
Technische Universität München Winter term 2022/23
Prof. J. Esparza / A. R. Balasubramanian / M. Lazić I7

Automata and Formal Languages — Exercise Sheet 11

Exercise 11.1

Give Büchi automata (NBA) for the following ω-languages:

� L1 = {w ∈ {a, b}ω : w contains infinitely many a’s},

� L2 = {w ∈ {a, b}ω : w contains finitely many b’s},

� L3 = {w ∈ {a, b}ω : each occurrence of a in w is (immediately) followed by a b}.

Intersect these automata and decide if the obtained automaton is the smallest Büchi automaton for L1∩L2∩L3.

Exercise 11.2

Give algorithms that directly complement deterministic Muller and parity automata, without going through
Büchi automata.

Exercise 11.3

(a) Consider the following Büchi automaton A over Σ = {a, b}:

q0 q1

a, b b

b

Draw dag(ababω) and dag((ab)ω).

(b) Let rw be the ranking of dag(w) defined by

rw(q, i) =

1 if q = q0 and 〈q0, i〉 appears in dag(w),

0 if q = q1 and 〈q1, i〉 appears in dag(w),

⊥ otherwise.

Are rababω and r(ab)ω (over A) odd rankings?

(c) Consider the following Büchi automaton B over Σ = {a, b}:

q0 q1 q2

a b a

a a

Draw dag(aω). Show that any odd ranking for this dag must contain a node of rank 3 or more.

(d) Consider again the automaton A from (a). Let w be an ω-word and rw the ranking of dag(w) as defined
in (b). Show that rw is an odd ranking for dag(w) if and only if w 6∈ Lω(A).

(e) Construct a Büchi automaton accepting Lω(A) using the construction seen in class.
Hint : by (d), it is sufficient to use {0, 1} as ranks.

Exercise 11.4

Show that for every DBA A with n states there is an NBA B with 2n states such that B = A. Explain why
your construction does not work for NBAs.

Solution 11.1

The following Büchi automata respectively accept L1, L2 and L3:

p0 p1 q0 q1 r0 r1

b

a

a

b

a, b

a

a b

a

b

Taking the intersection of these automata leads to the following generalized Büchi automaton with the accep-
tance condition {{101, 111}, {111}, {000}}, where 000 is the state p0, q0, r0, 101 is the state p1, q0, r1, and 111
is the state p1, q1, r1.

000 101

111

b

a

a

b

If we convert this GBA to an NBA, we obtain the following Büchi automaton:

p0, q0, r0 p1, q0, r1

p1, q1, r1

p0, q0, r0 p1, q0, r1

p1, q1, r1

b

a

a b

b

a

a

b

Note that the language of this automaton is the empty language. Therefore, the obtained automaton is surely
not the smallest NBA accepting the empty language.

Solution 11.2

Let us consider the case of a deterministic Muller automaton A with acceptance condition F = {F0, . . . , Fm−1} ⊆
2Q. Since every ω-word w has a single run ρw in A, we have w 6∈ Lω(A) iff inf(ρw) ∈ 2Q\F . Thus, to complement
A, we change its acceptance condition to F ′ = 2Q \ F .

Let us consider the case of a deterministic parity automaton A with acceptance condition F1 ⊆ · · · ⊆ F2n. Since
every ω-word w has a single run ρw in A, we have

w ∈ Lω(A) ⇐⇒ min{i : inf(ρw) ∩ Fi 6= ∅} is even.

Thus, to complement A, it suffices to “swap the parity” of states. This can be achieved by adding a new dummy
state q⊥ to A and changing its acceptance condition to {q⊥} ⊆ (F1 ∪ {q⊥}) ⊆ · · · ⊆ (F2n ∪ {q⊥}), where the
purpose of q⊥ is to keep the chain of inclusion required by the definition.

