Automata and Formal Languages - Exercise Sheet 13

Exercise 13.1

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give LTL formulas for the following ω-languages:
(a) $\{p, q\} \emptyset \Sigma^{\omega}$
(b) $\Sigma^{*}\{q\}^{\omega}$
(c) $\Sigma^{*}(\{p\}+\{p, q\}) \Sigma^{*}\{q\} \Sigma^{\omega}$
(d) $\{p\}^{*}\{q\}^{*} \emptyset^{\omega}$

In (a) and (d) the \emptyset symbol stands for the letter $\emptyset \in \Sigma$, and not for the empty ω-language.

Exercise 13.2

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give Büchi automata for the ω-languages over Σ defined by the following LTL formulas:
(a) $\mathbf{X G} \neg p$
(b) $(\mathbf{G F} p) \rightarrow(\mathbf{F} q)$
(c) $p \wedge \neg(\mathbf{X F} p)$
(d) $\mathbf{G}(p \mathbf{U}(p \rightarrow q))$
(e) $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p))$

Exercise 13.3

Let $\mathcal{V} \in\{\mathbf{F}, \mathbf{G}\}^{*}$ be a sequence made of the temporal operators \mathbf{F} and \mathbf{G}. Show that $\mathbf{F G} p \equiv \mathcal{V} \mathbf{F G} p$ and $\mathbf{G F} p \equiv \mathcal{V} \mathbf{G F} p$.

Exercise 13.4

Say which of the following equivalences hold. For every equivalence that does not hold give an instantiation of φ and ψ together with a computation that disproves the equivalence.
(a) $\mathbf{F}(\varphi \vee \psi) \equiv \mathbf{F} \varphi \vee \mathbf{F} \psi$
(c) $\mathbf{G}(\varphi \vee \psi) \equiv \mathbf{G} \varphi \vee \mathbf{G} \psi$
(b) $\mathbf{F}(\varphi \wedge \psi) \equiv \mathbf{F} \varphi \wedge \mathbf{F} \psi$
(d) $(\varphi \vee \psi) \mathbf{U} \rho \equiv(\varphi \mathbf{U} \rho) \vee$ $(\psi \mathbf{U} \rho)$
(e) $\mathbf{G F}(\varphi \wedge \psi) \equiv \mathbf{G F} \varphi \wedge \mathbf{G F} \psi$
(f) $\mathbf{X}(\varphi \mathbf{U} \psi) \equiv(\mathbf{X} \varphi \mathbf{U} \mathbf{X} \psi)$

Solution 13.1

(a) $(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q)$
(b) $\mathbf{F G}(\neg p \wedge q)$
(c) $\mathbf{F}(p \wedge \mathbf{X F}(\neg p \wedge q))$
(d) $(p \wedge \neg q) \mathbf{U}((\neg p \wedge q) \mathbf{U G}(\neg p \wedge \neg q))$

Solution 13.2

(a)

(b) Note that $(\mathbf{G F} p) \rightarrow(\mathbf{F} q) \equiv \neg(\mathbf{G F} p) \vee(\mathbf{F} q) \equiv(\mathbf{F G} \neg p) \vee(\mathbf{F} q)$. We construct Büchi automata for $\mathbf{F G} \neg p$ and $\mathbf{F} q$, and take their union:

(c) Note that $p \wedge \neg(\mathbf{X F} p) \equiv p \wedge \mathbf{X G} \neg p$. We construct a Büchi automaton for $p \wedge \mathbf{X G} \neg p$:

(d)

(e) Note that $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p)) \equiv \mathbf{G} \neg q \vee(\neg q \mathbf{U}(\neg q \wedge p))$. Consider this case split over the occurence of a p : computations that satisfy the formula either have no occurrence of p, in which case they must satisfy the first part of the \vee (i.e. $\mathbf{G} \neg q$), or they have a first occurrence of p with no q before or at the same time:

Solution 13.3

Given LTL formulas φ and ψ, we denote by $\varphi \models \psi$ that every computation satisfying φ satisfies ψ. Note that $\varphi \equiv \sigma$ iff $\varphi \models \psi$ and $\psi \models \varphi$. It is readily seen that the following holds:

$$
\begin{align*}
\mathbf{F F} \varphi & \equiv \mathbf{F} \varphi, \tag{1}\\
\mathbf{G G} \varphi & \equiv \mathbf{G} \varphi, \tag{2}\\
\mathbf{G} \varphi \models \varphi \text { and } \varphi & \models \mathbf{F} \varphi . \tag{3}
\end{align*}
$$

