master Automaton
containing the states reachable from a state
(language) is the canonical DFA for the language.

Minimizing DFAs

Plan for the next slides:

1. Computing the language partition
2. Quotienting
3. Thm: The result is the minimal DFA

Computing the language
partition

• Block: set of states.

• Partition: set of blocks such that each state belongs
to exactly one block.

• Partition ܲ refines partition ܲᇱ if every block of P is
contained in some block of ܲᇱ.

• If ܲ refines ܲ′, then we say that ܲ is finer than ܲ′, and
ܲ′ is coarser than ܲ.

• Language partition: the partition in which two states
belong to the same block iff they recognize the same
language.

State partitions

• Start with the partition containing (one or) two
blocks:

 Block 1: Final states (accept ε)

 Block 2: Non-final states (do not accept ε)

• Iteratively split blocks, ensuring that states
recognizing the same language always stay in the
same block.

• Blocks that contain at least two states recognizing
different languages are called unstable.

Computing the language partition

Finding an unstable block
If two states ݍଵ, ݍଶ belong to the same block ܤ
but ߜ ܽ,ଵݍ and ߜ ܽ,ଶݍ belong to different blocks for some ܽ ∈ Σ,
then ܤ is unstable.

Computing the language partition

ଵݍ ଶݍ

ܽ

ܽ

B

ଵܤ ଶܤ

Splitting an unstable block
We say that (ଵܤ,ܽ) and ଶܤ,ܽ are splitters of .ܤ
A splitter (′ܤ,ܽ) splits ܤ into two blocks: states ݍ such that
ߜ ܽ,ݍ ∈ and ,′ܤ the rest.

Computing the language partition

ଵݍ ଶݍ

ܽ

ܽ

B

ଵܤ ଶܤ

ܽ

ܽ
ܽ

ܽ

Splitting an unstable block
We say that (ଵܤ,ܽ) and ଶܤ,ܽ are splitters of .ܤ
A splitter (′ܤ,ܽ) splits ܤ into two blocks: states ݍ such that
ߜ ܽ,ݍ ∈ and ,′ܤ the rest.

Computing the language partition

ଵݍ ଶݍ

ܽ

ܽ

ଵᇱܤ

ଵܤ ଶܤ

ܽ

ܽ
ܽ

ܽ

ଶᇱܤ

• Algorithm: repeatedly pick an unstable block and a splitter,
and split the block, until all blocks stable.

• The algorithm terminates.

Every split increases the number of blocks by 1, and the
number of blocks is bounded by the number of states.

• After termination, two states belong to the same block iff
they recognize the same language.

We show that after termination:
(1) If two states belong to different blocks, they recognize

different languages.
(2) If two states recognize different languages, they belong

to different blocks.

Correctness

(1) If two states ݍଵand ݍଶ belong to different blocks, they
recognize different languages.

By induction on the number ݇ of splittings until ଵݍ and ݍଶ are split
(put into different blocks).
• ݇ = 0 . Then ଵݍ is final and ݍଶ non-final, or vice versa, and we

are done.
• ݇ → ݇ + 1 . Then there are ଵᇱݍ , ଶᇱݍ such that ݍଵ

ୟ
ଵᇱݍ→ ଶݍ ,

ୟ
ଶᇱݍ→ ,

and ݍଵᇱ , ଶᇱݍ have been split before ଶݍ,ଵݍ are split.
By induction hypothesis ݍଵᇱ and ݍଶᇱ recognize different languages.
Since the automaton is a DFA, ݍଵ and ݍଶ also recognize different
languages.

Correctness

(2) If two states ݍଵand ݍଶ recognize different languages,
they belong to different blocks.

Let ݓ be a shortest word that belongs to, say, ܮ ଵݍ but not to
ܮ ଶݍ . By induction on the length of ݓ.
• |ݓ| = 0 . Then ݓ = ߝ ଶݍ ଵ is final, andݍ , is non-final. So ݍଵ and
ଶݍ belong to different blocks from the start.

• ݓ > 0 . Then ݓ = ᇱݓܽ for some ܽ, ݓᇱ. Let ݍଵᇱ = δ ܽ,ଵݍ and
ଶᇱݍ = δ(ݍଶ,ܽ) . Then ଵᇱݍ)ܮ) ≠ ଶᇱݍ)ܮ) by the DFA property.
By induction hypothesis ଵᇱݍ , ଶᇱݍ are put at some some point into
different blocks.
If at this point ݍଵ and ݍଶ still belong to the same block, then the
block becomes unstable and is eventually split.