Solution 11.3

(a) dag(ababω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

b

b

b

dag((ab)ω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

a

(b) � r is not an odd rank for dag(ababω) since

〈q0, 0〉
a−→ 〈q0, 1〉

b−→ 〈q0, 2〉
a−→ 〈q0, 3〉

b−→ 〈q1, 4〉
b−→ 〈q1, 5〉

b−→ · · ·

is an infinite path of dag(ababω) not visiting odd nodes infinitely often.

� r is an odd rank for dag((ab)ω) since it has a single infinite path:

〈q0, 0〉
a−→ 〈q0, 1〉

b−→ 〈q0, 2〉
a−→ 〈q0, 3〉

b−→ 〈q0, 4〉
a−→ 〈q0, 5〉

b−→ · · ·

which only visits odd nodes.

(c) dag(aω):

q0, 0 q0, 1

q1, 1

q0, 2

q1, 2

q2, 2

q0, 3

q1, 3

q2, 3

q0, 4

q1, 4

q2, 4

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Let r be an odd rank for dag(aω). It exists since aω is not accepted by B. Since r is odd, all infinite
paths must visit odd nodes infinitely often (i.o.). In particular the bottom infinite path of q0 nodes must
stabilize to nodes with odd rank.

Let us assume the nodes 〈q0, j〉 have rank 1 for all j ≥ i for some i ≥ 0. Consider the infinite path

ρ = 〈q0, i〉
a−→ 〈q1, i+ 1〉 a−→ 〈q2, i+ 2〉 a−→ 〈q2, i+ 3〉 Node 〈q1, i+ 1〉 must have an even rank (since q1

is accepting) smaller or equal to 1, so it has rank 0. This entails that 〈q2, k〉 has rank 0 for all k ≥ i+ 2.
This contradicts r being an odd ranking because the path ρ is infinite yet does not visit odd nodes infinitely
often.

Thus the bottom infinite path of q0 nodes must stabilize to nodes with odd rank strictly bigger than 1,
i.e., bigger or equal to 3.

(d) ⇒) (By contraposition) Let w ∈ Lω(B). We have w = ubω for some u ∈ {a, b}∗. This implies that

〈q0, 0〉
u−→ 〈q0, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, R is not odd for
dag(w).

⇐) Let w 6∈ Lω(B). Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely
often. At some point, this path must only visit nodes of the form 〈q1, i〉. Therefore, there exists u ∈ {a, b}∗
such that

〈q0, 0〉
u−→ 〈q1, |u|〉

b−→ 〈q1, |u|+ 1〉 b−→ 〈q1, |u|+ 2〉 b−→ · · ·

This implies that w = ubω ∈ Lω(B) which is contradiction.

(e) Recall: we construct an NBA whose runs on an ω-word w are all the valid rankings of dag(w). The
automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (d), for every
w ∈ {a, b}ω, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to
execute CompNBA with rankings ranging over 0 and 1. We obtain the following Büchi automaton, for
which some intuition is given below:

1
⊥
∅

0
⊥
{q0}

0
0

{q0, q1}

1
0
{q1}

0
0
{q1}

0
⊥
∅

a

a

b

a

b

a

b

ba

b

b

a

b

a

a

b

General explanation: Any ranking r of dag(w) can be decomposed into a sequence lr1, lr2, . . . such that

lri(q) = r(< q, i >), the level i of rank r. Recall that in this automaton, the transitions

[
lr(q0)
lr(q1)

]
a−→[

lr′(q0)
lr′(q1)

]
represent the possible next level for ranks r such that lr(q) = r(< q, i >) and lr′(q) = r(<

q, i+ 1 >) for q = q0, q1.

The additional set of states in the automaton represents the set of states that “owe” a visit to a state of
odd rank. Formally, the transitions are the triples [lr, O]

a−→ [lr′, O′] such that lr
a−→ lr′ and O′ = {q′ ∈

δ(O, a)|lr′(q′) is even} if O 6= ∅, and O′ = {q′ ∈ Q|lr′(q′) is even} if O = ∅.

