Automata and Formal Languages - Exercise Sheet 11

Exercise 11.1

Give Büchi automata (NBA) for the following ω-languages:

- $L_{1}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains infinitely many a 's $\}$,
- $L_{2}=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many b 's $\}$,
- $L_{3}=\left\{w \in\{a, b\}^{\omega}\right.$: each occurrence of a in w is (immediately) followed by a $\left.b\right\}$.

Intersect these automata and decide if the obtained automaton is the smallest Büchi automaton for $L_{1} \cap L_{2} \cap L_{3}$.

Exercise 11.2

Give algorithms that directly complement deterministic Muller and parity automata, without going through Büchi automata.

Exercise 11.3

(a) Consider the following Büchi automaton A over $\Sigma=\{a, b\}$:

Draw $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Let r_{w} be the ranking of $\operatorname{dag}(w)$ defined by

$$
r_{w}(q, i)= \begin{cases}1 & \text { if } q=q_{0} \text { and }\left\langle q_{0}, i\right\rangle \operatorname{appears} \operatorname{in} \operatorname{dag}(w) \\ 0 & \text { if } q=q_{1} \text { and }\left\langle q_{1}, i\right\rangle \operatorname{appears} \text { in } \operatorname{dag}(w) \\ \perp & \text { otherwise }\end{cases}
$$

Are $r_{a b a b^{\omega}}$ and $r_{(a b)^{\omega}}$ (over A) odd rankings?
(c) Consider the following Büchi automaton B over $\Sigma=\{a, b\}$:

Draw $\operatorname{dag}\left(a^{\omega}\right)$. Show that any odd ranking for this dag must contain a node of rank 3 or more.
(d) Consider again the automaton A from (a). Let w be an ω-word and r_{w} the ranking of $\operatorname{dag}(w)$ as defined in (b). Show that r_{w} is an odd ranking for $\operatorname{dag}(w)$ if and only if $w \notin L_{\omega}(A)$.
(e) Construct a Büchi automaton accepting $\overline{L_{\omega}(A)}$ using the construction seen in class. Hint: by (d), it is sufficient to use $\{0,1\}$ as ranks.

Exercise 11.4

Show that for every DBA A with n states there is an NBA B with $2 n$ states such that $B=\bar{A}$. Explain why your construction does not work for NBAs.

Solution 11.1

The following Büchi automata respectively accept L_{1}, L_{2} and L_{3} :

Taking the intersection of these automata leads to the following generalized Büchi automaton with the acceptance condition $\{\{101,111\},\{111\},\{000\}\}$, where 000 is the state $p_{0}, q_{0}, r_{0}, 101$ is the state p_{1}, q_{0}, r_{1}, and 111 is the state p_{1}, q_{1}, r_{1}.

If we convert this GBA to an NBA, we obtain the following Büchi automaton:

Note that the language of this automaton is the empty language. Therefore, the obtained automaton is surely not the smallest NBA accepting the empty language.

Solution 11.2

Let us consider the case of a deterministic Muller automaton A with acceptance condition $\mathcal{F}=\left\{F_{0}, \ldots, F_{m-1}\right\} \subseteq$ 2^{Q}. Since every ω-word w has a single run ρ_{w} in A, we have $w \notin L_{\omega}(A) \operatorname{iff} \inf \left(\rho_{w}\right) \in 2^{Q} \backslash \mathcal{F}$. Thus, to complement A, we change its acceptance condition to $\mathcal{F}^{\prime}=2^{Q} \backslash \mathcal{F}$.

Let us consider the case of a deterministic parity automaton A with acceptance condition $F_{1} \subseteq \cdots \subseteq F_{2 n}$. Since every ω-word w has a single run ρ_{w} in A, we have

$$
w \in L_{\omega}(A) \Longleftrightarrow \min \left\{i: \inf \left(\rho_{w}\right) \cap F_{i} \neq \emptyset\right\} \text { is even. }
$$

Thus, to complement A, it suffices to "swap the parity" of states. This can be achieved by adding a new dummy state q_{\perp} to A and changing its acceptance condition to $\left\{q_{\perp}\right\} \subseteq\left(F_{1} \cup\left\{q_{\perp}\right\}\right) \subseteq \cdots \subseteq\left(F_{2 n} \cup\left\{q_{\perp}\right\}\right)$, where the purpose of q_{\perp} is to keep the chain of inclusion required by the definition.

