Automata and Formal Languages - Exercise Sheet 10

Exercise 10.1

An ω-automaton has acceptance on transitions if the acceptance condition specifies which transitions must appear infinitely often in a run. All classes of ω-automata (Büchi, co-Büchi, etc.) can be defined with acceptance on transitions rather than states.

Give minimal deterministic automata for the language of words over $\{a, b\}$ containing infinitely many a and infinitely many b. of the following kinds: (a) Büchi, (b) generalized Büchi, (c) Büchi with acceptance on transitions, and (d) generalized Büchi with acceptance on transitions.

Exercise 10.2

The limit of a language $L \subseteq \Sigma^{*}$ is the ω-language $\lim (L)$ defined as: $w \in \lim (L)$ iff infinitely many prefixes of w are words of L, e.g. the limit of $(a b)^{*}$ is $(a b)^{\omega}$.
(a) Determine the limit of the following regular languages over $\{a, b\}$:
(i) $(a+b)^{*} a^{*}$,
(ii) $(b a b)^{*} b$.
(iii) $\{w$: At least one a appears in $w\}$
(iv) $\{w$: Number of appearances of a in w is odd and at least 3$\}$
(b) Prove the following: An ω-language is recognizable by a deterministic Büchi automaton iff it is the limit of a regular language.
(c) Exhibit a non-regular language whose limit is ω-regular.
(d) Exhibit a non-regular language whose limit is not ω-regular.

Exercise 10.3

Let $L_{1}=(a b)^{\omega}$ and let L_{2} be the language of all words over $\{a, b\}$ containing infinitely many a and infinitely many b.
(a) Exhibit three different DBAs with three states recognizing L_{1}.
(b) Exhibit six different DBAs with three states recognizing L_{2}.
(c) Show that no DBA with at most two states recognizes L_{1} or L_{2}.

Exercise 10.4

Show that for every NCA there is an equivalent NBA.

Solution 10.1

Automata (a), (b), (c) and (d) are respectively as follows, where colored patterns indicate the sets of accepting states or transitions:

Solution 10.2

(a) (i) $\{a, b\}^{\omega}$.
(ii) The empty ω-language.
(iii) The set of ω-words containing infinitely many a.
(iv) The set of ω-words containing infinitely many a, plus the set of ω-words such that the number of a 's appearing in them is finite, odd and bigger than 3.
(b) Let B be a DFA recognizing L^{\prime}. Consider B as a DBA, and let L be the ω-language recognized by B. We show that $L=\lim \left(L^{\prime}\right)$. If $w \in \lim \left(L^{\prime}\right)$, then B (as a DFA) accepts infinitely many prefixes of w. Since B is deterministic, the runs of B on these prefixes are prefixes of the unique infinite run of B (as a DBA) on w. So the infinite run visits accepting states infinitely often, and so $w \in L$. If $w \in L$, then the unique run of B on w (as a DBA) visits accepting states infinitely often, and so infinitely many prefixes of w are accepted by B (as a DFA). Thus, $w \in \lim \left(L^{\prime}\right)$.
If L is the limit of a regular language L^{\prime}, then by the above argument, it is clear that L is an ω-language recognizable by a DBA.
Suppose L is an ω-language recognizable by a DBA (say B). Consider B as a DFA and let L^{\prime} be the language recognized by it. By the above argument, it is clear that $L=\lim \left(L^{\prime}\right)$ and so L is the limit of a regular language.
(c) Let $L=\left\{a^{n} b^{n}: n \geq 0\right\}$, which is not a regular language. Then $\lim (L)=\emptyset$, which is ω-regular.
(d) Let $L=\left\{a^{n} b^{n} c^{m}: n, m \geq 0\right\}$. We have $\lim (L)=\left\{a^{n} b^{n} c^{\omega}: n \geq 0\right\}$. Suppose this language is ω-regular and hence recognized by a Büchi automaton B. By the pigeonhole principle, there are distinct $n_{1}, n_{2} \in \mathbb{N}$ and accepting runs ρ_{1}, ρ_{2} of B on $a^{n_{1}} b^{n_{1}} c^{\omega}$ and $a^{n_{2}} b^{n_{2}} c^{\omega}$ such that the state reached in ρ_{1} after reading $a^{n_{1}}$ and the state eached in ρ_{2} after reading $a^{n_{2}}$ coincide. This means that B accepts $a^{n_{1}} b^{n_{2}} c^{\omega}$, which contradicts the assumption that B recognizes L.

