
Minimization and Reduction



Residuals
• The residual of a language 퐿 ⊆ Σ∗ with respect  

to a word 푤 ∈ Σ∗ is the language 
퐿 = {푢 ∈ Σ∗ ∣ 푤푢 ∈ 퐿}

• A language 퐿 ⊆ Σ∗ is a residual of 퐿 if 퐿 = 퐿
for at least one word 푤 ∈ Σ∗

• Observe:
– 푤 ∈ 퐿 ↔ 푢푤 ∈ 퐿
– 퐿 = 퐿
– 퐿 = 퐿



Relation between residuals and states

• Let 퐴 be a (finite or infinite) deterministic
automaton over an alphabet Σ.

• The language of a state 푞 of 퐴, denoted by 퐿 (푞)
or just 퐿 푞 , is the language recognized by 퐴 with 
푞 as initial state.

• Observation 1: State-languages are residuals.
– For every state 푞 of 퐴:  퐿 푞 = 퐿 for at least one 

word 푤 ∈ Σ∗.
• Observation 2: Residuals are state-languages.

– For every word 푤 ∈ Σ∗: 퐿 = 퐿 푞  for at least one 
state 푞 of 퐴.



Relation between residuals and states



Relation between residuals and states

• Important consequence:

Regular languages have finitely many residuals.

Languages with infinitely many residuals are not 
regular.



Canonical DA for a language

• Let 퐿 ⊆ Σ∗ be a language (not necessarily regular). 
The canonical DA for 퐿 is the tuple

퐶 = (푄 ,Σ, 훿 , 푞 ,퐹 )
where
–푄 is the set of residuals of 퐿, i.e., 푄 =  { 퐿 ∣ 푤 ∈ Σ∗}
– 훿 퐾, 푎 = 퐾 for every residual 퐾 ∈ 푄 and 푎 ∈ Σ
– 푞 = 퐿
–퐹 = {퐾 ∈ 푄 ∣ 휖 ∈ 퐾}



Canonical DA for a language
• For the language 퐸퐸 ⊆ 푎, 푏 ∗:

푄 =

푞 =

퐹 =

훿 =



Canonical DA for a language
• For the language 푎∗푏∗ ⊆ 푎, 푏 ∗:

푄 ∗ ∗ =

푞 ( ∗ ∗) =

퐹 ∗ ∗ =

훿 ∗ ∗ =



Canonical DA for a language
• Proposition. 퐶 recognizes 퐿.
• Proof. We prove by induction on 푤 :  푤 ∈ 퐿 iff 푤 ∈ 퐿(퐶 )



Theorem. If 퐿 is regular, then 퐶 is the unique minimal DFA up to
isomorphism recognizing 퐿.

Proof.
1. 퐶 is a DFA for 퐿 with a minimal number of states.

• 퐶 has exactly as many states as 퐿 has residuals.
• Every DFA for 퐿 has at least as many states as 퐿 has residuals

2. Every minimal DFA for 퐿 is isomorphic to 퐶 .
Let 퐴 be an arbitrary minimal DFA for 퐿. Then:

• The states of 퐴 are in bijection with the residuals of 퐿.
• The transitions of 퐴 are completely determined by this 

bijection: if 푞 ↔ 퐿 , then 훿 푞,푎 ↔ 퐿
• The initial state is the state in bijection with 퐿.
• The final states are those in bijection with residuals 

containing 휖.

Canonical DA for a language



Corollary. A DFA is minimal iff 퐿 푞 ≠ 퐿 푞 for every two distinct
states 푞 and 푞′.

Proof.
(⇒): Let 퐴 be a minimal DFA.

Every residual of 퐿(퐴) is recognized by at least one state
of 퐴 (holds for every DFA).

Since 퐴 is minimal, it has as many states as 퐶 , and so its 
number of states is equal to the number of residuals of 퐿(퐴).

Therefore: distinct states of 퐴 recognize distinct residuals of
퐿(퐴).

Canonical DA for a language



Corollary. A DFA is minimal iff 퐿 푞 ≠ 퐿 푞 for every two distinct
states 푞 and 푞′.