Solution 11.3

(a) $\operatorname{dag}\left(a b a b^{\omega}\right)$:

$\operatorname{dag}\left((a b)^{\omega}\right):$

(b) - r is not an odd rank for $\operatorname{dag}\left(a b a b^{\omega}\right)$ since

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{1}, 4\right\rangle \xrightarrow{b}\left\langle q_{1}, 5\right\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}\left(a b a b^{\omega}\right)$ not visiting odd nodes infinitely often.

- r is an odd rank for $\operatorname{dag}\left((a b)^{\omega}\right)$ since it has a single infinite path:

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{0}, 4\right\rangle \xrightarrow{a}\left\langle q_{0}, 5\right\rangle \xrightarrow{b} \cdots
$$

which only visits odd nodes.
(c) $\operatorname{dag}\left(a^{\omega}\right)$:

Let r be an odd rank for $\operatorname{dag}\left(a^{\omega}\right)$. It exists since a^{ω} is not accepted by B. Since r is odd, all infinite paths must visit odd nodes infinitely often (i.o.). In particular the bottom infinite path of q_{0} nodes must stabilize to nodes with odd rank.

Let us assume the nodes $\left\langle q_{0}, j\right\rangle$ have rank 1 for all $j \geq i$ for some $i \geq 0$. Consider the infinite path $\rho=\left\langle q_{0}, i\right\rangle \xrightarrow{a}\left\langle q_{1}, i+1\right\rangle \xrightarrow{a}\left\langle q_{2}, i+2\right\rangle \xrightarrow{a}\left\langle q_{2}, i+3\right\rangle \ldots$. Node $\left\langle q_{1}, i+1\right\rangle$ must have an even rank (since q_{1} is accepting) smaller or equal to 1 , so it has rank 0 . This entails that $\left\langle q_{2}, k\right\rangle$ has rank 0 for all $k \geq i+2$. This contradicts r being an odd ranking because the path ρ is infinite yet does not visit odd nodes infinitely often.
Thus the bottom infinite path of q_{0} nodes must stabilize to nodes with odd rank strictly bigger than 1 , i.e., bigger or equal to 3 .
$(\mathrm{d}) \Rightarrow)$ (By contraposition) Let $w \in L_{\omega}(B)$. We have $w=u b^{\omega}$ for some $u \in\{a, b\}^{*}$. This implies that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{0},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}(w)$. Since this path does not visit odd nodes infinitely often, R is not odd for $\operatorname{dag}(w)$.
$\Leftarrow)$ Let $w \notin L_{\omega}(B)$. Suppose there exists an infinite path of dag (w) that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form $\left\langle q_{1}, i\right\rangle$. Therefore, there exists $u \in\{a, b\}^{*}$ such that

$$
\left.\left\langle q_{0}, 0\right\rangle \xrightarrow{u}\left\langle q_{1},\right| u\left\rangle \xrightarrow{b}\left\langle q_{1},\right| u\right|+1\right\rangle \xrightarrow{b}\left\langle q_{1},\right| u|+2\rangle \xrightarrow{b} \cdots
$$

This implies that $w=u b^{\omega} \in L_{\omega}(B)$ which is contradiction.
(e) Recall: we construct an NBA whose runs on an ω-word w are all the valid rankings of $\operatorname{dag}(w)$. The automaton accepts a ranking R iff every infinite path of R visits nodes of odd rank i.o. By (d), for every $w \in\{a, b\}^{\omega}$, if $\operatorname{dag}(w)$ has an odd ranking, then it has one ranging over 0 and 1 . Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 . We obtain the following Büchi automaton, for which some intuition is given below:

General explanation: Any ranking r of $\operatorname{dag}(w)$ can be decomposed into a sequence $l r_{1}, l r_{2}, \ldots$ such that $l r_{i}(q)=r(<q, i>)$, the level i of rank r. Recall that in this automaton, the transitions $\left[\begin{array}{l}\operatorname{lr}\left(q_{0}\right) \\ \operatorname{lr}\left(q_{1}\right)\end{array}\right] \xrightarrow{a}$ $\left[\begin{array}{l}l r^{\prime}\left(q_{0}\right) \\ l r^{\prime}\left(q_{1}\right)\end{array}\right]$ represent the possible next level for ranks r such that $\operatorname{lr}(q)=r(<q, i>)$ and $l r^{\prime}(q)=r(<$ $q, i+1>)$ for $q=q_{0}, q_{1}$.
The additional set of states in the automaton represents the set of states that "owe" a visit to a state of odd rank. Formally, the transitions are the triples $[l r, O] \xrightarrow{a}\left[l r^{\prime}, O^{\prime}\right]$ such that $l r \xrightarrow{a} l r^{\prime}$ and $O^{\prime}=\left\{q^{\prime} \in\right.$ $\delta(O, a) \mid l r^{\prime}\left(q^{\prime}\right)$ is even $\}$ if $O \neq \emptyset$, and $O^{\prime}=\left\{q^{\prime} \in Q \mid l r^{\prime}\left(q^{\prime}\right)\right.$ is even $\}$ if $O=\emptyset$.

