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Automata and Formal Languages — Exercise Sheet 12

Exercise 12.1

Recall, from 11.4 (a) and (b), the following Büchi automaton B over Σ = {a, b}

q0 q1

a, b b

b

as well as the ranking R of dag(w) defined by

R(q, i) =


1 if q = q0 and 〈q0, i〉 appears in dag(w),

0 if q = q1 and 〈q1, i〉 appears in dag(w),

⊥ otherwise.

(a) Let w a ω-word. Show that R is an odd ranking for dag(w) if and only if w 6∈ Lω(B).

(b) Construct a Büchi automaton accepting Lω(B) using the construction seen in class. Hint : by (a), it is
sufficient to use {0, 1} as ranks.

Exercise 12.2

Show that for every DBA A with n states there is an NBA B with 2n states such that B = A. Explain why
your construction does not work for NBAs.

Exercise 12.3

Let B be the following Büchi automaton.

s0 s1

s2s3
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s5

b

a b

a
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b

(a) For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in s0
(i.e. the moment they first become grey and the moment they become black). Visit successors si of a
given state in the ascending order of their indices i. For example, when visiting the successors of s2, first
visit s3 and later s4.

(b) The language of B is not empty. Give the witness lasso found by applying NestedDFS to B following
the same convention for the order of successors as above.



(c) Given a non-empty NBA, we use the following definition of optimal execution of NestedDFS: the algorithm
reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored. Is
the execution in (b) optimal? Does there exists an optimal execution of NestedDFS on B with a different
order for visiting successors?



Solution 12.1

(a) ⇒) (By contraposition) Let w ∈ Lω(B). We have w = ubω for some u ∈ {a, b}∗. This implies that

〈q0, 0〉
u−→ 〈q0, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, R is not odd for
dag(w).

⇐) Let w 6∈ Lω(B). Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely
often. At some point, this path must only visit nodes of the form 〈q1, i〉. Therefore, there exists u ∈ {a, b}∗
such that

〈q0, 0〉
u−→ 〈q1, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·

This implies that w = ubω ∈ Lω(B) which is contradiction.

(b) Recall: we construct an NBA whose runs on an ω-word w are all the valid rankings of dag(w). The
automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (a), for every
w ∈ {a, b}ω, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to
execute CompNBA with rankings ranging over 0 and 1. We obtain the following Büchi automaton, for
which some intuition is given below:
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Any ranking r of dag(w) can be decomposed into a sequence lr1, lr2, . . . such that lri(q) = r(< q, i >),

the level i of rank r. Recall that in this automaton, the transitions

[
lr(q0)
lr(q1)

]
a−→
[
lr′(q0)
lr′(q1)

]
represent the

possible next level for ranks r such that lr(q) = r(< q, i >) and lr′(q) = r(< q, i+ 1 >) for q = q0, q1.

The additional set of states in the automaton represents the set of states that “owe” a visit to a state of
odd rank. Formally, the transitions are the triples [lr, O]

a−→ [lr′, O′] such that lr
a−→ lr′ and O′ = {q′ ∈

δ(O, a)|lr′(q′) is even} if O 6= ∅, and O′ = {q′ ∈ Q|lr′(q′) is even} if O = ∅.
Finally the accepting states of the automaton are those with no “owing” states, which represent the
breakpoints i.e. a moment where we are sure that all runs on w have seen an odd rank since the last
breakpoint.

F It is enough to only consider the blue states, as any other state cannot reach a level in which there is
an odd rank; descendants of dag states with rank 0 can never be assigned an odd rank.



Solution 12.2

Observe that A rejects a word w iff its single run on w stops visiting accepting states at some point. Hence,
we construct an NBA B that reads a prefix as in A and non deterministically decides to stop visiting accepting
states by moving to a copy of A without its accepting states.

More precisely, we assume that each letter can be read from each state of A, i.e. that A is complete. If this is
not the case, it suffices to add a rejecting sink state to A. The NBA B consists of two copies of A. The first
copy is exactly as A. The second copy is as A but restricted to its non accepting states. We add transitions
from the first copy to the second one as follows. For each transition (p, a, q) of A, we add a transition that
reads letter a from state p of the first copy to state q of the second copy. All states of the first copy are made
non accepting and all states of the second copy are made accepting. Note that B contains at most 2n states as
desired.

Here is an example of the construction:
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This construction does not work on NBAs. Indeed, we have A = B = {aω} below:
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Solution 12.3

a. We note ”state[discovery time/finishing time]”.
s0[1/12], s1[2/11], s2[3/10], s3[4/5], s4[6/9], s5[7/8].

b. The lasso found by NestedDFS from s0 is s0s1s2s4s5s5.

c. Given a non-empty NBA, we use the following definition of optimal execution of NestedDFS: the algorithm
reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored.

The execution given in (b) is non optimal since it does not return the lasso s0s1s2s3s1 which already
appeared in the explored subgraph.

There is no execution ofNestedDFS which blackens s2 before s5. But there is an execution of NestedDFS
on B which returns the lasso s0s1s2s3s4s5s5 before it has visited the only other witness lasso s0s1s2s3s1
and thus is optimal: the execution which does dfs1 via s0s1s2s4s5, blackens s5 then launches dfs2 from s5



and finds a cycle. Node s3 is not part of the explored subgraph so the algorithm reports NONEMPTY at
the earliest time such that all the states of a witness lasso have been explored.


