
Technische Universität München Winter term 2020/21
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 13

Exercise 13.1

Let AP = {p, q} and let Σ = 2AP. Give Büchi automata for the ω-languages over Σ defined by the following
LTL formulas:

(a) XG¬p

(b) (GFp)→ (Fq)

(c) p ∧ ¬(XFp)

(d) G(p U (p→ q))

(e) Fq → (¬q U (¬q ∧ p))

Exercise 13.2

Let A = (Q,Σ, δ, q0, F ) be an automaton such that Q = P × [n] for some finite set P and n ≥ 1. Automaton
A models a system made of n processes. A state (p, i) ∈ Q represents the current global state p of the system,
and the last process i that was executed.

We define two predicates execj and enabj over Q indicating whether process j is respectively executed and
enabled. More formally, for every q = (p, i) ∈ Q and j ∈ [n], let

execj(q) ⇐⇒ i = j,

enabj(q) ⇐⇒ (p, i) −→ (p′, j) for some p′ ∈ P.

(a) Give LTL formulas over Qω for the following statements:

(i) All processes are executed infinitely often.

(ii) If a process is enabled infinitely often, then it is executed infinitely often.

(iii) If a process is eventually permanently enabled, then it is executed infinitely often.

(b) The three above properties are known respectively as unconditional, strong and weak fairness. Show the
following implications, and show that the reverse implications do not hold:

unconditional fairness =⇒ strong fairness =⇒ weak fairness.



Exercise 13.3

Prove or disprove:

(a) F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

(b) F(ϕ ∧ ψ) ≡ Fϕ ∧ Fψ

(c) G(ϕ ∨ ψ) ≡ Gϕ ∨Gψ

(d) G(ϕ ∧ ψ) ≡ Gϕ ∧Gψ

(e) (ϕ ∨ ψ) U ρ ≡ (ϕ U ρ) ∨ (ψ U ρ)

(f) ρ U (ϕ ∨ ψ) ≡ (ρ U ϕ) ∨ (ρ U ψ)

Exercise 13.4

Let AP = {p, q} and let Σ = 2AP. An LTL formula is a tautology if it is satisfied by all computations. Which
of the following LTL formulas are tautologies?

(a) Gp→ Fp

(b) G(p→ q)→ (Gp→ Gq)

(c) FGp ∨ FG¬p

(d) ¬Fp→ F¬Fp

(e) (Gp→ Fq)↔ (p U (¬p ∨ q))

(f) ¬(p U q)↔ (¬p U ¬q)

(g) G(p→ Xp)→ (p→ Gp)

(h) (GFp ∧GFq)→ G(p U q)

(i) G(p U q)→ (GFp ∨GFq)



Solution 13.1

(a)

Σ

∅, {q}

(b) Note that (GFp) → (Fq) ≡ ¬(GFp) ∨ (Fq) ≡ (FG¬p) ∨ (Fq). We construct Büchi automata for FG¬p
and Fq, and take their union:

Σ ∅, {q}

{q}, ∅

{q}, {p, q}

Σ

(c) Note that p ∧ ¬(XFp) ≡ p ∧XG¬p. We construct a Büchi automaton for p ∧XG¬p:

{p}, {p, q}

∅, {q}

(d)

{p} ∅, {q}, {p, q} ∅, {q}, {p, q}

{p}

(e)

∅

{p}

Σ

Solution 13.2

(a) (i)
∧

j∈[n] GF execj

(ii)
∧

j∈[n](GF enabj → GF execj)

(iii)
∧

j∈[n](FG enabj → GF execj)

(b) � Unconditional fairness implies strong fairness. For the sake of contradiction, suppose unconditional
fairness holds for some execution σ, but not strong fairness. By assumption, there exists j ∈ [n] such



that σ 6|= (GF enabj → GF execj). Thus,

σ 6|= (GF enabj → GF execj) ⇐⇒
σ |= ¬(GF enabj → GF execj) ⇐⇒
σ |= ¬(¬GF enabj ∨GF execj) ⇐⇒
σ |= GF enabj ∧ ¬GF execj =⇒
σ |= ¬GF execj

which contradicts unconditional fairness.