Finally the accepting states of the automaton are those with no "owing" states, which represent the breakpoints i.e. a moment where we are sure that all runs on w have seen an odd rank since the last breakpoint.
Specific to this example: The states of this automaton are triples (x, y, S), where x is the rank of q_{0}, y is the rank of q_{1}, and $S \subseteq\left\{q_{0}, q_{1}\right\}$ is the set of "owing" states, that is, those that owe a visit to a state with an odd rank (since the last breakpoint). Our hint suggests that x and y can be either 0 or 1 , or \perp if the state is not present. Without hint we would have to consider all possibilities, that is, $x, y \in\{0,1,2,3,4\} \cup\{\perp\}$.
The initial state has x set to be maximal possible, that is, 1 (because of the hint, otherwise 4), as q_{0} is the initial state in the original automaton A. As q_{1} is not initial in A, it is not initially present, and thus y is set to \perp. No state is owing a visit to an odd-rank-state, since we have only one present state q_{0} with an odd rank 1 . Thus the third component is \emptyset.
Transitions are created following the general explanation from above. For example, there are two transitions from the initial state with letter b, that is $[1, \perp, \emptyset] \xrightarrow{b}\left[0,0,\left\{q_{0}, q_{1}\right\}\right]$ and $[1, \perp, \emptyset] \xrightarrow{b}\left[1,0,\left\{q_{1}\right\}\right]$. This is because by reading the letter b from q_{0} with rank 1 (q_{1} is not present in $[1, \perp, \emptyset]$), (i) we can reach q_{0} and assign any rank not higher than the previous rank of q_{0}, that is, either 0 or 1 , and (ii) we can reach q_{1} which will have to have an even rank since it is the accepting state of A, and in our case the only option is 0 . If we assign rank 0 to q_{0}, then both states q_{0} and q_{1} will have an even rank, so both of them will be the "owing states", so we will reach the state $\left[0,0,\left\{q_{0}, q_{1}\right\}\right]$. If we assign rank 1 to q_{0}, the only "owing state" will be q_{1}, so we will reach the state $\left[1,0,\left\{q_{1}\right\}\right]$.
The recipe for calculating S^{\prime} in $[x, y, S] \xrightarrow{c}\left[x^{\prime}, y^{\prime}, S^{\prime}\right]$ is this: If $S=\emptyset$ then S^{\prime} is the set of those states that have an even rank (after the transition); for example, in $[1, \perp, \emptyset] \xrightarrow{b}\left[0,0,\left\{q_{0}, q_{1}\right\}\right]$ both states have even rank 0 after reading b so both are in S^{\prime}. If $S \neq \emptyset$ then S^{\prime} is the set of the states from S that have an even rank (after the transition), for example, in $\left[1, \perp,\left\{q_{1}\right\}\right] \xrightarrow{b}\left[0,0,\left\{q_{1}\right\}\right]$ both states have even rank 0 after reading b, but since q_{0} was not in S, we have $S^{\prime}=\left\{q_{1}\right\}$.
The accepting states are breakpoints, those with $S=\emptyset$.
\star It is enough to only consider the blue states (as the part (d) of this exercise suggests), as any other state cannot reach a level in which there is an odd rank; descendants of $d a g$ states with rank 0 can never be assigned an odd rank.

Solution 11.4

Observe that A rejects a word w iff its single run on w stops visiting accepting states at some point. Hence, we construct an NBA B that reads a prefix as in A and non deterministically decides to stop visiting accepting states by moving to a copy of A without its accepting states.

More precisely, we assume that each letter can be read from each state of A, i.e. that A is complete. If this is not the case, it suffices to add a rejecting sink state to A. The NBA B consists of two copies of A. The first copy is exactly as A. The second copy is as A but restricted to its non accepting states. We add transitions from the first copy to the second one as follows. For each transition (p, a, q) of A, we add a transition that reads letter a from state p of the first copy to state q of the second copy. All states of the first copy are made non accepting and all states of the second copy are made accepting. Note that B contains at most $2 n$ states as desired.

Here is an example of the construction:

This construction does not work on NBAs. Indeed, we have $A=B=\left\{a^{\omega}\right\}$ below:

