
Classes and conversions

Regular expressions
• Syntax: ݎ ∷= ∅ ∣ ߳ ∣ ܽ ∣ ଶݎଵݎ ∣ ଵݎ + ଶݎ ∣ ∗ݎ

• Semantics: The language ܮ ݎ of a regular
expression ݎ is inductively defined as follows:

• ܮ ∅ = ܮ ,∅ ߳ = ܮ ,{߳} ܽ = ܽ

• ܮ ଶݎଵݎ = ܮ ଵݎ ܮ ଶݎ
where ଶܮଵܮ = ଶݓଵݓ} ∣ ଵݓ ∈ ଶݓ,ଵܮ ∈ {ଶܮ

• ܮ ଵݎ + ଶݎ = ܮ ଵݎ ∪ ܮ ଶݎ

• ܮ ∗ݎ = ⋃ ஹܮ
where ܮ = ߳ and ܮାଵ = ܮܮ

Deterministic finite automata (DFA)

• ܳ is a finite, nonempty set of
states

• Σ is a nonempty, finite set of
letters, called an alphabet

• ܳ:ߜ × Σ → ܳ is the transition
function

• ݍ ∈ ܳ is the initial state
• ܨ ⊆ ܳ is the set of final states

A deterministic finite automaton is a tuple
ܣ = (ܳ,Σ, ,ߜ (ܨ,ݍ where

Run of a DFA on a word
• ݍ

ᇱݍ→ denotes ߜ ܽ,ݍ = ᇱݍ

• The run of a DFA on a word
ܽଵܽଶ … ܽ ∈ Σ∗ is the unique sequence
ଵݍݍ … ݍ of states such that

ݍ
భ ଵݍ

మ ିଵݍ⋯ଶݍ
 ݍ

• A DFA accepts a word iff its run on it
ends in a final state. We say the run is
accepting.

• A DFA over an alphabet Σ recognizes a
language ܮ ⊆ Σ∗ if it accepts every
word of ܮ and no other. The language
recognized by a DFA ܣ is denoted ܮ ܣ .

Nondeterministic finite automata (NFA)

A nondeterministic automaton is a tuple ܣ = (ܳ,Σ, (ܨ,ܳ,ߜ
where
• ܳ,Σ,ܨ are as for DFAs
• ܳ:ߜ × Σ → 2ொ is the transition function
• ܳ ∈ ܳ is the set of initial states

Runs of an NFA on a word
• A run of an NFA on a word ܽଵܽଶ …ܽ ∈ Σ∗ is a sequence
ଵݍݍ … ݍ of states such that ݍ ∈ ܳ and

ݍ
భ ଵݍ

మ ିଵݍ⋯ଶݍ
 ݍ

• An NFA can have 0, 1, or more runs on the same word
(but only finitely many).

• An NFA accepts a word iff at least one of its runs on it is
accepting.

Nondeterministic finite automata with
߳-transitions (NFA߳)

A nondeterministic automaton with ߳-transitions is a tuple
ܣ = (ܳ, Σ, (ܨ,ܳ,ߜ where
• ܳ,Σ,ܳ,ܨ are as for NFAs
• ܳ:ߜ × (Σ ∪ {߳}) → 2ொ is the transition function

Runs of an NFA߳ on a word
• A run of an NFA߳ on a word ܽଵܽଶ …ܽ ∈ Σ∗ is a

sequence ݍ … ଵݍᇱݍ ଶݍଵᇱݍ… … ିଵᇱݍ ᇱݍ⋯ݍ of states
such that ݍ ∈ ܳ and

ݍ
ఢ
→⋯

ఢ
ᇱݍ→

భ ଵݍ
ఢ
→⋯

ఢ
ଵᇱݍ→

మ ିଵᇱݍ⋯ଶݍ ݍ
ఢ
→⋯

ఢ
ᇱݍ→

• An NFA߳ can have 0, 1, or more runs on the same word,
even infinitely many.

• An NFA߳ accepts a word iff at least one of its runs on it is
accepting.