� Strong fairness implies weak fairness. For the sake of contradiction, suppose strong fairness holds
for some execution σ, but not weak fairness. By assumption, there exists j ∈ [n] such that σ 6|=
(FG enabj → GF execj). Thus,

σ 6|= (FG enabj → GF execj) ⇐⇒
σ |= ¬(FG enabj → GF execj) ⇐⇒
σ |= ¬(¬FG enabj ∨GF execj) ⇐⇒
σ |= FG enabj ∧ ¬GF execj =⇒
σ |= GF enabj ∧ ¬GF execj ⇐⇒
σ |= ¬(GF enabj → GF execj) ⇐⇒
σ 6|= GF enabj → GF execj

which contradicts strong fairness.

� Strong fairness does not imply unconditional fairness. Execution (p, 1)(q, 2)ω of the automaton be-
low satisfies strong fairness, but not unconditional fairness.

p, 1 q, 2

p, 1

q, 2

q, 2

� Weak fairness does not imply strong fairness. Execution ((p, 1)(q, 1))ω of the automaton below sat-
isfies weak fairness, but not strong fairness.

p, 1 q, 1

r, 2

p, 1

q, 1

r, 2

Solution 13.3

(a) True, since:

σ |= F(ϕ ∨ ψ) ⇐⇒ ∃k ≥ 0 s.t. σk |= (ϕ ∨ ψ)

⇐⇒ ∃k ≥ 0 s.t. (σk |= ϕ) ∨ (σk |= ψ)

⇐⇒ (∃k ≥ 0 s.t. σk |= ϕ) ∨ (∃k ≥ 0 s.t. σk |= ψ)

⇐⇒ σ |= Fϕ ∨ Fψ.

(b) False. Let σ = {p}{q}∅ω. We have σ |= Fp ∧ Fq and σ 6|= F(ϕ ∧ ψ).

(c) False. Let σ = ({p}{q})ω. We have σ |= G(p ∨ q) and σ 6|= Gp ∨Gq.



(d) True, since:

σ |= G(ϕ ∧ ψ) ⇐⇒ ∀k ≥ 0 σk |= (ϕ ∧ ψ)

⇐⇒ ∀k ≥ 0 (σk |= ϕ) ∧ (σk |= ψ)

⇐⇒ (∀k ≥ 0 σk |= ϕ) ∧ (∀k ≥ 0 σk |= ψ)

⇐⇒ σ |= Gϕ ∧Gψ.

(e) False. Let σ = {p}{q}{r}∅ω. We have σ |= (p ∨ q) U r and σ 6|= (p U r) ∨ (q U r).

(f) True, since:

σ |= ρ U (ϕ ∨ ψ) ⇐⇒ ∃k ≥ 0 s.t. σk |= (ϕ ∨ ψ) ∧ ∀ 0 ≤ i < k σi |= ρ

⇐⇒ ∃k ≥ 0 s.t. ((σk |= ϕ) ∨ (σk |= ψ)) ∧ ∀ 0 ≤ i < k σi |= ρ

⇐⇒ ∃k ≥ 0 s.t. (σk |= ϕ ∧ ∀ 0 ≤ i < k σi |= ρ) ∨ (σk |= ψ ∧ ∀ 0 ≤ i < k σi |= ρ)

⇐⇒ (∃k ≥ 0 s.t. σk |= ϕ ∧ ∀ 0 ≤ i < k σi |= ρ) ∨ (∃k ≥ 0 s.t. σk |= ψ ∧ ∀ 0 ≤ i < k σi |= ρ)

⇐⇒ σ |= (ρ U ϕ) ∨ (ρ U ψ).

