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Automata and Formal Languages — Exercise Sheet 10

Exercise 10.1
Give deterministic Rabin automata and Muller automata for the following language:

L ={w € {a,b}* : w contains finitely many a’s}.

Exercise 10.2

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Biichi automata.

Exercise 10.3
Consider the following automaton A:

(a) Interpret A as a Rabin automaton with acceptance condition {({qo, g2}, {q1})}. Follow the approach from
Exercise 10.2 to construct a Biichi automaton that recognizes the same language as A.

(b) Interpret A as a Muller automaton with acceptance condition {{q1}, {qo,g2}}. Use algorithms NMAtoNGA

and NGAtoNBA from the lecture notes to construct a Biichi automaton that recognizes the same language
as A.

Exercise 10.4

Consider the class of non deterministic automata over infinite words with the following acceptance condition:
an infinite run is accepting if it visits a final state at least once. Show that no such automaton accepts the
language of all words over {a,b} containing infinitely many a and infinitely many b.



Solution 10.1

o We give the following Rabin automaton with acceptance condition {({¢1},{q})}, i.e. where ¢; must be
visited infinitely often and gy must be visited finitely often:

e We give the following Muller automaton with acceptance condition {{¢1}}, i.e. where precisely {g;} must
be visited infinitely often:

Solution 10.2

NBA can be easily transformed into nondterministic Rabin automata (NRA) and vice versa, without any
exponential blow-up.

NBA — NRA. Just observe that a Biichi condition {q1,...,¢x} is equivalent to the following Rabin condition

{({a},0),..., ({g:}.,0) }.

NRA — NBA. Given a Rabin automaton A = (Q, 3, Qo, 9, {(FO, Go)y .oy (Frn—1, Gm,1>} ), it follows easily
that, as in the case of Muller automata, L, (A) = U;’;Bl L, (A;) holds for the NRAs A; = (Q, 2, Qo, 6, {(Fi, G:)}).
So it suffices to translate each A; into an NBA and take the union of the obtained NBAs. Since an accepting
run p of A; satisfies inf(p) N G; = 0, from some point on p only visits states of @\ G;. So p consists of an initial
finite part, say po, that may visit all states, and an infinite part, say pi, that only visits states of @\ G;. So we
take two copies of A;. Intuitively, A simulates p by executing pg in the first copy, and p; in the second. The
condition that p; must visit some state of F; infinitely often is enforced by taking F; as Biichi condition.

Solution 10.3
(a)




(b) We must first construct two generalized Biichi automata A and B for {¢;} and {qo,q2} respectively.
Automaton A is as follows with acceptance condition {{¢}}:

a b b

The resulting generalized Biichi automaton is the union of A and B. Note that A is essentially already a
standard Biichi automaton, it suffices to make state [¢1, 1] accepting. However, it remains to convert B
into a standard Biichi automaton B’:




Altogether, we obtain the following Biichi automaton:

f41.0] :

% Since Biichi automata can have multiple initial states, we can also simply take the disjoint union of
both automata, i.e. have them side by side instead of adding a single new initial.

Solution 10.4

Suppose there is such an automaton B = (Q, {a, b}, d, Qo, F) recognizing L. Since w = (abl®)* belongs to L,
there exist u,v € {a,b}*, gt € Qo, Gacc € F, and qo, q1, ... q|g| € Q such that uv = (abl®hy™q for some m > 1,
and

u v b b b
Ginit Gacc q0 q1 e qQ|

By the pigeonhole principle, there exist 0 < i < j < |Q| such that ¢; = ¢;. Therefore,

u bt pi—t pi—i pi—t
Ginit Gacc qi q; q;

We conclude that uvb?(b’~%)“ is accepted by B, which is a contradiction.



