Automata and Formal Languages — Exercise Sheet 9

Exercise 9.1

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $PureMSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $PureMSO(\Sigma)$, and vice versa.

Exercise 9.2

Let $r \ge 0$ and $n \ge 1$. Give a Presburger formula φ such that $\mathcal{J} \models \varphi$ iff $\mathcal{J}(x) > \mathcal{J}(y)$ and $\mathcal{J}(x) - \mathcal{J}(y) \equiv r \pmod{n}$. Give an automaton that accepts the solutions of φ for r = 1 and n = 2.

Exercise 9.3

Let $\inf(w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata for the following ω -languages:

- (a) $L_1 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ every } a \text{ is immediately followed by a } b \}$ over alphabet $\Sigma = \{a, b, c\}, d$
- (b) $L_2 = \{ w \in \Sigma^{\omega} : w \text{ has no occurrence of } bab \} \text{ over alphabet } \Sigma = \{ a, b \},$
- (c) $L_3 = \{ w \in \Sigma^{\omega} : \inf(w) \subseteq \{a, b\} \}$ over alphabet $\Sigma = \{a, b, c\},\$
- (d) $L_4 = \{ w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w) \}$ over alphabet $\Sigma = \{a, b, c\},\$
- (e) Prove that there is no deterministic Büchi automaton accepting L_3 .

Exercise 9.4

Prove or disprove:

- (a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state such that $L_{\omega}(A) = L_{\omega}(B)$.
- (b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state such that $L_{\omega}(A) = L_{\omega}(B)$.
- (c) There exists a Büchi automaton recognizing the finite ω -language $\{w\}$ such that $w \in \{0, 1, \dots, 9\}^{\omega}$ and w_i is the i^{th} decimal digit of π .

Solution 9.1

Given a sentence ψ of PureMSO(Σ), let ϕ be the sentence of MSO(Σ) obtained by replacing every subformula of ψ of the form

$$\begin{split} X &\subseteq Y \quad \text{by} \quad \forall x \ (x \in X \to x \in Y) \\ X &\subseteq Q_a \quad \text{by} \quad \forall x \ (x \in X \to Q_a(x)) \\ X &< Y \quad \text{by} \quad \forall x \ \forall y \ (x \in X \land y \in Y) \to x < y \end{split}$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$empty(X) := \forall Y X \subseteq Y$$

and

$$\operatorname{sing}(X) := \neg \operatorname{empty}(X) \land \forall Y (Y \subseteq X) \to (\operatorname{empty}(Y) \lor Y = X).$$

Intuitively, empty(X) is true iff X is the empty set and sing(X) is true iff X is a set of size one.

Let ϕ be a sentence of MSO(Σ). Assume without loss of generality that for every first-order variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropriately). Let ψ be the sentence of PureMSO(Σ) obtained by replacing every subformula of ϕ of the form

$$\begin{array}{lll} \exists x \ \psi' & \mbox{by} & \exists X \left(\operatorname{sing}(X) \land \psi'[X/x] \right) \\ & & \mbox{where} \ \psi'[X/x] \mbox{ is the result of substituting } X \mbox{ for } x \mbox{ in } \psi' \\ Q_a(x) & \mbox{by} & X \subseteq Q_a \\ x < y & \mbox{ by} & X < Y \\ x \in Y & \mbox{ by} & X \subseteq Y \end{array}$$

Clearly, ϕ and ψ are equivalent.

Solution 9.2

Let $0 \le r' < n$ such that $r' \equiv r \pmod{n}$. Since *n* and *r* are fixed constants, *r'* is also a fixed constant. Further, since *n* is a constant, we can multiply a variable by *n* via iterated addition. The required formula is then given by:

$$\varphi(x,y) := (x > y) \land \exists a \ (x = y + n \cdot a + r').$$

Let $k \in \mathbb{N}$ and $x, y \in \Sigma^k$ be LSBF encodings of some naturals. First note that $\operatorname{val}(x) - \operatorname{val}(y) \equiv 1 \pmod{2}$ iff $\operatorname{val}(x)$ and $\operatorname{val}(y)$ are such that one is odd and the other one is even. Thus, the first bit of x and y should be different. Moreover, $\operatorname{val}(x) > \operatorname{val}(y)$ iff there exists $\ell \in \{1, \ldots, k\}$ such that $x_\ell = 1, y_\ell = 0$, and $x_i \geq y_i$ for every $\ell < i \leq k$. These observations yield the following automaton:

Solution 9.3 These are just some possible solutions.

or

(e) For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B = (Q, \Sigma, \delta, q_0, F)$ such that $L_{\omega}(B) = L_3$. Since $cb^{\omega} \in L_3$, B must visit F infinitely often when reading cb^{ω} . In particular, this implies the existence of $m_1 > 0$ and $q_1 \in F$ such that $q_0 \xrightarrow{cb^{m_1}} q_1$. Similarly, since $cb^{m_1}cb^{\omega} \in L_3$, there exist $m_2 > 0$ and $q_2 \in F$ such that $q_0 \xrightarrow{cb^{m_1}cb^{m_2}} q_2$. Since B is deterministic, we have $q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2$. By repeating this argument |Q| times, we can construct $m_1, m_2, \ldots, m_{|Q|} > 0$ and $q_1, q_2, \ldots, q_{|Q|} \in F$ such that

$$q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2 \cdots \xrightarrow{cb^{m_{|Q|}}} q_{|Q|}.$$

By the pigeonhole principle, there exist $0 \le i < j \le |Q|$ such that $q_i = q_j$. Let

$$u = cb^{m_1}cb^{m_2}\cdots cb^{m_i},$$

$$v = cb^{m_{i+1}}cb^{m_{i+2}}\cdots cb^{m_j}.$$

We have $q_0 \xrightarrow{u} q_i \xrightarrow{v} q_i \xrightarrow{v} q_i \xrightarrow{v} \cdots$ which implies that $uv^{\omega} \in L_{\omega}(B)$. Also notice that c appears infinitely often in uv^{ω} , that is, $c \in \inf(uv^{\omega})$. Therefore we have $uv^{\omega} \notin L_3 = L_{\omega}(B)$, which yields a contradiction. \Box

Solution 9.4

(a) True. The construction for NFAs still work for Büchi automata.

Let $B = (Q, \Sigma, \delta, Q_0, F)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B' = (Q \cup \{q_{init}\}, \Sigma, \delta', \{q_{init}\}, F)$ where

$$\delta'(q, a) = \begin{cases} \bigcup_{q_0 \in Q_0} \delta(q_0, a) & \text{if } q = q_{\text{init}}, \\ \delta(q, a) & \text{otherwise.} \end{cases}$$

We have $L_{\omega}(B) = L_{\omega}(B')$, since there exists $q_0 \in Q_0$ such that

$$q_0 \xrightarrow{a_1}_B q_1 \xrightarrow{a_2}_B q_2 \xrightarrow{a_3}_B \cdots$$

if and only if

$$q_{\text{init}} \xrightarrow{a_1}_{B'} q_1 \xrightarrow{a_2}_{B'} q_2 \xrightarrow{a_3}_{B'} \cdots$$

(b) False. Let $L = \{a^{\omega}, b^{\omega}\}$. Suppose there exists a Büchi automaton $B = (Q, \{a, b\}, \delta, Q_0, F)$ such that $L_{\omega}(B) = L$ and $F = \{q\}$. Since $a^{\omega} \in L$, there exist $q_0 \in Q_0, m \ge 0$ and n > 0 such that

$$q_0 \xrightarrow{a^m} q \xrightarrow{a^n} q$$
.

Similarly, since $b^{\omega} \in L$, there exist $q'_0 \in Q_0$, $m' \ge 0$ and n' > 0 such that

$$q'_0 \xrightarrow{b^{m'}} q \xrightarrow{b^{n'}} q$$

This implies that

$$q_0 \xrightarrow{a^m} q \xrightarrow{b^{n'}} q \xrightarrow{b^{n'}} \cdots$$

Therefore, $a^m (b^{n'})^{\omega} \in L$, which is a contradiction.

(c) False. Suppose there exists a Büchi automaton $B = (Q, \{0, 1, \dots, 9\}, \delta, Q_0, F)$ such that $L_{\omega}(B) = \{w\}$. There exist $u \in \{0, 1, \dots, 9\}^*$, $v \in \{0, 1, \dots, 9\}^+$, $q_0 \in Q_0$ and $q \in F$ such that

$$q_0 \xrightarrow{u} q \xrightarrow{v} q$$
.

Therefore, $uv^{\omega} \in L_{\omega}(B)$ which implies that $w = uv^{\omega}$. Since w is the decimal representation of π , we conclude that π is rational, which is a contradiction.