Correctness

Quotienting

• Definition: The quotient of a NFA ܣ = (ܳ, Σ, ,ߜ (ܨ,଴ݍ with
respect to a partition ܲ is the NFA

=ܲ/ܣ ܳ௉,Σ, ,௉ߜ ௉ܨ,଴௉ݍ
where
• ܳ௉ = ܲ
• (ᇱܤ,ܽ,ܤ) ∈ ௉ߜ iff (ݍ,ܽ, (ᇱݍ ∈ ߜ for some ݍ ∈ ܤ and

some ′ݍ ∈ ′ܤ
• ଴௉ݍ is the block containing ݍ଴
• ௉ܨ is the set of blocks that contain some state of ܨ

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Quotient w.r.t. a partition

Proposition: The quotient of a DFA with respect to
its language partition is (isomorphic to) the
canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language

partition recognize the same language.
(2) The quotient is minimal (and therefore the

canonical DFA).

Quotient w.r.t. a partition

(1) A DFA and its quotient w.r.t. the language
partition recognize the same language.

We prove a more general result (for later use):

Lemma: Let ܣ be a NFA, and let ܲ be any
partition that refines the language partition ௟ܲ.
a) For every state :ݍ ஺ܮ ݍ = ,(ܤ)୅/୔ܮ where

is ܤ the block containing .ݍ
b) If ܣ is a DFA and ܲ = ௟ܲ, then ܲ/ܣ is also a

DFA.

Quotient w.r.t. a partition

a) For every state ݍ of ܮ :ܣ஺ ݍ = ,(ܤ)஺/௉ܮ
where ܤ is the block containing ݍ.

We prove that for every word ݓ ∈ Σ:
ݓ ∈ ஺ܮ ݍ ⟺ ݓ ∈ .(ܤ)஺/௉ܮ

By induction on ݓ .
• ݓ = 0. Then ݓ = ߝ and

߳ ∈ ஺ܮ ݍ iff ݍ ∈ ܨ
iff ܤ ⊆ because) ܨ ܲ refines ℓܲ)
iff ܤ ∈ ௉ܨ
iff ߳ ∈ (ܤ)஺/௉ܮ

Quotient w.r.t. a partition

a) For every state ݍ of ܮ :ܣ஺ ݍ = ,(ܤ)஺/௉ܮ
where ܤ is the block containing ݍ.

• |ݓ| > 0. Then ݓ = .′ݓܽ
There is ݍ

௔
ᇱݍ→ in ܣ such that ݓᇱ ∈ ஺ܮ ᇱݍ .

There is ܤ
௔
′ܤ→ in ܣ ܲ⁄ such that ݍᇱ ∈ .ᇱܤ

We have:

′ݓܽ ∈ ஺ܮ ݍ iff ݓ′ ∈ ஺ܮ ᇱݍ (Def. of (ݍ
iff ᇱݓ ∈ ஺ܮ ௉⁄ (ᇱܤ) (induction hyp.)
iff ′ݓܽ ∈ (ܤ)஺/௉ܮ ܤ)

௔
(ᇱܤ→

Quotient w.r.t. a partition

b) If ܣ is a DFA and ܲ = ௟ܲ, then ܣ/ܲ is also a DFA.

Quotient w.r.t. a partition

We show: If ܤ
௔
ܤ ଵ andܤ→

௔
ଵܤ ଶ, thenܤ→ = .ଶܤ

• There are ݍ, ′ݍ ∈ ଵݍ ,ܤ ∈ ଶݍ ,ଵܤ ∈ ଶܤ
such that ݍ

௔
ଵ andݍ→ ′ݍ

௔
.ଶݍ→

• Since ܲ = ௟ܲ, ݍ and ݍᇱ recognize the
same language.

• Since ܣ is a DFA, ݍଵ and ݍଶ recognize
the same language.

• Since ܲ = ௟ܲ, ܤଵ = .ଶܤ

2) The quotient of a DFA ܣ w.r.t. the language
partition is the canonical DFA.

• By 1.b, the quotient is a DFA.
• By 1.a, applied to the initial state, ܣ/ ℓܲ

recognizes the same language as ܣ.
• Since the quotient is w.r.t. the language

partition, different blocks of the quotient
recognize different languages. So ܣ/ܲ is
minimal.

Quotient w.r.t. a partition

Hopcroft´s algorithm

• The algorithm for the computation of the
language partition is nondeterministic: It does
not specify which unstable block to split next.