Proof.
(⇐): Let 퐴 be a DFA such that distinct states recognize distinct

languages.

Since every state of 퐴 recognizes a residual of 퐿(퐴), and 
every residual of 퐿(퐴) is recognized by some state of 퐴
(holds for every DFA), the number of states of 퐴 is equal to
the number of residuals of 퐿(퐴).

So 퐴 has as many states as 퐶 , and so it is minimal.

Canonical DA for a language



Is it minimal ?



The Master Automaton

• The master automaton over Σ is the tuple 
푀 = 푄 , Σ, 훿 ,퐹 , where
–푄 is the set of all regular languages over Σ.
–훿 :  푄 ×  Σ → 푄 is given by 훿 퐿, 푎 = 퐿 .
–퐿 ∈ 퐹 iff 휖 ∈ 퐿.

• The fragment of the Master Automaton
containing the states reachable from a state
(language) is the canonical DFA for the language.





Minimizing DFAs

Plan for the next slides:

1. Computing the language partition
2. Quotienting
3. Thm: The result is the minimal DFA



Computing the language
partition



• Block: set of states.

• Partition: set of blocks such that each state belongs
to exactly one block.

• Partition 푃 refines partition 푃 if every block of P is 
contained in some block of 푃 .

• If 푃 refines 푃′, then we say that 푃 is finer than 푃′, and 
푃′ is coarser than 푃.

• Language partition: the partition in which two states 
belong to the same block iff they recognize the same 
language.

State partitions



• Start with the partition containing (one or) two
blocks:

 Block 1: Final states (accept ε)

 Block 2: Non-final states (do not accept ε)

• Iteratively split blocks, ensuring that states 
recognizing the same language always stay in the 
same block.

• Blocks that contain at least two states recognizing 
different languages are called unstable.

Computing the language partition



Finding an unstable block
If two states 푞 , 푞 belong to the same block 퐵
but 훿 푞 ,푎 and 훿 푞 ,푎 belong to different blocks for some 푎 ∈ Σ, 
then 퐵 is unstable.

Computing the language partition
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Splitting an unstable block
We say that (푎,퐵 ) and 푎,퐵 are splitters of 퐵. 
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∈ 퐵′, and the rest.

Computing the language partition
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Splitting an unstable block
We say that (푎,퐵 ) and 푎,퐵 are splitters of 퐵. 
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∈ 퐵′, and the rest.

Computing the language partition
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• Algorithm: repeatedly pick an unstable block and a splitter, 
and split the block, until all blocks stable.

• The algorithm terminates.

Every split increases the number of blocks by 1, and the 
number of blocks is bounded by the number of states.

• After termination, two states belong to the same block iff 
they recognize the same language.

We show that after termination:
(1) If two states belong to different blocks, they recognize 

different languages.
(2) If two states recognize different languages, they belong 

to different blocks.

Correctness



(1) If two states 푞 and 푞 belong to different blocks, they 
recognize different languages.

By induction on the number 푘 of splittings until 푞 and 푞 are split
(put into different blocks).
• 푘 = 0 . Then 푞 is final and 푞 non-final, or vice versa, and we 

are done.
• 푘 → 푘 + 1 .  Then there are 푞 , 푞 such that  푞 →푞 ,  푞 →푞 , 

and  푞  , 푞 have been split before 푞 ,푞 are split. 
By induction hypothesis 푞  and 푞 recognize different languages. 
Since the automaton is a DFA, 푞  and 푞 also recognize different 
languages.

Correctness



(2) If two states 푞 and 푞 recognize different languages, 
they belong to different blocks.

Let 푤 be a shortest word that belongs to, say, 퐿 푞  but not to 
퐿 푞 . By induction on the length of 푤.
• |푤| = 0 .  Then 푤 = 휀 , 푞  is final, and 푞 is non-final. So 푞  and 
푞 belong to different blocks from the start.