Nondeterministic finite automata with
regular expressions (NFAreg)

A nondeterministic automaton with regular expressions is a
tuple ܣ = (ܳ, Σ, (ܨ,ܳ,ߜ where
• ܳ,Σ,ܳ,ܨ are as for NFAs
• ܳ:ߜ × Reg(Σ) → 2ொ is the transition function, where
ߜ ,ݍ ݎ = ∅ is the case for all but finitely many pairs
,ݍ ݎ ∈ ܳ × Reg(Σ)

Language recognized by an NFAreg
An NFAreg accepts a word ݓ if there are states ,ݍ … , ݍ
and regular expressions ݎଵ, … , ݎ such that

– ݍ ∈ ܳ ݍ , ∈ ,ܨ

– ݍ
భ→ݍଵ

మ→ݍଶ⋯ݍିଵ
→ ݍ , and

– ݓ ∈ ܮ ݎ⋯ଶݎଵݎ .

Normal form

• An automaton of any class is in normal form if every state
is reachable by a path of transitions from some initial
state.

• For every automaton there is an equivalent automaton in
normal form.

• All algorithms in this course assume that automata inputs
are in normal form, and guarantee that the output is also
in normal form.

Conversions

NFA to DFA

The powerset construction

Let ܮ be the language of the NFA with ݊ + 1 states.

Proposition. Every DFA for ܮ has at least 2 states.

Proof: Assume some DFA for ܮ
has fewer states.

Then two different words of
length ݊ lead to the same state.
Let the words be ݒܽݑ and ݓܾݑ.

Then ݑݒܽݑ and ݑݓܾݑ lead to the
same state too, but only ݑݒܽݑ is
accepted. Contradiction.

NFA߳ to NFA

NFA߳ to NFA

Saturation

NFA߳ to NFA

Saturation

Check of the
initial state
+ ߳-removal

A one-pass algorithm

Correctness

Proposition. Let ܣ be an NFA߳ and let ܤ = NFAϵtoNFA(ܣ).
Then ܤ is an NFA and ܮ ܣ = ܮ ܤ .
Proof.
• Termination. Every transition that leaves ܹ is never added to

ܹagain, and each iteration of the while loop removes one
transition from ܹ.

• ܤ is an NFA. Easy.
• ܮ ܤ ⊆ .(ܣ)ܮ

− Check that every transition added by the algorithm is a
transition of ܣ or a shortcut.

− Check that the algorithm only adds initial states as final, and
only if ܣ has an ߳-path from them to a final state.
Invariant: At line ଵݍ ,13 ∈ ܳ. Proof by induction, observing that
the algorithm only adds ߳-transitions to ܹ at line 15.

Correctness

• ܮ ܣ ⊆ (ܤ)ܮ

If ߳ ∈ ܮ ܣ then ߳ ∈ ܮ ܤ

ݍ
ఢ
ଵݍ→

ఢ
ଶݍ→

ఢ
ଷݍ→

ఢ
ସݍ→

If ݓ ≠ ߳ and ݓ ∈ ܮ ܣ then ݓ ∈ ܮ ܤ

ݍ
ఢ
ଵݍ→

ఢ
ଶݍ→

భ ଷݍ
ఢ
ସݍ→

ఢ
ହݍ→

మ ହݍ
ఢ
ݍ→

Regular expressions to NFA߳

Regular expressions to NFA߳

• Preprocessing: Convert the regular expression into
another one which is either equal to ∅, or does not
contain any occurrence of ∅.

• Use the following rewrite rules:

Regular expressions to NFA߳

Regular expressions to NFA߳

Regular expressions to NFA߳

Regular expressions to NFA߳

Regular expressions to NFA߳

Regular expressions to NFA߳

NFA߳ to regular expressions
• Preprocessing: convert into an NFA-߳ with

– one initial state without input transitions, and
– one final state without output transitions.

NFA߳ to regular expressions
• Processing: apply the following two rules,

given priority to the first one.

NFA߳ to regular expressions

NFA߳ to regular expressions

NFA߳ to regular expressions

NFA߳ to regular expressions

NFA߳ to regular expressions

NFA߳ to regular expressions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

A Tour of Conversions