• Hopcroft´s algorithm is a refinement that
carefully chooses the split order, and achieves
a complexity of ܱ(݉݊ log ݊) for a DFA with ݊
states over an ݉-letter alphabet.

• The algorithm maintains a workset of possible
splitters.

Hopcroft´s algorithm
• The algorithm maintains a workset of candidate splitters

.(ܤ,ܽ)

• When a candidate (ܤ,ܽ) is taken from the workset, it is
applied to all current blocks.

• Observation 1: After applying (ܤ,ܽ) to all blocks it never
brings anything to apply it again

⇒ it is safe to ensure that candidates removed from the
workset are never added to the workset again.

• Observation 2: If ܤ is split into ଴ܤ and ଵ, thenܤ splitting w.r.t.
any two of ܤ,ܽ , ଴ܤ,ܽ , ଵܤ,ܽ produces the same result
as splitting with respect to all three.

Hopcroft´s algorithm

Reducing NFAs

Minimal NFAs are not unique

Finding minimal NFAs is hard

Theorem: The following problem is PSPACE-
complete: Given an NFA ܣ and a number ݇, decide
if there is another NFA ܤ equivalent to ܣ and
having at most ݇ states.

Proof idea: We will show later that the following
problem is PSPACE complete: given an NFA ܣ over
alphabet Σ, decide whether ܮ ܣ = Σ∗.

The problem above can be reduced to this one.
This shows PSPACE-hardness.

Reducing NFAs

We wish to use the same idea as before:
• Compute a suitable partition ܲ of the states of

the NFA.
• Quotient the NFA with respect to this partition.

Requirements on ܲ :

• ܮ ܣ = ܣ)ܮ ܲ⁄)

• Efficiently computable

• Recall: For every NFA ܣ and partition ܲ that
refines the language partition: ܮ ܣ = ܣ)ܮ ܲ⁄).

• So any such partition is good for reduction.
• A partition refines the language partition iff

states in the same block recognize the same
language (states in different blocks may not
recognize different languages, though!).

• (Observe: Such partitions refine the partition
ܨ ⃥ ܳ,ܨ .)

Partitions suitable for reduction

• Idea: use the same algorithm as for DFA, but
with new notions of unstable block and block
splitting.

• We must guarantee:
after termination, states of a block
recognize the same language

or, equivalently
after termination, states recognizing
different languages belong to different
blocks

Computing a suitable partition

If ܮ ଵݍ ≠ ܮ ଶݍ then either
 one of ݍଵ,ݍଶ is final and the other

non-final, or
 one of ଵ, has a transitionݍ ଶ, sayݍ,ଵݍ
ଵݍ

௔
ଵᇱݍ→ such that every ܽ-transition

ଶݍ
௔
ଶᇱݍ→ satisfies: ܮ ଵᇱݍ ≠ ܮ ଶᇱݍ .

The key observation

A block ܤ is unstable if there are states ,ଵݍ ଶݍ ∈ a block ,ܤ
′ܤ and ܽ ∈ Σ such that

ߜ ܽ,ଵݍ ∩ ᇱܤ ≠ ∅ and ߜ ܽ,ଶݍ ∩ ᇱܤ = ∅
We say that ᇱܤ,ܽ splits .ܤ

Unstable blocks

ܽ ܽ

ܽ
ଵݍ ଶݍ

ܽ
ܽ

B

′ܤ

ܽ

Splitting an unstable block
We say that (′ܤ,ܽ) is a splitter of .ܤ
A splitter (′ܤ,ܽ) splits ܤ into two blocks: states ݍ such that
ߜ ܽ,ݍ ∩ ᇱܤ ≠ ∅, and the rest.

Splitting blocks

ܽ

ܽ
ଵݍ ଶݍ

ܽ
ܽ

B

′ܤ

ܽ

Splitting an unstable block
We say that (′ܤ,ܽ) is a splitter of .ܤ
A splitter (′ܤ,ܽ) splits ܤ into two blocks: states ݍ such that
ߜ ܽ,ݍ ∩ ᇱܤ ≠ ∅, and the rest.

Splitting blocks

ܽ

ܽ
ଵݍ ଶݍ

ܽ
ܽ

′ܤ

ܽ

An example

An example

The algorithm not always computes
the language partition

States 2 and 3 recognize the same language: ܿ(݀ + ݁)
However, the algorithm puts them into different blocks.