• 푤 > 0 .  Then 푤 = 푎푤 for some 푎, 푤 . Let 푞 = δ 푞 ,푎 and
푞 = δ(푞 ,푎) . Then 퐿(푞 ) ≠ 퐿(푞 ) by the DFA property. 
By induction hypothesis 푞 , 푞 are put at some some point into 
different blocks. 
If at this point 푞  and 푞 still belong to the same block, then the
block becomes unstable and is eventually split.

Correctness



Quotienting



• Definition: The quotient of a NFA 퐴 = (푄, Σ, 훿, 푞 ,퐹) with 
respect to a partition 푃 is the NFA 

퐴/푃= 푄 ,Σ, 훿 , 푞 ,퐹
where
• 푄 = 푃
• (퐵,푎,퐵 ) ∈ 훿 iff (푞,푎, 푞 ) ∈ 훿 for some 푞 ∈ 퐵 and 

some 푞′ ∈ 퐵′
• 푞 is the block containing 푞
• 퐹 is the set of blocks that contain some state of 퐹

Quotient w.r.t. a partition



Quotient w.r.t. a partition



Quotient w.r.t. a partition



Proposition: The quotient of a DFA with respect to
its language partition is (isomorphic to) the
canonical DFA.

The proof has two parts:
(1) A DFA and its quotient w.r.t. the language

partition recognize the same language.
(2) The quotient is minimal (and therefore the

canonical DFA).

Quotient w.r.t. a partition



(1) A DFA and its quotient w.r.t. the language
partition recognize the same language.

We prove a more general result (for later use):

Lemma: Let 퐴 be a NFA, and let 푃 be any
partition that refines the language partition 푃 .
a) For every state 푞: 퐿 푞 = 퐿 / (퐵), where

퐵 is the block containing 푞.
b) If 퐴 is a DFA and 푃 = 푃 , then 퐴/푃 is also a

DFA.

Quotient w.r.t. a partition



a) For every state  푞 of 퐴:  퐿 푞 = 퐿 / (퐵), 
where 퐵 is the block containing 푞.

We prove that for every word 푤 ∈ Σ: 
푤 ∈ 퐿 푞 ⟺  푤 ∈ 퐿 / (퐵).

By induction on 푤 .
• 푤 = 0. Then 푤 = 휀 and

휖 ∈ 퐿 푞 iff   푞 ∈ 퐹
iff 퐵 ⊆ 퐹 (because 푃 refines 푃ℓ)
iff 퐵 ∈ 퐹
iff 휖 ∈ 퐿 / (퐵)

Quotient w.r.t. a partition



a) For every state  푞 of 퐴:  퐿 푞 = 퐿 / (퐵), 
where 퐵 is the block containing 푞.

• |푤|  >  0. Then 푤 = 푎푤′. 
There is 푞→푞 in 퐴 such that 푤 ∈  퐿 푞 . 
There is 퐵→퐵′ in 퐴 푃⁄ such that 푞 ∈ 퐵 .

We have:

푎푤′ ∈ 퐿 푞 iff   푤′ ∈ 퐿 푞 (Def. of 푞) 
iff 푤 ∈ 퐿 ⁄ (퐵 ) (induction hyp.) 
iff 푎푤′ ∈ 퐿 / (퐵) (퐵→퐵 )

Quotient w.r.t. a partition



b) If 퐴 is a DFA and 푃 = 푃 , then 퐴/푃 is also a DFA.

Quotient w.r.t. a partition

We show: If  퐵→퐵  and 퐵→퐵 , then  퐵 = 퐵 .

• There are 푞, 푞′ ∈ 퐵, 푞 ∈ 퐵 , 푞 ∈ 퐵
such that 푞→푞  and 푞′→푞 .

• Since 푃 = 푃 , 푞 and 푞 recognize the 
same language.

• Since 퐴 is a DFA, 푞 and 푞 recognize 
the same language. 

• Since 푃 = 푃 , 퐵 = 퐵 .



2) The quotient of a DFA  퐴 w.r.t. the language 
partition is the canonical DFA.

