Automata and Formal Languages — Exercise Sheet 13

Exercise 13.1

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas for the following ω -languages:

- (a) $\{p,q\} \emptyset \Sigma^{\omega}$
- (b) $\Sigma^* \{q\}^{\omega}$
- (c) $\Sigma^*\left(\{p\}+\{p,q\}\right)\Sigma^*\left\{q\}\Sigma^{\omega}$
- (d) $\{p\}^* \{q\}^* \emptyset^{\omega}$

In (a) and (d) the \emptyset symbol stands for the letter $\emptyset \in \Sigma$, and not for the empty ω -language.

Exercise 13.2

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata for the ω -languages over Σ defined by the following LTL formulas:

- (a) $\mathbf{X}\mathbf{G}\neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \land \neg(\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

Exercise 13.3

Let $\mathcal{V} \in {\mathbf{F}, \mathbf{G}}^*$ be a sequence made of the temporal operators \mathbf{F} and \mathbf{G} . Show that $\mathbf{F}\mathbf{G}p \equiv \mathcal{V}\mathbf{F}\mathbf{G}p$ and $\mathbf{G}\mathbf{F}p \equiv \mathcal{V}\mathbf{G}\mathbf{F}p$.

Exercise 13.4

Say which of the following equivalences hold. For every equivalence that does not hold give an instantiation of φ and ψ together with a computation that disproves the equivalence.

(a)
$$\mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$$

(b) $\mathbf{F}(\varphi \land \psi) \equiv \mathbf{F}\varphi \land \mathbf{F}\psi$
(c) $\mathbf{G}(\varphi \lor \psi) \equiv \mathbf{G}\varphi \lor \mathbf{G}\psi$
(d) $(\varphi \lor \psi) \lor \mathbf{U} \ \rho \equiv (\varphi \lor \mathbf{U} \ \rho) \lor$
(e) $\mathbf{GF}(\varphi \land \psi) \equiv \mathbf{GF}\varphi \land \mathbf{GF}\psi$
(f) $\mathbf{X}(\varphi \lor \psi) \equiv (\mathbf{X}\varphi \lor \mathbf{X}\psi)$

Solution 13.1

- (a) $(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q)$
- (b) $\mathbf{FG}(\neg p \land q)$
- (c) $\mathbf{F}(p \wedge \mathbf{XF}(\neg p \wedge q))$
- (d) $(p \land \neg q) \mathbf{U} ((\neg p \land q) \mathbf{U} \mathbf{G} (\neg p \land \neg q))$

Solution 13.2

(a)

(b) Note that $(\mathbf{GF}p) \to (\mathbf{F}q) \equiv \neg(\mathbf{GF}p) \lor (\mathbf{F}q) \equiv (\mathbf{FG}\neg p) \lor (\mathbf{F}q)$. We construct Büchi automata for $\mathbf{FG}\neg p$ and $\mathbf{F}q$, and take their union:

(c) Note that $p \land \neg(\mathbf{XF}p) \equiv p \land \mathbf{XG}\neg p$. We construct a Büchi automaton for $p \land \mathbf{XG}\neg p$:

(e) Note that $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p)) \equiv \mathbf{G} \neg q \lor (\neg q \mathbf{U} (\neg q \land p))$. Consider this case split over the occurrence of a p: computations that satisfy the formula either have no occurrence of p, in which case they must satisfy the first part of the \lor (i.e. $\mathbf{G} \neg q$), or they have a first occurrence of p with no q before or at the same time:

(d)

Solution 13.3

Given LTL formulas φ and ψ , we denote by $\varphi \models \psi$ that every computation satisfying φ satisfies ψ . Note that $\varphi \equiv \sigma$ iff $\varphi \models \psi$ and $\psi \models \varphi$. It is readily seen that the following holds:

$$\mathbf{FF}\varphi \equiv \mathbf{F}\varphi,\tag{1}$$

$$\mathbf{G}\mathbf{G}\varphi \equiv \mathbf{G}\varphi,\tag{2}$$

$$\mathbf{G}\varphi \models \varphi \text{ and } \varphi \models \mathbf{F}\varphi. \tag{3}$$

Let us show that (a) $\mathbf{FG}\varphi \equiv \mathbf{GFG}\varphi$ and (b) $\mathbf{GF}\varphi \equiv \mathbf{FGF}\varphi$.