Finally the accepting states of the automaton are those with no “owing” states, which represent the
breakpoints i.e. a moment where we are sure that all runs on w have seen an odd rank since the last
breakpoint.

Specific to this example: The states of this automaton are triples (x, y, S), where x is the rank of q0, y is
the rank of q1, and S ⊆ {q0, q1} is the set of “owing” states, that is, those that owe a visit to a state with an
odd rank (since the last breakpoint). Our hint suggests that x and y can be either 0 or 1, or ⊥ if the state
is not present. Without hint we would have to consider all possibilities, that is, x, y ∈ {0, 1, 2, 3, 4}∪ {⊥}.
The initial state has x set to be maximal possible, that is, 1 (because of the hint, otherwise 4), as q0 is
the initial state in the original automaton A. As q1 is not initial in A, it is not initially present, and thus
y is set to ⊥. No state is owing a visit to an odd-rank-state, since we have only one present state q0 with
an odd rank 1. Thus the third component is ∅.
Transitions are created following the general explanation from above. For example, there are two transi-

tions from the initial state with letter b, that is [1,⊥, ∅] b−→ [0, 0, {q0, q1}] and [1,⊥, ∅] b−→ [1, 0, {q1}]. This
is because by reading the letter b from q0 with rank 1 (q1 is not present in [1,⊥, ∅]), (i) we can reach q0
and assign any rank not higher than the previous rank of q0, that is, either 0 or 1, and (ii) we can reach q1
which will have to have an even rank since it is the accepting state of A, and in our case the only option
is 0. If we assign rank 0 to q0, then both states q0 and q1 will have an even rank, so both of them will
be the “owing states”, so we will reach the state [0, 0, {q0, q1}]. If we assign rank 1 to q0, the only “owing
state” will be q1, so we will reach the state [1, 0, {q1}].

The recipe for calculating S′ in [x, y, S]
c−→ [x′, y′, S′] is this: If S = ∅ then S′ is the set of those states

that have an even rank (after the transition); for example, in [1,⊥, ∅] b−→ [0, 0, {q0, q1}] both states have
even rank 0 after reading b so both are in S′. If S 6= ∅ then S′ is the set of the states from S that have

an even rank (after the transition), for example, in [1,⊥, {q1}]
b−→ [0, 0, {q1}] both states have even rank 0

after reading b, but since q0 was not in S, we have S′ = {q1}.
The accepting states are breakpoints, those with S = ∅.
F It is enough to only consider the blue states (as the part (d) of this exercise suggests), as any other
state cannot reach a level in which there is an odd rank; descendants of dag states with rank 0 can never
be assigned an odd rank.

Solution 11.4

Observe that A rejects a word w iff its single run on w stops visiting accepting states at some point. Hence,
we construct an NBA B that reads a prefix as in A and non deterministically decides to stop visiting accepting
states by moving to a copy of A without its accepting states.

More precisely, we assume that each letter can be read from each state of A, i.e. that A is complete. If this is
not the case, it suffices to add a rejecting sink state to A. The NBA B consists of two copies of A. The first
copy is exactly as A. The second copy is as A but restricted to its non accepting states. We add transitions
from the first copy to the second one as follows. For each transition (p, a, q) of A, we add a transition that
reads letter a from state p of the first copy to state q of the second copy. All states of the first copy are made
non accepting and all states of the second copy are made accepting. Note that B contains at most 2n states as
desired.

Here is an example of the construction:

p q r s

A:
b

a

c

a

b

c

b

a, c

a, b, c

p q r s

B:

q s

b

a

c

a

b

a, b, c

c

b

a, c

a

c
b

a, b, c

c

b

a, c

c

b

a, b, c

This construction does not work on NBAs. Indeed, we have A = B = {aω} below:

p q

A:
a

a

a

p q

B:

p

a

a

a
a

a

a

