Automata and Formal Languages - Exercise Sheet 11

Exercise 11.1

Let language $L=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many $\left.a\right\}$
(a) Give a deterministic Rabin automaton for L.
(b) Give an NBA for L and try to "determinize" it by using the NFA to DFA powerset construction. What is the language accepted by the resulting DBA ?
(c) What ω-language is accepted by the following Muller automaton with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}\right\}$? And with acceptance condition $\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}, q_{0}\right\}\right\}$?

Exercise 11.2

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 11.3

Let $L_{\sigma}=\left\{w \in\{a, b, c\}^{\omega}: w\right.$ contains infinitely many σ^{\prime} s $\}$. Give deterministic Büchi automata for languages L_{a}, L_{b} and L_{c}, and construct the intersection of these automata.

Exercise 11.4

(a) Consider the following Büchi automaton A over $\Sigma=\{a, b\}$:

Draw $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Let r_{w} be the ranking of $\operatorname{dag}(w)$ defined by

$$
r_{w}(q, i)= \begin{cases}1 & \text { if } q=q_{0} \text { and }\left\langle q_{0}, i\right\rangle \text { appears in } \operatorname{dag}(w) \\ 0 & \text { if } q=q_{1} \text { and }\left\langle q_{1}, i\right\rangle \operatorname{appears} \operatorname{in} \operatorname{dag}(w), \\ \perp & \text { otherwise }\end{cases}
$$

Are $r_{a b a b^{\omega}}$ and $r_{(a b)^{\omega}}$ (over A) odd rankings?
(c) Consider the following Büchi automaton B over $\Sigma=\{a, b\}$:

Draw $\operatorname{dag}\left(a^{\omega}\right)$. Show that any odd ranking for this dag must contain a rank of 3 or more

Solution 11.1

(a) The following DRA, with acceptance condition $\left\{\left\langle\left\{q_{1}\right\},\left\{q_{0}\right\}\right\rangle\right\}$, i.e., a run is accepting iff it visits q_{1} infinitely often and q_{0} finitely often, recognizes L :

(b) This NBA accepts L :

The powerset construction yields the DBA below (with the trap state omitted). It recognizes the language $a^{*} b^{\omega}$, which is different from $(a+b)^{*} b^{\omega}$:

(c) With the first acceptance condition the language is $\Sigma^{*}\left(a^{\omega}+b^{\omega}+c^{\omega}\right)$. With the second, the automaton does not accept any word. Indeed, every run that visits both q_{0} and q_{1} infinitely often must also visit q_{2} infinitely often, and the same holds for q_{1} and q_{2}, and for q_{2} and q_{0}.

Solution 11.2

Given a Rabin automaton $A=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{0}, G_{0}\right\rangle, \ldots,\left\langle F_{m-1}, G_{m-1}\right\rangle\right\}\right)$, it follows easily that $L_{\omega}(A)=$ $\bigcup_{i=0}^{m-1} L_{\omega}\left(A_{i}\right)$ where each $A_{i}=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{i}, G_{i}\right\rangle\right\}\right)$. So it suffices to translate each A_{i} into an NBA B_{i} and take the union of the B_{i} 's. For this, we use the same idea that we used for converting an NCA into an NBA (as shown in the previous exercise sheet). To construct B_{i}, we take two copies of A_{i}, say A_{i}^{0} and A_{i}^{1}, where A_{i}^{0} is a full copy of A_{i} and A_{i}^{1} is a partial copy containing only the states of $Q \backslash G_{i}$ and the transitions between these states. We let $[q, i]$ denote the $i^{t h}$ copy of the state q and for every transition $q \xrightarrow{a} q^{\prime}$ in A_{i} with $q^{\prime} \in Q \backslash G_{i}$, we add a transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ to B_{i}. We set the initial states to be $\left\{[q, 0], q \in Q_{0}\right\}$ and we set the final states to be $\left\{[q, 1]: q \in F_{i}\right\}$. Similar to the last exercise of the previous sheet, we can show that B_{i} accepts $L_{\omega}\left(A_{i}\right)$.

Solution 11.3

The following deterministic Büchi automata respectively accept L_{a}, L_{b} and L_{c} :

Taking their intersection leads to the following deterministic Büchi automaton:

Note that $L_{a} \cap L_{b} \cap L_{b}$ is accepted by a smaller DBA:

Solution 11.4

(a) $\operatorname{dag}\left(a b a b^{\omega}\right)$:

$\operatorname{dag}\left((a b)^{\omega}\right):$

(b) - r is not an odd rank for $\operatorname{dag}\left(a b a b^{\omega}\right)$ since

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{1}, 4\right\rangle \xrightarrow{b}\left\langle q_{1}, 5\right\rangle \xrightarrow{b} \cdots
$$

is an infinite path of $\operatorname{dag}\left(a b a b^{\omega}\right)$ not visiting odd nodes infinitely often.

- r is an odd rank for $\operatorname{dag}\left((a b)^{\omega}\right)$ since it has a single infinite path:

$$
\left\langle q_{0}, 0\right\rangle \xrightarrow{a}\left\langle q_{0}, 1\right\rangle \xrightarrow{b}\left\langle q_{0}, 2\right\rangle \xrightarrow{a}\left\langle q_{0}, 3\right\rangle \xrightarrow{b}\left\langle q_{0}, 4\right\rangle \xrightarrow{a}\left\langle q_{0}, 5\right\rangle \xrightarrow{b} \cdots
$$

which only visits odd nodes.
(c) $\operatorname{dag}\left(a^{\omega}\right)$

Let r be an odd rank for $\operatorname{dag}\left(a^{\omega}\right)$. It exists since a^{ω} is not accepted by B. Since r is odd, all infinite paths must visit odd nodes infinitely often (i.o.). In particular the bottom infinite path of q_{0} nodes must stabilize to nodes with odd rank.

Let us assume the nodes $\left\langle q_{0}, j\right\rangle$ have rank 1 for all $j \geq i$ for some $i \geq 0$. Consider the infinite path $\rho=\left\langle q_{0}, i\right\rangle \xrightarrow{a}\left\langle q_{1}, i+1\right\rangle \xrightarrow{a}\left\langle q_{2}, i+2\right\rangle \xrightarrow{a}\left\langle q_{2}, i+3\right\rangle \ldots$.. Node $\left\langle q_{1}, i+1\right\rangle$ must have an even rank (since q_{1} is accepting) smaller or equal to 1 , so it has rank 0 . This entails that $\left\langle q_{2}, k\right\rangle$ has rank 0 for all $k \geq i+2$. This contradicts r being an odd ranking because the path ρ is infinite yet does not visit odd nodes infinitely often.

Thus the bottom infinite path of q_{0} nodes must stabilize to nodes with odd rank strictly bigger than 1 , i.e., bigger or equal to 3 .

