Automata and Formal Languages - Exercise Sheet 9

Exercise 9.1

Consider the logic PureMSO (Σ) with syntax

$$
\varphi:=X \subseteq Q_{a}|X<Y| X \subseteq Y|\neg \varphi| \varphi \vee \varphi \mid \exists X . \varphi
$$

Notice that formulas of $\operatorname{PureMSO}(\Sigma)$ do not contain first-order variables. The satisfaction relation of $\mathrm{PureMSO}(\Sigma)$ is given by:

$$
\begin{array}{lllll}
(w, \mathcal{J}) & \models & X \subseteq Q_{a} & \text { iff } & w[p]=a \text { for every } p \in \mathcal{J}(X) \\
(w, \mathcal{J}) & \models X<Y & \text { iff } & p<p^{\prime} \text { for every } p \in \mathcal{J}(X), p^{\prime} \in \mathcal{J}(Y) \\
(w, \mathcal{J}) & \models X \subseteq Y & \text { iff } & p \in \mathcal{J}(Y) \text { for every } p \in \mathcal{J}(X)
\end{array}
$$

with the rest as for $\operatorname{MSO}(\Sigma)$.
Prove that $\operatorname{MSO}(\Sigma)$ and $\operatorname{PureMSO}(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $\operatorname{MSO}(\Sigma)$ there is an equivalent sentence ψ of $\operatorname{PureMSO}(\Sigma)$, and vice versa.

Exercise 9.2

Let $r \geq 0$ and $n \geq 1$. Give a Presburger formula φ such that $\mathcal{J} \models \varphi$ iff $\mathcal{J}(x)>\mathcal{J}(y)$ and $\mathcal{J}(x)-\mathcal{J}(y) \equiv$ $r(\bmod n)$. Give an automaton that accepts the solutions of φ for $r=1$ and $n=2$.

Exercise 9.3

Let $\inf (w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata for the following ω-languages:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}\right.$: in w, every a is immediately followed by a $\left.b\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}: w\right.$ has no occurrence of bab\} over alphabet $\Sigma=\{a, b\}$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}: \inf (w) \subseteq\{a, b\}\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(d) $L_{4}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(e) Prove that there is no deterministic Büchi automaton accepting L_{3}.

Exercise 9.4

Prove or disprove:
(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state such that $L_{\omega}(A)=L_{\omega}(B)$.
(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state such that $L_{\omega}(A)=L_{\omega}(B)$.
(c) There exists a Büchi automaton recognizing the finite ω-language $\{w\}$ such that $w \in\{0,1, \ldots, 9\}^{\omega}$ and w_{i} is the $i^{\text {th }}$ decimal digit of π.

Solution 9.1

Given a sentence ψ of $\operatorname{PureMSO}(\Sigma)$, let ϕ be the sentence of $\operatorname{MSO}(\Sigma)$ obtained by replacing every subformula of ψ of the form

$$
\begin{array}{ll}
X \subseteq Y & \text { by }
\end{array} \quad \forall x(x \in X \rightarrow x \in Y)
$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$
\operatorname{empty}(X):=\forall Y X \subseteq Y
$$

and

$$
\operatorname{sing}(X):=\neg \operatorname{empty}(X) \wedge \forall Y(Y \subseteq X) \rightarrow(\operatorname{empty}(Y) \vee Y=X)
$$

Intuitively, empty (X) is true iff X is the empty set and $\operatorname{sing}(X)$ is true iff X is a set of size one.
Let ϕ be a sentence of $\operatorname{MSO}(\Sigma)$. Assume without loss of generality that for every first-order variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropriately). Let ψ be the sentence of $\operatorname{PureMSO}(\Sigma)$ obtained by replacing every subformula of ϕ of the form

$$
\begin{array}{lll}
\exists x \psi^{\prime} & \text { by } & \exists X\left(\operatorname{sing}(X) \wedge \psi^{\prime}[X / x]\right) \\
& & \text { where } \psi^{\prime}[X / x] \text { is the result of substituting } X \text { for } x \text { in } \psi^{\prime} \\
Q_{a}(x) & \text { by } & X \subseteq Q_{a} \\
x<y & \text { by } & X<Y \\
x \in Y & \text { by } & X \subseteq Y
\end{array}
$$

Clearly, ϕ and ψ are equivalent.

Solution 9.2

Let $0 \leq r^{\prime}<n$ such that $r^{\prime} \equiv r(\bmod n)$. Since n and r are fixed constants, r^{\prime} is also a fixed constant. Further, since n is a constant, we can multiply a variable by n via iterated addition. The required formula is then given by:

$$
\varphi(x, y):=(x>y) \wedge \exists a\left(x=y+n \cdot a+r^{\prime}\right)
$$

Let $k \in \mathbb{N}$ and $x, y \in \Sigma^{k}$ be LSBF encodings of some naturals. First note that $\operatorname{val}(x)-\operatorname{val}(y) \equiv 1(\bmod 2)$ iff $\operatorname{val}(x)$ and $\operatorname{val}(y)$ are such that one is odd and the other one is even. Thus, the first bit of x and y should be different. Moreover, $\operatorname{val}(x)>\operatorname{val}(y)$ iff there exists $\ell \in\{1, \ldots, k\}$ such that $x_{\ell}=1, y_{\ell}=0$, and $x_{i} \geq y_{i}$ for every $\ell<i \leq k$. These observations yield the following automaton:

Solution 9.3

These are just some possible solutions.

or

(e) For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L_{\omega}(B)=L_{3}$. Since $c b^{\omega} \in L_{3}, B$ must visit F infinitely often when reading $c b^{\omega}$. In particular, this implies the existence of $m_{1}>0$ and $q_{1} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}}} q_{1}$. Similarly, since $c b^{m_{1}} c b^{\omega} \in L_{3}$, there exist $m_{2}>0$ and $q_{2} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}} c b^{m_{2}}} q_{2}$. Since B is deterministic, we have $q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2}$. By repeating this argument $|Q|$ times, we can construct $m_{1}, m_{2}, \ldots, m_{|Q|}>0$ and $q_{1}, q_{2}, \ldots, q_{|Q|} \in F$ such that

$$
q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2} \cdots \xrightarrow{c b^{m_{|Q|} \mid}} q_{|Q|} .
$$

By the pigeonhole principle, there exist $0 \leq i<j \leq|Q|$ such that $q_{i}=q_{j}$. Let

$$
\begin{aligned}
u & =c b^{m_{1}} c b^{m_{2}} \cdots c b^{m_{i}} \\
v & =c b^{m_{i+1}} c b^{m_{i+2}} \cdots c b^{m_{j}}
\end{aligned}
$$

We have $q_{0} \xrightarrow{u} q_{i} \xrightarrow{v} q_{i} \xrightarrow{v} q_{i} \xrightarrow{v} \cdots$ which implies that $u v^{\omega} \in L_{\omega}(B)$. Also notice that c appears infinitely often in $u v^{\omega}$, that is, $c \in \inf \left(u v^{\omega}\right)$. Therefore we have $u v^{\omega} \notin L_{3}=L_{\omega}(B)$, which yields a contradiction.

Solution 9.4

(a) True. The construction for NFAs still work for Büchi automata.

Let $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B^{\prime}=\left(Q \cup\left\{q_{\text {init }}\right\}, \Sigma, \delta^{\prime},\left\{q_{\text {init }}\right\}, F\right)$ where

$$
\delta^{\prime}(q, a)= \begin{cases}\bigcup_{q_{0} \in Q_{0}} \delta\left(q_{0}, a\right) & \text { if } q=q_{\text {init }} \\ \delta(q, a) & \text { otherwise }\end{cases}
$$

We have $L_{\omega}(B)=L_{\omega}\left(B^{\prime}\right)$, since there exists $q_{0} \in Q_{0}$ such that

$$
q_{0}{ }^{a_{1}}{ }_{B} q_{1}{\xrightarrow{a_{2}}}_{B} q_{2}{\xrightarrow{a_{3}}}_{B} \cdots
$$

if and only if

$$
q_{\text {init }}{\xrightarrow{a_{1}}}_{B^{\prime}} q_{1}{\xrightarrow{a_{2}}}_{B^{\prime}} q_{2}{\xrightarrow{a_{3}}}_{B^{\prime}} \ldots
$$

(b) False. Let $L=\left\{a^{\omega}, b^{\omega}\right\}$. Suppose there exists a Büchi automaton $B=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=L$ and $F=\{q\}$. Since $a^{\omega} \in L$, there exist $q_{0} \in Q_{0}, m \geq 0$ and $n>0$ such that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{a^{n}} q .
$$

Similarly, since $b^{\omega} \in L$, there exist $q_{0}^{\prime} \in Q_{0}, m^{\prime} \geq 0$ and $n^{\prime}>0$ such that

$$
q_{0}^{\prime} \xrightarrow{b^{m^{\prime}}} q \xrightarrow{b^{n^{\prime}}} q
$$

This implies that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{b^{n^{\prime}}} q \xrightarrow{b^{n^{\prime}}} \cdots
$$

Therefore, $a^{m}\left(b^{n^{\prime}}\right)^{\omega} \in L$, which is a contradiction.
(c) False. Suppose there exists a Büchi automaton $B=\left(Q,\{0,1, \ldots, 9\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=\{w\}$. There exist $u \in\{0,1, \ldots, 9\}^{*}, v \in\{0,1, \ldots, 9\}^{+}, q_{0} \in Q_{0}$ and $q \in F$ such that

$$
q_{0} \xrightarrow{u} q \xrightarrow{v} q .
$$

Therefore, $u v^{\omega} \in L_{\omega}(B)$ which implies that $w=u v^{\omega}$. Since w is the decimal representation of π, we conclude that π is rational, which is a contradiction.