- (a) We have $\mathbf{GFG}\varphi \models \mathbf{FG}\varphi$ by (3). Let $\sigma \models \mathbf{FG}\varphi$. There exists $i \ge 0$ such that $\sigma^j \models \varphi$ for every $j \ge i$. Thus, for every $k \ge 0$ there is some $\ell \ge 0$ such that $(\sigma^k)^\ell \models \mathbf{G}\varphi$. Indeed, if $k \ge i$ then take $\ell = 0$, and if k < i then take $\ell = i - k$. Therefore, we have $\sigma^k \models \mathbf{FG}\varphi$ for every $k \ge 0$, and hence $\sigma \models \mathbf{GFG}\varphi$. This means that $\mathbf{FG}\varphi \models \mathbf{GFG}\varphi$.
- (b) We have $\mathbf{GF}\varphi \models \mathbf{FGF}\varphi$ by (3). It is the case that $\mathbf{FGF}\varphi \models \mathbf{GF}\varphi$. Indeed, if there exists $i \ge 0$ such that $\sigma^j \models \varphi$ holds for infinitely many $j \ge i$, then, in particular, $\sigma^j \models \varphi$ holds for infinitely many $j \ge 0$.

We prove $\mathbf{FG}\varphi \equiv \mathcal{V}\mathbf{FG}\varphi$ by induction on the length of \mathcal{V} . If $\mathcal{V} = \varepsilon$, then we are done. If $\mathcal{V} = \mathcal{U}\mathbf{F}$, then we have $\mathcal{V}\mathbf{FG}\varphi \equiv \mathcal{U}\mathbf{FG}\varphi$ by (1). If $\mathcal{V} = \mathcal{U}\mathbf{G}$, then we have the same equivalence by (a). By induction hypothesis we get $\mathcal{U}\mathbf{FG}\varphi \equiv \mathbf{FG}\varphi$. The other equivalence is proved similarly using (2) and (b).

Solution 13.4

(a) True, since:

$$\sigma \models \mathbf{F}(\varphi \lor \psi) \iff \exists k \ge 0 \text{ s.t. } \sigma^k \models (\varphi \lor \psi)$$
$$\iff \exists k \ge 0 \text{ s.t. } (\sigma^k \models \varphi) \lor (\sigma^k \models \psi)$$
$$\iff (\exists k \ge 0 \text{ s.t. } \sigma^k \models \varphi) \lor (\exists k \ge 0 \text{ s.t. } \sigma^k \models \psi)$$
$$\iff \sigma \models \mathbf{F}\varphi \lor \mathbf{F}\psi.$$

- (b) False. Let $\sigma = \{p\}\{q\}\emptyset^{\omega}$. We have $\sigma \models \mathbf{F}p \wedge \mathbf{F}q$ and $\sigma \not\models \mathbf{F}(\varphi \wedge \psi)$.
- (c) False. Let $\sigma = (\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \lor q)$ and $\sigma \not\models \mathbf{G}p \lor \mathbf{G}q$.
- (d) False. Let $\sigma = \{p\}\{q\}\{r\}\emptyset^{\omega}$. We have $\sigma \models (p \lor q) \mathbf{U} r$ and $\sigma \not\models (p \mathbf{U} r) \lor (q \mathbf{U} r)$.
- (e) False. Let $\sigma = (\{p\}\{q\})^{\omega}$. We have $\sigma \not\models \mathbf{GF}(p \land q)$ and $\sigma \models \mathbf{GF}p \land \mathbf{GF}q$.
- (f) True, since:

$$\begin{split} \sigma &\models \mathbf{X}(\varphi \ \mathbf{U} \ \psi) \iff \sigma^{1} \models (\varphi \ \mathbf{U} \ \psi) \\ \iff \exists k \ge 0 : (\sigma^{1})^{k} \models \varphi \text{ and } \forall 0 \le i < k \ (\sigma^{1})^{i} \models \psi \\ \iff \exists k \ge 0 : (\sigma^{k})^{1} \models \varphi \text{ and } \forall 0 \le i < k \ (\sigma^{i})^{1} \models \psi \\ \iff \exists k \ge 0 : \sigma^{k} \models \mathbf{X}\varphi \text{ and } \forall 0 \le i < k \ (\sigma^{i} \models \mathbf{X}\psi) \\ \iff \sigma \models (\mathbf{X}\varphi) \ \mathbf{U} \ (\mathbf{X}\psi). \end{split}$$