Let us show that (a) $\mathbf{F G} \varphi \equiv \mathbf{G F G} \varphi$ and (b) $\mathbf{G F} \varphi \equiv \mathbf{F G F} \varphi$.
(a) We have GFG $\varphi \models \mathbf{F G} \varphi$ by (3). Let $\sigma \models \mathbf{F G} \varphi$. There exists $i \geq 0$ such that $\sigma^{j} \models \varphi$ for every $j \geq i$. Thus, for every $k \geq 0$ there is some $\ell \geq 0$ such that $\left(\sigma^{k}\right)^{\ell} \models \mathbf{G} \varphi$. Indeed, if $k \geq i$ then take $\ell=0$, and if $k<i$ then take $\ell=i-k$. Therefore, we have $\sigma^{k} \models \mathbf{F G} \varphi$ for every $k \geq 0$, and hence $\sigma \models \mathbf{G F G} \varphi$. This means that $\mathbf{F G} \varphi \vDash \mathbf{G F G} \varphi$.
(b) We have $\mathbf{G F} \varphi \models \mathbf{F G F} \varphi$ by (3). It is the case that $\mathbf{F G F} \varphi \models \mathbf{G F} \varphi$. Indeed, if there exists $i \geq 0$ such that $\sigma^{j} \models \varphi$ holds for infinitely many $j \geq i$, then, in particular, $\sigma^{j} \models \varphi$ holds for infinitely many $j \geq 0$.

We prove $\mathbf{F G} \varphi \equiv \mathcal{V} \mathbf{F G} \varphi$ by induction on the length of \mathcal{V}. If $\mathcal{V}=\varepsilon$, then we are done. If $\mathcal{V}=\mathcal{U} \mathbf{F}$, then we have $\mathcal{V} \mathbf{F G} \varphi \equiv \mathcal{U} \mathbf{F G} \varphi$ by (1). If $\mathcal{V}=\mathcal{U} \mathbf{G}$, then we have the same equivalence by (a). By induction hypothesis we get $\mathcal{U} \mathbf{F G} \varphi \equiv \mathbf{F G} \varphi$. The other equivalence is proved similarly using (2) and (b).

Solution 13.4

(a) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{F}(\varphi \vee \psi) & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models(\varphi \vee \psi) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \varphi\right) \vee\left(\sigma^{k} \models \psi\right) \\
& \Longleftrightarrow\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \varphi\right) \vee\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \psi\right) \\
& \Longleftrightarrow \sigma \models \mathbf{F} \varphi \vee \mathbf{F} \psi .
\end{aligned}
$$

(b) False. Let $\sigma=\{p\}\{q\} \emptyset^{\omega}$. We have $\sigma \neq \mathbf{F} p \wedge \mathbf{F} q$ and $\sigma \not \vDash \mathbf{F}(\varphi \wedge \psi)$.
(c) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \vee q)$ and $\sigma \not \vDash \mathbf{G} p \vee \mathbf{G} q$.
(d) False. Let $\sigma=\{p\}\{q\}\{r\} \emptyset^{\omega}$. We have $\sigma \models(p \vee q) \mathbf{U} r$ and $\sigma \not \vDash(p \mathbf{U} r) \vee(q \mathbf{U} r)$.
(e) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \not \vDash \mathbf{G F}(p \wedge q)$ and $\sigma \neq \mathbf{G F} p \wedge \mathbf{G F} q$.
(f) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{X}(\varphi \mathbf{U} \psi) & \Longleftrightarrow \sigma^{1} \models(\varphi \mathbf{U} \psi) \\
& \Longleftrightarrow \exists k \geq 0:\left(\sigma^{1}\right)^{k} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{1}\right)^{i} \models \psi \\
& \Longleftrightarrow \exists k \geq 0:\left(\sigma^{k}\right)^{1} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{i}\right)^{1} \models \psi \\
& \Longleftrightarrow \exists k \geq 0: \sigma^{k} \models \mathbf{X} \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{i} \models \mathbf{X} \psi\right) \\
& \Longleftrightarrow \sigma \models(\mathbf{X} \varphi) \mathbf{U}(\mathbf{X} \psi) .
\end{aligned}
$$

