Automata and Formal Languages — Exercise Sheet 11

Exercise 11.1

Let language $L = \{w \in \{a, b\}^{\omega} : w \text{ contains finitely many } a\}$

- (a) Give a deterministic Rabin automaton for L.
- (b) Give an NBA for L and try to "determinize" it by using the NFA to DFA powerset construction. What is the language accepted by the resulting DBA?
- (c) What ω -language is accepted by the following Muller automaton with acceptance condition $\{\{q_0\}, \{q_1\}, \{q_2\}\}$? And with acceptance condition $\{\{q_0, q_1\}, \{q_1, q_2\}, \{q_2, q_0\}\}$?

Exercise 11.2

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Exercise 11.3

Let $L_{\sigma} = \{w \in \{a, b, c\}^{\omega} : w \text{ contains infinitely many } \sigma$'s}. Give deterministic Büchi automata for languages L_a, L_b and L_c , and construct the intersection of these automata.

Exercise 11.4

(a) Consider the following Büchi automaton A over $\Sigma = \{a, b\}$:

Draw dag $(abab^{\omega})$ and dag $((ab)^{\omega})$.

(b) Let r_w be the ranking of dag(w) defined by

$$r_w(q,i) = \begin{cases} 1 & \text{if } q = q_0 \text{ and } \langle q_0,i \rangle \text{ appears in } \operatorname{dag}(w), \\ 0 & \text{if } q = q_1 \text{ and } \langle q_1,i \rangle \text{ appears in } \operatorname{dag}(w), \\ \bot & \text{otherwise.} \end{cases}$$

Are $r_{abab^{\omega}}$ and $r_{(ab)^{\omega}}$ (over A) odd rankings?

(c) Consider the following Büchi automaton B over $\Sigma = \{a, b\}$:

Draw dag(a^{ω}). Show that any odd ranking for this dag must contain a rank of 3 or more.

Solution 11.1

(a) The following DRA, with acceptance condition $\{\langle \{q_1\}, \{q_0\}\rangle\}$, i.e., a run is accepting iff it visits q_1 infinitely often and q_0 finitely often, recognizes L:

(b) This NBA accepts L:

The powerset construction yields the DBA below (with the trap state omitted). It recognizes the language a^*b^{ω} , which is different from $(a + b)^*b^{\omega}$:

(c) With the first acceptance condition the language is $\Sigma^*(a^{\omega} + b^{\omega} + c^{\omega})$. With the second, the automaton does not accept any word. Indeed, every run that visits both q_0 and q_1 infinitely often must also visit q_2 infinitely often, and the same holds for q_1 and q_2 , and for q_2 and q_0 .

Solution 11.2

Given a Rabin automaton $A = (Q, \Sigma, Q_0, \delta, \{\langle F_0, G_0 \rangle, \dots, \langle F_{m-1}, G_{m-1} \rangle\})$, it follows easily that $L_{\omega}(A) = \bigcup_{i=0}^{m-1} L_{\omega}(A_i)$ where each $A_i = (Q, \Sigma, Q_0, \delta, \{\langle F_i, G_i \rangle\})$. So it suffices to translate each A_i into an NBA B_i and take the union of the B_i 's. For this, we use the same idea that we used for converting an NCA into an NBA (as shown in the previous exercise sheet). To construct B_i , we take two copies of A_i , say A_i^0 and A_i^1 , where A_i^0 is a full copy of A_i and A_i^1 is a partial copy containing only the states of $Q \setminus G_i$ and the transitions between these states. We let [q, i] denote the i^{th} copy of the state q and for every transition $q \xrightarrow{a} q'$ in A_i with $q' \in Q \setminus G_i$, we add a transition $[q, 0] \xrightarrow{a} [q', 1]$ to B_i . We set the initial states to be $\{[q, 0], q \in Q_0\}$ and we set the final states to be $\{[q, 1] : q \in F_i\}$. Similar to the last exercise of the previous sheet, we can show that B_i accepts $L_{\omega}(A_i)$.

Solution 11.3

The following deterministic Büchi automata respectively accept L_a, L_b and L_c :

Taking their intersection leads to the following deterministic Büchi automaton:

Note that $L_a \cap L_b \cap L_b$ is accepted by a smaller DBA:

(a) $dag(abab^{\omega})$:

(b) • r is not an odd rank for dag $(abab^{\omega})$ since

 $\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_1, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots$

is an infinite path of $dag(abab^{\omega})$ not visiting odd nodes infinitely often.

• r is an odd rank for $dag((ab)^{\omega})$ since it has a single infinite path:

$$\langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_0, 4 \rangle \xrightarrow{a} \langle q_0, 5 \rangle \xrightarrow{b} \cdots$$

which only visits odd nodes.

(c) $\operatorname{dag}(a^{\omega})$:

Let r be an odd rank for $dag(a^{\omega})$. It exists since a^{ω} is not accepted by B. Since r is odd, all infinite paths must visit odd nodes infinitely often (i.o.). In particular the bottom infinite path of q_0 nodes must stabilize to nodes with odd rank.

Let us assume the nodes $\langle q_0, j \rangle$ have rank 1 for all $j \geq i$ for some $i \geq 0$. Consider the infinite path $\rho = \langle q_0, i \rangle \xrightarrow{a} \langle q_1, i+1 \rangle \xrightarrow{a} \langle q_2, i+2 \rangle \xrightarrow{a} \langle q_2, i+3 \rangle \dots$ Node $\langle q_1, i+1 \rangle$ must have an even rank (since q_1 is accepting) smaller or equal to 1, so it has rank 0. This entails that $\langle q_2, k \rangle$ has rank 0 for all $k \geq i+2$. This contradicts r being an odd ranking because the path ρ is infinite yet does not visit odd nodes infinitely often.

Thus the bottom infinite path of q_0 nodes must stabilize to nodes with odd rank strictly bigger than 1, i.e., bigger or equal to 3.