• By 1.b, the quotient is a DFA.
• By 1.a, applied to the initial state, 퐴/푃ℓ 

recognizes the same language as 퐴.
• Since the quotient is w.r.t. the language 

partition, different blocks of the quotient 
recognize different languages. So 퐴/푃 is 
minimal.

Quotient w.r.t. a partition



Hopcroft´s algorithm

• The algorithm for the computation of the
language partition is nondeterministic: It does
not specify which unstable block to split next. 

• Hopcroft´s algorithm is a refinement that
carefully chooses the split order, and achieves
a complexity of 푂(푚푛 log 푛) for a DFA with 푛
states over an 푚-letter alphabet. 

• The algorithm maintains a workset of possible
splitters. 



Hopcroft´s algorithm
• The algorithm maintains a workset of candidate splitters

(푎,퐵).

• When a candidate (푎,퐵) is taken from the workset, it is
applied to all current blocks.

• Observation 1: After applying (푎,퐵) to all blocks it never
brings anything to apply it again

⇒ it is safe to ensure that candidates removed from the
workset are never added to the workset again.

• Observation 2: If 퐵 is split into 퐵 and 퐵 , then splitting w.r.t. 
any two of 푎,퐵 , 푎,퐵 , 푎,퐵 produces the same result
as splitting with respect to all three.



Hopcroft´s algorithm



Reducing NFAs



Minimal NFAs are not unique



Finding minimal NFAs is hard

Theorem: The following problem is PSPACE-
complete:  Given an NFA 퐴 and a number 푘, decide
if there is another NFA 퐵 equivalent to 퐴 and
having at most 푘 states.

Proof idea: We will show later that the following
problem is PSPACE complete: given an NFA 퐴 over
alphabet Σ, decide whether 퐿 퐴 = Σ∗.

The problem above can be reduced to this one. 
This shows PSPACE-hardness. 



Reducing NFAs

We wish to use the same idea as before:
• Compute a suitable partition 푃 of the states of

the NFA.
• Quotient the NFA with respect to this partition. 

Requirements on 푃 :

• 퐿 퐴 = 퐿(퐴 푃⁄ )

• Efficiently computable



• Recall: For every NFA 퐴 and partition 푃 that 
refines the language partition: 퐿 퐴 = 퐿(퐴 푃⁄ ).

• So any such partition is good for reduction.
• A partition refines the language partition iff 

states in the same block recognize the same 
language (states in different blocks may not 
recognize different languages, though!).

• (Observe: Such partitions refine the partition 
퐹,푄   ⃥ 퐹 .)

Partitions suitable for reduction



• Idea: use the same algorithm as for DFA, but 
with new notions of unstable block and block 
splitting.

• We must guarantee: 
after termination, states of a block 
recognize the same language

or, equivalently
after termination, states recognizing 
different languages belong to different 
blocks

Computing a suitable partition



If 퐿 푞 ≠ 퐿 푞 then either
 one of 푞 ,푞  is final and the other 

non-final, or
 one of 푞 ,푞 , say 푞 , has a transition 
푞 →푞 such that every 푎-transition 
푞 →푞 satisfies: 퐿 푞 ≠ 퐿 푞 .

The key observation



A block 퐵 is unstable if there are states 푞 , 푞 ∈ 퐵, a block 
퐵′ and 푎 ∈ Σ such that

훿 푞 ,푎 ∩ 퐵 ≠ ∅ and   훿 푞 ,푎 ∩ 퐵 = ∅
We say that 푎,퐵 splits 퐵.

Unstable blocks
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Splitting an unstable block
We say that (푎,퐵′) is a splitter of 퐵. 
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∩ 퐵 ≠ ∅, and the rest.

Splitting blocks
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Splitting an unstable block
We say that (푎,퐵′) is a splitter of 퐵. 
A splitter (푎,퐵′) splits 퐵 into two blocks: states 푞 such that
훿 푞,푎 ∩ 퐵 ≠ ∅, and the rest.

Splitting blocks
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An example



An example



The algorithm not always computes
the language partition

States 2 and 3 recognize the same language:  푐(푑 + 푒)
However, the algorithm puts them into different blocks.