Solution 10.3

(a) We obtain three DBAs for L_{1} from the one below by making either q_{0}, q_{1} or both accepting:

(b) Here are two different DBAs for L_{2}. We obtain two further DBAs from each of these automata by making either q_{1} or q_{2} the initial state.

(c) Assume there is a DBA B with at most two states recognizing L_{1}. Since L_{1} is nonempty, B has at least one (reachable) accepting state q. Consider the transitions leaving q labeled by a and b. If any of them leads to q again, then B accepts an ω-word of the form $w a^{\omega}$ or $w b^{\omega}$ for some finite word w. Since no word of this form belongs to L_{1}, we reach a contradiction. Thus, B must have two states q and q^{\prime}, and transitions

$$
t_{a}=q \xrightarrow{a} q^{\prime} \text { and } t_{b}=q \xrightarrow{b} q^{\prime} .
$$

Consider any accepting run ρ of B. If the word accepted by the run does not belong to L_{1}, we are done. So assume it belongs to L_{1}. Since ρ is accepting, it contains some occurrence of t_{a} or t_{b}. Consider the run ρ^{\prime} obtained by exchanging the first occurrence of one of them by the other (that is, if t_{a} occurs first, then replace it by t_{b}, and vice versa). Then ρ^{\prime} is an accepting run, and the word it accepts is the result of turning an a into a b, or vice versa. In both cases, the resulting word does not belong to L_{1}; so we each again a contradiction, and we are done.

The proof for L_{2} is similar.

Solution 10.4

Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NCA. We construct an NBA B which is equivalent to A. Observe that the co-Büchi accepting condition $\inf (\rho) \cap F=\emptyset$ is equivalent to $\inf (\rho) \subseteq Q \backslash F$. This condition holds iff ρ has an infinite suffix that only visits states of $Q \backslash F$. We design B in two stages. In the first one, we take two copies of A, that we call A_{0} and A_{1}, and put them side by side; A_{0} is a full copy, containing all states and transitions of A, and A_{1} is a partial copy, containing only the states of $Q \backslash F$ and the transitions between these states. We write $[q, 0]$ to denote the copy a state $q \in Q$ in A_{0}, and $[q, 1]$ for the copy of state $q \in Q \backslash F$ in A_{1}. In the second stage, we add some transitions that "jump" from A_{0} to A_{1} : for every transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 0\right]$ of A_{0} such that $q^{\prime} \in Q \backslash F$, we add a transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ that "jumps" to $\left[q^{\prime}, 1\right]$, the "twin state" of $\left[q^{\prime}, 0\right]$ in A_{1}. Note that $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ does not replace $[q, 0] \xrightarrow{a}\left[q^{\prime}, 0\right]$, it is an additional transition. As initial states of B, we choose the copy of Q_{0} in A_{0}, i.e., $\left\{[q, 0]: q \in Q_{0}\right\}$, and as accepting states all the states of A_{1}, i.e., $\{[q, 1]: q \in Q \backslash F\}$.

For example, the NCA below on the left is transformed into the NBA on the right:

It remains to show that $L_{\omega}(A)=L_{\omega}(B)$.
$\subseteq)$ Let $w \in L_{\omega}(A)$. There is a run ρ of A on word w such that $\inf \rho \cap F=\emptyset$. It follows that $\rho=\rho_{0} \rho_{1}$, where ρ_{0} is a finite prefix of ρ, and ρ_{1} is an infinite suffix that only contains states of $Q \backslash F$. Let ρ^{\prime} be the run of B on w that simulates ρ_{0} on A_{0}, and then "jumps" to A_{1} and simulates ρ_{1} in A_{1}. Notice that ρ^{\prime} exists because
ρ_{1} only visits states of $Q \backslash F$. Since all states of A_{1} are accepting, ρ^{\prime} is an accepting run of the NBA B, and so $w \in L_{\omega}(B)$.

〇) Let $w \in L_{\omega}(B)$. There is an accepting run ρ of B on word w. Thus, ρ visits states of A_{1} infinitely often. Since a run of B that enters A_{1} can never return to A_{0} (there are no "back-jumps" from A_{1} to A_{0},) ρ has an infinite suffix ρ_{1} that only visits states of A_{1}, i.e., states $[q, 1]$ such that $q \in Q \backslash F$. Let ρ^{\prime} be the result of replacing $[q, 0]$ and $[q, 1]$ by q everywhere in ρ. Clearly, ρ^{\prime} is a run of A on w that only visits F finitely often. Thus, ρ^{\prime} is an accepting run of A, and $w \in \mathcal{L} A$.