Solution 13.4

(a) Gp→ Fp is a tautology since

σ |= Gp ⇐⇒ ∀k ≥ 0 σk |= p

=⇒ ∃k ≥ 0 σk |= p

⇐⇒ σ |= Fp.

(b) G(p→ q)→ (Gp→ Gq) is a tautology. For the sake of contradiction, suppose this is not the case. There
exists σ such that

σ |= G(p→ q), and (1)

σ 6|= (Gp→ Gq). (2)

By (2), we have

σ |= Gp, and

σ 6|= Gq.

Therefore, there exists k ≥ 0 such that p ∈ σ(k) and q 6∈ σ(k) which contradicts (1).

(c) FGp ∨ FG¬p is not a tautology since it is not satisfied by ({p}{q})ω.

(d) ¬Fp→ F¬Fp is a tautology since ϕ→ Fϕ is a tautology for every formula ϕ.

(e) (Gp→ Fq)↔ (p U (¬p ∨ q)) is a tautology. We have

Gp→ Fq ≡ ¬Gp ∨ Fq (by def. of implication)

≡ F¬p ∨ Fq

≡ F(¬p ∨ q)
≡ F(p→ q) (by def. of implication)

Therefore, we have to show that
F(p→ q)↔ (p U (p→ q)).

←) Let σ be such that σ |= (p U (p → q)). In particular, there exists k ≥ 0 such that σk |= (p → q).
Therefore, σ |= F(p→ q).

→) Let σ be such that σ |= F(p → q). Let k ≥ 0 be the smallest position such that σk |= (p → q). For
every 0 ≤ i < k, we have σi 6|= (p→ q) which is equivalent to σi |= p∧¬q. Therefore, for every 0 ≤ i < k,
we have σi |= p. This implies that σ |= p U (p→ q).



(f) ¬(p U q)↔ (¬p U ¬q) is not a tautology. Let σ = {p}{q}ω. We have σ 6|= ¬(p U q) and σ |= (¬p U ¬q).

(g) G(p→ Xp)→ (p→ Gp) is a tautology since

G(p→ Xp)→ (p→ Gp) ≡ ¬G(¬p ∨Xp) ∨ (¬p ∨Gp) (by def. of implication)

≡ F(p ∧ ¬Xp) ∨ ¬p ∨Gp

≡ ¬Gp→ (¬p ∨ (F(p ∧X¬p)) (by def. of implication)

≡ F¬p→ (¬p ∨ (F(p ∧X¬p))
≡ F¬p→ F¬p.

(h) (GFp ∧GFq)⇒ G(p U q) is not a tautology. Here are two counterexamples: ({p} ∅ {q})ω and ∅ {p, q}ω.

(i) G(p U q)⇒ (GFp ∨GFq) is a tautology. We prove this by contradiction.

Suppose the formula is not a tautology. Then there exists an execution σ that does not satisfy it, that is,
the following holds:

σ 6|= G(p U q)⇒ (GFp ∨GFq).

Therefore, we have the following:
σ |= G(p U q), (3)

σ 6|= GFp ∨GFq. (4)

First, note that from (3) we know the following:

σk |= p U q, for every k ≥ 0. (5)

Second, note that (4) is equivalent to σ |= FG¬p ∧ FG¬q, that is σ |= FG¬p and σ |= FG¬q. Since we
have that σ |= FG¬q, by definition of the operator F we know the following:

σi |= G¬q, for some i ≥ 0. (6)

By definition of G this means the following:

σj |= ¬q, for every j ≥ i. (7)

Let us now focus again on (5) and on the index i defined in (6). From (5) we know that also for this
particular index i it holds that σi |= p U q. Therefore, by definition of U , we know that there exists
an index l ≥ i with σl |= q. This contradicts (7), and hence our assumption that the formula is not a
tautology is wrong. This shows that the formula is indeed a tautology.


