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Automata and Formal Languages — Exercise Sheet 10

Exercise 10.1

An ω-automaton has acceptance on transitions if the acceptance condition specifies which transitions must
appear infinitely often in a run. All classes of ω-automata (Büchi, co-Büchi, etc.) can be defined with acceptance
on transitions rather than states.

Give minimal deterministic automata for the language of words over {a, b} containing infinitely many a and
infinitely many b. of the following kinds: (a) Büchi, (b) generalized Büchi, (c) Büchi with acceptance on
transitions, and (d) generalized Büchi with acceptance on transitions.

Exercise 10.2

The limit of a language L ⊆ Σ∗ is the ω-language lim(L) defined as: w ∈ lim(L) iff infinitely many prefixes of
w are words of L, e.g. the limit of (ab)∗ is (ab)ω.

(a) Determine the limit of the following regular languages over {a, b}:

(i) (a+ b)∗a∗,

(ii) (bab)∗b.

(iii) {w : At least one a appears in w}
(iv) {w : Number of appearances of a in w is odd and at least 3 }

(b) Prove the following: An ω-language is recognizable by a deterministic Büchi automaton iff it is the limit
of a regular language.

(c) Exhibit a non-regular language whose limit is ω-regular.

(d) Exhibit a non-regular language whose limit is not ω-regular.

Exercise 10.3

Let L1 = (ab)ω and let L2 be the language of all words over {a, b} containing infinitely many a and infinitely
many b.

(a) Exhibit three different DBAs with three states recognizing L1.

(b) Exhibit six different DBAs with three states recognizing L2.

(c) Show that no DBA with at most two states recognizes L1 or L2.

Exercise 10.4

Show that for every NCA there is an equivalent NBA.



Solution 10.1

Automata (a), (b), (c) and (d) are respectively as follows, where colored patterns indicate the sets of accepting
states or transitions:
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Solution 10.2

(a) (i) {a, b}ω.

(ii) The empty ω-language.

(iii) The set of ω-words containing infinitely many a.

(iv) The set of ω-words containing infinitely many a, plus the set of ω-words such that the number of a’s
appearing in them is finite, odd and bigger than 3.

(b) Let B be a DFA recognizing L′. Consider B as a DBA, and let L be the ω-language recognized by B. We
show that L = lim(L′). If w ∈ lim(L′), then B (as a DFA) accepts infinitely many prefixes of w. Since B
is deterministic, the runs of B on these prefixes are prefixes of the unique infinite run of B (as a DBA)
on w. So the infinite run visits accepting states infinitely often, and so w ∈ L. If w ∈ L, then the unique
run of B on w (as a DBA) visits accepting states infinitely often, and so infinitely many prefixes of w are
accepted by B (as a DFA). Thus, w ∈ lim(L′).

If L is the limit of a regular language L′, then by the above argument, it is clear that L is an ω-language
recognizable by a DBA.

Suppose L is an ω-language recognizable by a DBA (say B). Consider B as a DFA and let L′ be the
language recognized by it. By the above argument, it is clear that L = lim(L′) and so L is the limit of a
regular language.

(c) Let L = {anbn : n ≥ 0}, which is not a regular language. Then lim(L) = ∅, which is ω-regular.

(d) Let L = {anbncm : n,m ≥ 0}. We have lim(L) = {anbncω : n ≥ 0}. Suppose this language is ω-regular
and hence recognized by a Büchi automaton B. By the pigeonhole principle, there are distinct n1, n2 ∈ N
and accepting runs ρ1, ρ2 of B on an1bn1cω and an2bn2cω such that the state reached in ρ1 after reading
an1 and the state eached in ρ2 after reading an2 coincide. This means that B accepts an1bn2cω, which
contradicts the assumption that B recognizes L.

Solution 10.3

(a) We obtain three DBAs for L1 from the one below by making either q0, q1 or both accepting:
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(b) Here are two different DBAs for L2. We obtain two further DBAs from each of these automata by making
either q1 or q2 the initial state.
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(c) Assume there is a DBA B with at most two states recognizing L1. Since L1 is nonempty, B has at least
one (reachable) accepting state q. Consider the transitions leaving q labeled by a and b. If any of them
leads to q again, then B accepts an ω-word of the form waω or wbω for some finite word w. Since no
word of this form belongs to L1, we reach a contradiction. Thus, B must have two states q and q′, and
transitions

ta = q
a−−−→ q′ and tb = q

b−−−→ q′.

Consider any accepting run ρ of B. If the word accepted by the run does not belong to L1, we are done.
So assume it belongs to L1. Since ρ is accepting, it contains some occurrence of ta or tb. Consider the
run ρ′ obtained by exchanging the first occurrence of one of them by the other (that is, if ta occurs first,
then replace it by tb, and vice versa). Then ρ′ is an accepting run, and the word it accepts is the result of
turning an a into a b, or vice versa. In both cases, the resulting word does not belong to L1; so we each
again a contradiction, and we are done.

The proof for L2 is similar.

Solution 10.4

Let A = (Q,Σ, δ, Q0, F ) be an NCA. We construct an NBA B which is equivalent to A. Observe that the
co-Büchi accepting condition inf(ρ) ∩ F = ∅ is equivalent to inf(ρ) ⊆ Q \ F . This condition holds iff ρ has an
infinite suffix that only visits states of Q \ F . We design B in two stages. In the first one, we take two copies
of A, that we call A0 and A1, and put them side by side; A0 is a full copy, containing all states and transitions
of A, and A1 is a partial copy, containing only the states of Q \ F and the transitions between these states.
We write [q, 0] to denote the copy a state q ∈ Q in A0, and [q, 1] for the copy of state q ∈ Q \ F in A1. In the

second stage, we add some transitions that “jump” from A0 to A1: for every transition [q, 0]
a−−−→[q′, 0] of A0

such that q′ ∈ Q \ F , we add a transition [q, 0]
a−−−→[q′, 1] that “jumps” to [q′, 1], the “twin state” of [q′, 0] in

A1. Note that [q, 0]
a−−−→[q′, 1] does not replace [q, 0]

a−−−→[q′, 0], it is an additional transition. As initial states
of B, we choose the copy of Q0 in A0, i.e., {[q, 0] : q ∈ Q0}, and as accepting states all the states of A1, i.e.,
{[q, 1] : q ∈ Q \ F}.

For example, the NCA below on the left is transformed into the NBA on the right:
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It remains to show that Lω(A) = Lω(B).

⊆) Let w ∈ Lω(A). There is a run ρ of A on word w such that inf ρ ∩ F = ∅. It follows that ρ = ρ0 ρ1, where
ρ0 is a finite prefix of ρ, and ρ1 is an infinite suffix that only contains states of Q \ F . Let ρ′ be the run of B
on w that simulates ρ0 on A0, and then “jumps” to A1 and simulates ρ1 in A1. Notice that ρ′ exists because



ρ1 only visits states of Q \ F . Since all states of A1 are accepting, ρ′ is an accepting run of the NBA B, and so
w ∈ Lω(B).

⊇) Let w ∈ Lω(B). There is an accepting run ρ of B on word w. Thus, ρ visits states of A1 infinitely often.
Since a run of B that enters A1 can never return to A0 (there are no “back-jumps” from A1 to A0,) ρ has an
infinite suffix ρ1 that only visits states of A1, i.e., states [q, 1] such that q ∈ Q \ F . Let ρ′ be the result of
replacing [q, 0] and [q, 1] by q everywhere in ρ. Clearly, ρ′ is a run of A on w that only visits F finitely often.
Thus, ρ′ is an accepting run of A, and w ∈ LA.


